
Photonic Modeling and Design Lab.
Graduate Institute of Photonics and Optoelectronics &
Department of Electrical Engineering
National Taiwan University

C++ Programming
Chapter 8

Sequential-Access Files

Yih-Peng Chiou
Room 617, BL Building

(02) 3366-3603
ypchiou@cc.ee.ntu.edu.tw

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA2

Contents

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Storage:
Volatile: temporary, data is lost as power off

RAM (DRAM, SRAM)
Nonvolatile: “permanent”, data is still there even power off

Hard disks (HD), CDs, DVDS, flash drives and tapes
Files are used in most cases

 This chapter: how to build C++ programs that create, update
and process sequential files
 techniques for input of data from, and output of data to, string

streams rather than files in Chapter 18, Class string and
String Stream Processing.

3

8.1 Introduction

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA4

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Ultimately, all data items that digital computers process are reduced
to combinations of zeros and ones.
 simple and economical to build electronic devices with two stable

states — one state represents 0 and the other represents 1.

 Bit, short for “binary digit”
 the smallest data item that computers support—

 Each data item, or bit, can assume either the value 0 or the value 1.

 Computer circuitry performs various simple bit manipulations

 It is preferable to program with data in forms such as decimal digits
(0–9), letters (A–Z and a–z) and special symbols (e.g., $, @, %, &, *
and many others) – referred to as characters.
 The set of all characters used to write programs and represent data

items on a particular computer is called that computer’s character set.

 Every character in a computer’s character set is represented as a pattern
of 1s and 0s.

 Bytes are composed of eight bits.
5

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 You create programs and data items with characters; computers
manipulate and process these characters as patterns of bits.

 Each char typically occupies one byte.
 C++ also provides data type wchar_t to occupy more than one byte)

 to support larger character sets, such as the Unicode® character set; for
more information on Unicode®, visit www.unicode.org

 A field is a group of characters that conveys some meaning.

 Typically, a record (which can be represented as a class in C++) is
composed of several fields (called data members in C++).
 Thus, a record is a group of related fields.

 A file is a group of related records.

 To facilitate retrieving specific records from a file, at least one field
in each record is chosen as a record key.

 A record key identifies a record as belonging to a particular person
or entity and distinguishes that record from all others.

6

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 There are many ways of organizing records in a file.

 A common type of organization is called a sequential file, in which
records typically are stored in order by a record-key field.

 Most businesses use many different files to store data.

 A group of related files often are stored in a database.

 A collection of programs designed to create and manage databases is
called a database management system (DBMS).

7

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 C++ views each file as a sequence of bytes (Fig. 8.2).

 Each file ends either with an end-of-file marker or at a specific byte
number recorded in an operating-system-maintained, administrative
data structure.

 When a file is opened, an object is created, and a stream is
associated with the object.
 In Chapter 15, we saw that objects cin, cout, cerr and clog are created

when <iostream> is included.

 The streams associated with these objects provide communication
channels between a program and a particular file or device.

 To perform file processing in C++, header files <iostream> and
<fstream> must be included.

8

8.3 Files and Streams

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 C++ imposes no structure on a file.

 A concept like that of a “record” does not exist in a C++ file.

 You must structure files to meet the application’s requirements.

 Figure 8.3 creates a sequential file that might be used in an
accounts-receivable system to help manage the money owed by a
company’s credit clients.

 For each client, the program obtains the client’s account number,
name and balance (i.e., the amount the client owes the company for
goods and services received in the past).

 The data obtained for each client constitutes a record for that client.

 The account number serves as the record key.

 This program assumes the user enters the records in account number
order.

 In a comprehensive accounts receivable system, a sorting capability
would be provided to eliminate this restriction.

9

8.4 Creating a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 10

outClientFile.is_open()

outClientFile.close();

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The file is to be opened for output, so an ofstream object is created.

 Filename and file-open mode are passed to the object’s constructor

11

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Existing files opened with mode ios::out are truncated
 all data in the file is discarded

 If the specified file does not yet exist, the ofstream object creates
the file, using that filename.

 The ofstream constructor opens the file—this establishes a “line of
communication” with the file.

 By default, ofstream objects are opened for output, so the open
mode is not required in the constructor call.

 An ofstream object can be created without opening a specific file—
a file can be attached to the object later. For example, the statements

ofstream outClientFile;
outClientFile.open("clients.txt", ios::out);

 The ofstream member function open opens a file and attaches it to an
existing ofstream object.

12

8.4 Creating a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The condition in the if statement in lines 15–19 returns true if the
open operation failed. Some possible errors are
 attempting to open a nonexistent file for reading,
 attempting to open a file for reading or writing without permission, and
 opening a file for writing when no disk space is available.

 Function exit terminates a program.
 The argument to exit is returned to the environment from which the

program was invoked.
 Argument 0 indicates that the program terminated normally; any other

value indicates that the program terminated due to an error.
 The calling environment (most likely the operating system) uses the

value returned by exit to respond appropriately to the error.
13

8.4 Creating a Sequential File

Avoid it by changing the properties to Read Only

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA14

8.4 Creating a Sequential File
 The user enters the end-of-file key combination to inform the

program to process no additional data—this sets the “end-of-file
indicator” in the cin object.

 Later in the chapter, we’ll use the eof member function to test for
end-of-file in an input file.

 Line 31 writes a set of data to the file clients.txt, using the stream
insertion operator << and the outClientFile object associated with
the file at the beginning of the program.

 The data may be retrieved by a program designed to read the file

 The file created is simply a text file (can be viewed by any text
editor)

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA15

8.4 Creating a Sequential File
 Once the user enters the end-of-file indicator, main terminates.

 This implicitly invokes outClientFile’s destructor, which closes the
clients.txt file.

 You also can close the ofstream object explicitly, using member
function close in the statement

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 16

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Objects of class ifstream are opened for input by default, so to open
clients.txt for input we could have used the statement

ifstream inClientFile("clients.txt");
 An ifstream object can be created without opening a specific file,

because a file can be attached to it later.
17

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Each time line 32 executes, it reads another record from the file into
the variables account, name and balance.

 When the end of file has been reached, the while condition returns
false), terminating the while statement and the program; this causes
the ifstream destructor function to run, closing the file.

 To retrieve data sequentially from a file, programs normally start
reading from the beginning of the file and read all the data
consecutively until the desired data is found.

 It might be necessary to process the file sequentially several times
(from the beginning of the file) during program execution.

 Both istream and ostream provide member functions for
repositioning the file-position pointer (the byte number of the next
byte in the file to be read or written).

seekg (“ seek get”) for istream
seekp (“ seek put”) for ostream

18

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Each istream object has a “get pointer,” which indicates the byte
number in the file from which the next input is to occur, and each
ostream object has a “put pointer,” which indicates the byte
number in the file at which the next output should be placed.

 The statement

inClientFile.seekg(0);
repositions the file-position pointer to the beginning of the

file (location 0) attached to inClientFile.

 The argument to seekg normally is a long integer.

 A second argument can be specified to indicate the seek direction
 ios::beg (the default) for positioning relative to the beginning of a

stream,

 ios::cur for positioning relative to the current position in a stream or

 ios::end for positioning relative to the end of a stream

19

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The file-position pointer is an integer value that specifies the
location in the file as a number of bytes from the file’s starting
location (also referred to as the offset from the beginning of the file).

 Some examples of positioning the “get” file-position pointer are
 // position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);
 // position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);
 // position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);
 // position at end of fileObject

fileObject.seekg(0, ios::end);
 The same operations can be performed using ostream member

function seekp.

 Member functions tellg and tellp are provided to return the current
locations of the “get” and “put” pointers, respectively.

20

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 21

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 22

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 23

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 24

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 25

