C++ Programming
Chapter 8
Sequential-Access Files

Yih-Peng Chiou
Room 617, BL Building

(02) 3366-3603
ypchiou@cc.ee.ntu.edu.tw

Photonic Modeling and Design Lab.

Graduate Institute of Photonics and Optoelectronics &
Department of Electrical Engineering

National Taiwan University

OBJECTIVES

In this chapter you'll learn:

m The data hierarchy from bits, to files to databases.
= To create, read, write and update sequential files.

m Some of the key streams that are associated with file processing.

8.1 Introduction

8.2 Data Hierarchy

8.3 Files and Streams

8.4 Creating a Sequential File

8.5 Reading Data from a Sequential File
8.6 Updating Sequential Files

8.7 Wrap-Up

8.1 Introduction

[1 Storage:
Volatile: temporary, data is lost as power off
[JRAM (DRAM, SRAM)
Nonvolatile: “permanent”, data is still there even power off
[1Hard disks (HD), CDs, DVDS, flash drives and tapes
[1Files are used in most cases
[This chapter: how to build C++ programs that create, update
and process sequential files

techniques for input of data from, and output of data to, string
streams rather than files in Chapter 18, Class string and
String Stream Processing.

8.2 Data Hierarchy

Sally Black

Tom Blue
—= Judy Green File
Iris Orange
Randy Red
Judy Green Record
Judy Field

!

01001010

!

1 Bit Fig. 8.1 | Data hierarchy.

Byte (ASCII character J)

8.2 Data Hierarchy

[J Ultimately, all data items that digital computers process are reduced
to combinations of zeros and ones.

simple and economical to build electronic devices with two stable
states — one state represents 0 and the other represents 1.

[1 Bit, short for “binary digit”
the smallest data item that computers support—
Each data item, or bit, can assume either the value 0 or the value 1.
Computer circuitry performs various simple bit manipulations

[1 It is preferable to program with data in forms such as decimal digits
(0-9), letters (A-Z and a-z) and special symbols (e.g., $, @, %, &, *
and many others) — referred to as characters.

The set of all characters used to write programs and represent data
items on a particular computer is called that computer’s character set.

Every character in a computer’s character set is represented as a pattern
of 1s and Os.

[1 Bytes are composed of eight bits.

5

8.2 Data Hierarchy

[J You create programs and data items with characters; computers
manipulate and process these characters as patterns of bits.

[] Each char typically occupies one byte.
C++ also provides data type wchar_t to occupy more than one byte)

to support larger character sets, such as the Unicode® character set; for
more information on Unicode®, visit www.unicode.org

[1 A field is a group of characters that conveys some meaning.

[0 Typically, a record (which can be represented as a class in C++) is
composed of several fields (called data members in C++).

Thus, a record is a group of related fields.
[1 A file is a group of related records.

[] To facilitate retrieving specific records from a file, at least one field
in each record is chosen as a record key.

[1 A record key identifies a record as belonging to a particular person
or entity and distinguishes that record from all others.

6

8.2 Data Hierarchy

[1 There are many ways of organizing records in a file.

[1 A common type of organization is called a sequential file, in which
records typically are stored in order by a record-key field.

[Most businesses use many different files to store data.
[1 A group of related files often are stored in a database.

[1 A collection of programs designed to create and manage databases is
called a database management system (DBMS).

8.3 Files and Streams

[1 C++ views each file as a sequence of bytes (Fig. 8.2).

[1 Each file ends either with an end-of-file marker or at a specific byte
number recorded in an operating-system-maintained, administrative
data structure.

[1 When a file is opened, an object is created, and a stream is
associated with the object.

In Chapter 15, we saw that objects cin, cout, cerr and clog are created
when <iostream> is included.

[1 The streams associated with these objects provide communication
channels between a program and a particular file or device.

[1 To perform file processing in C++, header files <iostream> and
<fstream> must be included.

0 1 2 3 4 5 6 7 8 9 n-1

end-of-file marker

Fig. 8.2 | C++'s view of a file of n bytes.

8.4 Creating a Sequential File

[C++ imposes no structure on a file.
1 A concept like that of a “record” does not exist in a C++ file.
[J You must structure files to meet the application’s requirements.

[1 Figure 8.3 creates a sequential file that might be used in an
accounts-receivable system to help manage the money owed by a
company’s credit clients.

[1 For each client, the program obtains the client’s account number,
name and balance (i.e., the amount the client owes the company for
goods and services received in the past).

[The data obtained for each client constitutes a record for that client.
[J The account number serves as the record key.

[J This program assumes the user enters the records in account number
order.

[1 In a comprehensive accounts receivable system, a sorting capability
would be provided to eliminate this restriction.

9

I / Fig. 8.3: Fig08_03.cpp

2 Create a sequentia rle.

3 #include <iostream>

4 #include <string> -_—
5 #include <fstream> // file stream

6 #include <cstdlib>

7 using namespace std;

8

9 1int main()

10 {

11 // ofstream constructor opens file

12 ofstream outClientFile("clients.txt", ios::out);

|

I: // exit program f unable to create file outCIientFiIe.is_open()
15 if ('outClientFile ywerloaded !

16 {

17 cerr << "File could not be opened" << endl;

18 exit(1);

19 } // end if
20
21 cout << "Enter the account, name, and balance." << end]l
22 << "Enter end-of-file to end input.\n? ";
23
24 int account; // customer’s account number
25 string name; //customer’s name
26 double balance; // amount of money customer owes company
27
28 / read account, name and balance from cin, then place 1in
29 while (c¢in >> account >> name >> balance)
30 {
31 outClientFile << account << ' ' << name << ' ' << balance << endl;
32 cout << "7 ";
33 } // end while : . . E

% outClientFile.close();

34 } / enda main 10

Enter the account, name, and balance.
Enter end-of-file to end input.

? 100 Jones 24.98 ——
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62
AZ

ENER IR PN

Fig. 8.3 | Creating a sequential file.

[1 The file is to be opened for output, so an ofstream object is created.
[J Filename and file-open mode are passed to the object’s constructor

ios::app Append all output to the end of the file.
ios::ate Open a file for output and move to the end of the file (normally used to
append data to a file). Data can be written anywhere in the file.
ios::in Open a file for input.
Open a file for output.
ios::trunc Discard the file’s contents (this also is the default action for ios: :out).
ios::binary Open a file for binary (i.e., nontext) input or output.

11

8.4 Creating a Sequential File

[1 Existing files opened with mode ios::out are truncated
all data in the file is discarded
[1 If the specified file does not yet exist, the ofstream object creates
the file, using that filename.
[0 The ofstream constructor opens the file—this establishes a “line of
communication” with the file.
[1 By default, ofstream objects are opened for output, so the open
mode is not required in the constructor call.
[0 An ofstream object can be created without opening a specific file—
a file can be attached to the object later. For example, the statements
ofstream outClientFile;
outClientFile.open("clients.txt", ios::out);

The ofstream member function open opens a file and attaches it to an
existing ofstream object.
y, Common Programming Error 8.2
ﬁ Not opening a file before attempting to reference it in a
program will result in an error.

12

8.4 Creating a Sequential File

722 Common Programming Error 8.1

@ Use caution when opening an existing file for output
(10s: :out), especially when you want to preserve the
[file’s contents, which will be discarded without

warning. Avoid it by changing the properties to Read Only

[J The condition in the if statement in lines 15-19 returns true if the
open operation failed. Some possible errors are

attempting to open a nonexistent file for reading,
attempting to open a file for reading or writing without permission, and
opening a file for writing when no disk space is available.

[J Function exit terminates a program.
The argument to exit is returned to the environment from which the
program was invoked.
Argument 0 indicates that the program terminated normally; any other
value indicates that the program terminated due to an error.
The calling environment (most likely the operating system) uses the
value returned by exit to respond appropriately to the error.

13

8.4 Creating a Sequential File

[1 The user enters the end-of-file key combination to inform the
program to process no additional data—this sets the “end-of-file
indicator” in the cin object.

UNIX/Linux/Mac OS X <Ctrl-d> (on aline by itself)
Microsoft Windows <Ctrl-z> (sometimes followed by pressing Enter)
VAX (VMS) <Ctrl-z>

[1 Later in the chapter, we’ll use the eof member function to test for
end-of-file in an input file.

[1 Line 31 writes a set of data to the file clients.txt, using the stream
insertion operator << and the outClientFile object associated with
the file at the beginning of the program.

[J The data may be retrieved by a program designed to read the file

[1 The file created is simply a text file (can be viewed by any text
editor)

14

8.4 Creating a Sequential File

] Once the user enters the end-of-file indicator, main terminates.
[0 This implicitly invokes outClientFile’s destructor, which closes the
clients.txt file.

[] You also can close the ofstream object explicitly, using member
function close in the statement

$

Good Programming Practice 8.1

Open a file for input only (using ios: : in) if the file’s
contents should not be modified. This prevents uninten-
tional modification of the file’s contents and is an exam-

ple of the principle of least privilege.

15

8.5 Reading Data from a Sequential File

29 <<

—_—] // Fig. 8.6: F1g08_06.cpp
2 // Reading and printing a sequential file.
3 #include <iostream>
4 #include <fstream> // file stream
5 #include <iomanip>
6 #include <string>
7 #include <cstdlib>
8 using namespace std;
9
10 void outputLine(int, const string, double); // prototype
11
12 1int main()
13 {
14 // ifstream constructor opens the file
15 ifstream inClientFile("clients.txt", ios::in);
16
17 // exit program if ifstream could not open file
18 if (linClientFile)
19 {
20 cerr << "File could not be opened" << endl;
21 exit(1);
22 } // end if
23
24 int account; // customer’s account number
25 string name; // customer’s name
26 double balance; //amount of money customer owes company
27
—_ 28 cout << left << setw(10) << "Account" << setw(13)

"Name" << "Balance" << end]l << fixed << showpoint; 16

30
31 | display each record n Mie
32 while (inClientFile >> account >> name >> balance)

—_—33 outputLine(account, name, balance);
34 1} end main
35
36 display single record from file

37 void outputLine(int account, const string name, double balance)
38 {
39 cout << left << setw(10) << account << setw(13) << name

40 << setw(7) << setprecision(2) << right << balance << endl;
41 1} end function outputLine

Account Name Balance

100 Jones 24.98

200 Doe 345.67

300 White 0.00

400 Stone -42.16

500 Rich 224.62

Fig. 8.6 | Reading and printing a sequential file.
[1 Objects of class ifstream are opened for input by default, so to open
clients.txt for input we could have used the statement
ifstream inClientFile("clients.txt");

[J An ifstream object can be created without opening a specific file,
because a file can be attached to it later.

17

8.5 Reading Data from a Sequential File

[0 Each time line 32 executes, it reads another record from the file into
the variables account, name and balance.

[J When the end of file has been reached, the while condition returns
false), terminating the while statement and the program; this causes
the ifstream destructor function to run, closing the file.

[J To retrieve data sequentially from a file, programs normally start
reading from the beginning of the file and read all the data
consecutively until the desired data is found.

[J It might be necessary to process the file sequentially several times
(from the beginning of the file) during program execution.

[J Both istream and ostream provide member functions for
repositioning the file-position pointer (the byte number of the next
byte in the file to be read or written).

seekg (“ seek get”) for istream
seekp (“ seek put”) for ostream

18

8.5 Reading Data from a Sequential File

[] Each istream object has a “get pointer,” which indicates the byte
number in the file from which the next input is to occur, and each
ostream object has a “put pointer,” which indicates the byte
number in the file at which the next output should be placed.

[1 The statement

inClientFile.seekg(0);
repositions the file-position pointer to the beginning of the
file (location 0) attached to inClientFile.
[0 The argument to seekg normally is a long integer.
[A second argument can be specified to indicate the seek direction

ios::beg (the default) for positioning relative to the beginning of a
stream,

ios::cur for positioning relative to the current position in a stream or
ios::end for positioning relative to the end of a stream

19

8.5 Reading Data from a Sequential File

[J The file-position pointer is an integer value that specifies the
location in the file as a number of bytes from the file’s starting
location (also referred to as the offset from the beginning of the file).

[1 Some examples of positioning the “get” file-position pointer are

/I position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

/I position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);
[l position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);
// position at end of fileObject
fileObject.seekg(0, ios::end);
[0 The same operations can be performed using ostream member
function seekp.

[0 Member functions tellg and tellp are provided to return the current
locations of the “get” and “put” pointers, respectively.

20

1 // Fig. 8.7: Fig08_08.cpp
2 // Credit inquiry program.
3 #include <iostream>
4 #include <fstream> -
5 #include <iomanip>
6 #include <string>
7 #include <cstdlib>
8 using namespace std;
9
10 enum RequestType { ZERO_BALANCE = 1, CREDIT_BALANCE, DEBIT_BALANCE, END };
Il int getRequest();
12 bool shouldDisplay(int, double);
13 void outputLine(int, const string, double);
14
15 1int main()
16 {
17 // ifstream constructor opens the file
18 ifstream inClientFile("clients.txt", ios::in);
19
20 // exit program if ifstream could not open file
21 if (!inClientFile)
22 {
23 cerr << "File could not be opened" << endl;
24 exit(1);
25 ¥} // end if
26
27 int request; // request type: zero, credit or debit balance
28 int account; // customer’s account number
29 string name; // customer’s name
30 double balance; // amount of money customer owes company
31 21
32 // get user's request (e.g., zero, credit or debit balance)
33 request = getRequest();
34
35 // process user's request =
36 while (request != END)
37 {
38 switch (request)
39 {
40 case ZERO_BALANCE:
41 cout << "\nAccounts with zero balances:\n";
42 break;
43 case CREDIT_BALANCE:
44 cout << "\nAccounts with credit balances:\n";
45 break;
46 case DEBIT_BALANCE:
47 cout << "\nAccounts with debit balances:\n";
48 break;
49 } // end switch
50
51 // read account, name and balance from file
52 inClientFile >> account >> name >> balance;
53
54 // display file contents (until eof)
55 while (!'inClientFile.eof())
56 {
57 // display record
58 if (shouldDisplay(request, balance))
59 outputLine(account, name, balance);
60
61 // read account, name and balance from file
62 inClientFile >> account >> name >> balance; o
A 1 // and Annar whila

64

65 inClientFile.clear(); // reset eof for next +input
— 66 inClientFile.seekg(0); // reposition to beginning of file —
67 request = getRequest(); // get additional request from user
68 } // end outer while
69
70 cout << "End of run." << endl;
71} // end main
72
73 // obtain request from user
74 1int getRequest()
5 o
76 int request; // request from user
77
78 // display request options
79 cout << "\nEnter request" << end]
80 << " 1 - List accounts with zero balances" << endl
81 << " 2 - List accounts with credit balances" << endl
82 << " 3 - List accounts with debit balances" << end]l
83 << " 4 - End of run" << fixed << showpoint;
84
85 do // input user request
86 {
87 cout << "\n? ";
88 cin >> request;
89 } while (request < ZERO_BALANCE && request > END);
90
91 return request;
92 } // end function getRequest
23
94 // determine whether to display given record
95 bool shouldDisplay(int type, double balance)
96 {
97 // determine whether to display zero balances
98 if (type == ZERO_BALANCE && balance == 0)
99 return true;
100
101 // determine whether to display credit balances
102 if (type == CREDIT_BALANCE && balance < 0)
103 return true;
104
105 // determine whether to display debit balances
106 if (type == DEBIT_BALANCE && balance > 0)
107 return true;
108
109 return false;
110 } // end function shouldDisplay
11
112 // display single record from file
113 void outputLine(int account, const string name, double balance)
114 {
115 cout << left << setw(10) << account << setw(13) << name
116 << setw(7) << setprecision(2) << right << balance << endl;
117 } // end function outputLine
Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
—— 4 - End of run _—
71 24

Accounts with zero balances:
300 White 0.00

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
72

Accounts with credit balances:
400 Stone -42.16

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

7?73

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
? 4
End of run.

Fig. 8.7 | Credit inquiry program.

25

