
Photonic Modeling and Design Lab.
Graduate Institute of Photonics and Optoelectronics &
Department of Electrical Engineering
National Taiwan University

C++ Programming
Chapter 8

Sequential-Access Files

Yih-Peng Chiou
Room 617, BL Building

(02) 3366-3603
ypchiou@cc.ee.ntu.edu.tw

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA2

Contents

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Storage:
Volatile: temporary, data is lost as power off

RAM (DRAM, SRAM)
Nonvolatile: “permanent”, data is still there even power off

Hard disks (HD), CDs, DVDS, flash drives and tapes
Files are used in most cases

 This chapter: how to build C++ programs that create, update
and process sequential files
 techniques for input of data from, and output of data to, string

streams rather than files in Chapter 18, Class string and
String Stream Processing.

3

8.1 Introduction

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA4

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Ultimately, all data items that digital computers process are reduced
to combinations of zeros and ones.
 simple and economical to build electronic devices with two stable

states — one state represents 0 and the other represents 1.

 Bit, short for “binary digit”
 the smallest data item that computers support—

 Each data item, or bit, can assume either the value 0 or the value 1.

 Computer circuitry performs various simple bit manipulations

 It is preferable to program with data in forms such as decimal digits
(0–9), letters (A–Z and a–z) and special symbols (e.g., $, @, %, &, *
and many others) – referred to as characters.
 The set of all characters used to write programs and represent data

items on a particular computer is called that computer’s character set.

 Every character in a computer’s character set is represented as a pattern
of 1s and 0s.

 Bytes are composed of eight bits.
5

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 You create programs and data items with characters; computers
manipulate and process these characters as patterns of bits.

 Each char typically occupies one byte.
 C++ also provides data type wchar_t to occupy more than one byte)

 to support larger character sets, such as the Unicode® character set; for
more information on Unicode®, visit www.unicode.org

 A field is a group of characters that conveys some meaning.

 Typically, a record (which can be represented as a class in C++) is
composed of several fields (called data members in C++).
 Thus, a record is a group of related fields.

 A file is a group of related records.

 To facilitate retrieving specific records from a file, at least one field
in each record is chosen as a record key.

 A record key identifies a record as belonging to a particular person
or entity and distinguishes that record from all others.

6

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 There are many ways of organizing records in a file.

 A common type of organization is called a sequential file, in which
records typically are stored in order by a record-key field.

 Most businesses use many different files to store data.

 A group of related files often are stored in a database.

 A collection of programs designed to create and manage databases is
called a database management system (DBMS).

7

8.2 Data Hierarchy

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 C++ views each file as a sequence of bytes (Fig. 8.2).

 Each file ends either with an end-of-file marker or at a specific byte
number recorded in an operating-system-maintained, administrative
data structure.

 When a file is opened, an object is created, and a stream is
associated with the object.
 In Chapter 15, we saw that objects cin, cout, cerr and clog are created

when <iostream> is included.

 The streams associated with these objects provide communication
channels between a program and a particular file or device.

 To perform file processing in C++, header files <iostream> and
<fstream> must be included.

8

8.3 Files and Streams

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 C++ imposes no structure on a file.

 A concept like that of a “record” does not exist in a C++ file.

 You must structure files to meet the application’s requirements.

 Figure 8.3 creates a sequential file that might be used in an
accounts-receivable system to help manage the money owed by a
company’s credit clients.

 For each client, the program obtains the client’s account number,
name and balance (i.e., the amount the client owes the company for
goods and services received in the past).

 The data obtained for each client constitutes a record for that client.

 The account number serves as the record key.

 This program assumes the user enters the records in account number
order.

 In a comprehensive accounts receivable system, a sorting capability
would be provided to eliminate this restriction.

9

8.4 Creating a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 10

outClientFile.is_open()

outClientFile.close();

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The file is to be opened for output, so an ofstream object is created.

 Filename and file-open mode are passed to the object’s constructor

11

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Existing files opened with mode ios::out are truncated
 all data in the file is discarded

 If the specified file does not yet exist, the ofstream object creates
the file, using that filename.

 The ofstream constructor opens the file—this establishes a “line of
communication” with the file.

 By default, ofstream objects are opened for output, so the open
mode is not required in the constructor call.

 An ofstream object can be created without opening a specific file—
a file can be attached to the object later. For example, the statements

ofstream outClientFile;
outClientFile.open("clients.txt", ios::out);

 The ofstream member function open opens a file and attaches it to an
existing ofstream object.

12

8.4 Creating a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The condition in the if statement in lines 15–19 returns true if the
open operation failed. Some possible errors are
 attempting to open a nonexistent file for reading,
 attempting to open a file for reading or writing without permission, and
 opening a file for writing when no disk space is available.

 Function exit terminates a program.
 The argument to exit is returned to the environment from which the

program was invoked.
 Argument 0 indicates that the program terminated normally; any other

value indicates that the program terminated due to an error.
 The calling environment (most likely the operating system) uses the

value returned by exit to respond appropriately to the error.
13

8.4 Creating a Sequential File

Avoid it by changing the properties to Read Only

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA14

8.4 Creating a Sequential File
 The user enters the end-of-file key combination to inform the

program to process no additional data—this sets the “end-of-file
indicator” in the cin object.

 Later in the chapter, we’ll use the eof member function to test for
end-of-file in an input file.

 Line 31 writes a set of data to the file clients.txt, using the stream
insertion operator << and the outClientFile object associated with
the file at the beginning of the program.

 The data may be retrieved by a program designed to read the file

 The file created is simply a text file (can be viewed by any text
editor)

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA15

8.4 Creating a Sequential File
 Once the user enters the end-of-file indicator, main terminates.

 This implicitly invokes outClientFile’s destructor, which closes the
clients.txt file.

 You also can close the ofstream object explicitly, using member
function close in the statement

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 16

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Objects of class ifstream are opened for input by default, so to open
clients.txt for input we could have used the statement

ifstream inClientFile("clients.txt");
 An ifstream object can be created without opening a specific file,

because a file can be attached to it later.
17

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Each time line 32 executes, it reads another record from the file into
the variables account, name and balance.

 When the end of file has been reached, the while condition returns
false), terminating the while statement and the program; this causes
the ifstream destructor function to run, closing the file.

 To retrieve data sequentially from a file, programs normally start
reading from the beginning of the file and read all the data
consecutively until the desired data is found.

 It might be necessary to process the file sequentially several times
(from the beginning of the file) during program execution.

 Both istream and ostream provide member functions for
repositioning the file-position pointer (the byte number of the next
byte in the file to be read or written).

seekg (“ seek get”) for istream
seekp (“ seek put”) for ostream

18

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 Each istream object has a “get pointer,” which indicates the byte
number in the file from which the next input is to occur, and each
ostream object has a “put pointer,” which indicates the byte
number in the file at which the next output should be placed.

 The statement

inClientFile.seekg(0);
repositions the file-position pointer to the beginning of the

file (location 0) attached to inClientFile.

 The argument to seekg normally is a long integer.

 A second argument can be specified to indicate the seek direction
 ios::beg (the default) for positioning relative to the beginning of a

stream,

 ios::cur for positioning relative to the current position in a stream or

 ios::end for positioning relative to the end of a stream

19

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA

 The file-position pointer is an integer value that specifies the
location in the file as a number of bytes from the file’s starting
location (also referred to as the offset from the beginning of the file).

 Some examples of positioning the “get” file-position pointer are
 // position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);
 // position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);
 // position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);
 // position at end of fileObject

fileObject.seekg(0, ios::end);
 The same operations can be performed using ostream member

function seekp.

 Member functions tellg and tellp are provided to return the current
locations of the “get” and “put” pointers, respectively.

20

8.5 Reading Data from a Sequential File

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 21

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 22

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 23

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 24

YPC - NTU GIPO & EE Introduction to C++ ProgrammingNTU BA 25

