C++ Programming
Chapter 2 Introduction to C++
Programming

Yih-Peng Chiou
Room 617, BL Building

(02) 3366-3603
ypchiou@cc.ee.ntu.edu.tw

Photonic Modeling and Design Lab.

#\ Graduate Institute of Photonics and Optoelectronics &
«J Department of Electrical Engineering

National Taiwan University

2.6 Arithmetic
Addition + f+7 7
Subtraction - p—c p-c
Multiplication i bmorb-m b *m
Division / x/yorii;orx+y x/y
Modulus % r mod s r%s

Fig. 2.9 | Arithmetic operators.

Integer division yields an integer quotient. Any fractional part in
integer division is discarded (i.e., truncated) — no rounding occurs.

_ Common Programming Error 2.3
iAL Astempting to use the modulus operator (%) with nonin-
teger operands is a compilation error.

2

2.6 Arithmetic

Addition + T CA
Subtraction = p—c p - ¢
Multiplication bmorb-m b *m
Division 7 x/yor f-} orx+y X /vy
Modulus % rmods r%s

Fig. 2.9 | Arithmetic operators.

s2z. Common Programming Error 2.3
LA Attempting to use the modulus operator (%) with nonin-
teger operands is a compilation error.

2.6 Arithmetic

(@) Parentheses Evaluated first. If the parentheses are nested, the expres-
sion in the innermost pair is evaluated first. If there are
several pairs of parentheses “on the same level” (i.e., not
nested), they're evaluated left to right.

* /% Multiplication, Evaluated second. If there are several, they're evaluated left
Division, to right.
Modulus
Addition Evaluated last. If there are several, they’re evaluated left to
z Subtraction right.

Fig. 2.10 | Precedence of arithmetic operators.

It’s acceptable to place unnecessary parentheses in an expression to make
the expression clearer. These are called redundant parentheses.

2.7 Decision Making: Equality and Relational Operators

1 if statement:
True => statement in the body of the if statement is executed

False => the body statement is not executed

The relational operators have higher level of precedence over the equality
operators. (Allrel. op. have the same level. All eq. op. have the same level.)

Relational operators

> > X >y x is greater than y

< < X <y x is less than y

> >= X >=y X is greater than or equal to y
< <= X <=y X is less than or equal to y
Equality operators

= == X ==y X is equal to y

I= x =y X is not equal to y

Fig. 2.12 | Equality and relational operators.

5

2.7 Decision Making: Equality and Relational Operators

7~ Common Programming Error 2.5
A A syntax ervor will occur if any of the operators ==, 1=,

>= and <= appears with spaces between its pair of sym-
bols.

77, Common Programming Error 2.7

Al Confusing the equality operator == with the assignment
operator = results in logic errors. The equality operator
should be read “is equal to,” and the assignment operator
should be read “gets” or “gers the value of” or “is assigned
the value of " Some people prefer to read the equality op-
erator as “double equals.” As we discuss in Section 4.9,
confusing these operators may not necessarily cause an
edsy-to-recognize syntax error, but may cause extremely
subtle logic errvors.

2.7 Decision Making: Equality and Relational Operators

// Fig. 2.13: fig02_13.cpp

// Comparing integers using if statements, relational operators
// and equality operators.

#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

OO~ NN h W N -

10 // function main begins program execution
11 int main()

12 {

13 int numberl; // first integer to compare

14 int number2; // second integer to compare

15

16 cout << "Enter two integers to compare: "; // prompt user for data
17 cin >> numberl >> number2; // read two integers from user

18

19 if (numberl == number2)

20 cout << numberl << " == " << number2 << endl;

21

Fig. 2.13 | Comparing integers using if statements, relational operators and
equality operators. (Part | of 3.)

2.7 Decision Making: Equality and Relational Operators

22 if (numberl != number2)

23 cout << numberl << " != " << number? << endl;
24

25 if (numberl < number2)

26 cout << numberl << " < " << number2 << endl;

27

28 if (numberl > number2)

29 cout << numberl << " > " << number2 << endl;

30

31 if (numberl <= number2)

32 cout << numberl << " <= " << number? << endl;
33

34 if (numberl >= number2)

35 cout << numberl << " >= " << number? << endl;

36 } // end function main

Enter two integers to compare: 3 7
31=7

3 <7

3 <=7

Fig. 2.13 | Comparing integers using if statements, relational operators and
equality operators. (Part 2 of 3.)

2.7 Decision Making: Equality and Relational Operators

Enter two integers to compare: 22 12
22 1= 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 ==

7 <=7

7 5>=7

Fig. 2.13 | Comparing integers using i statements, relational operators and
equality operators. (Part 3 of 3.)

0 using declarations

eliminate the need to repeat the std: = prefix

cout instead of std: :cout, cin instead of std: :cinand endl
instead of std: :endl

[using namespace std ;
enables a program to use all the names in any standard C++ header file
(such as <iostream>) that a program might include

[if statement
has a single statement in its body and each body statement is indented

multiple-statement bodies (by enclosing the body statements in a pair
of braces, { }, creating what’s called a compound statement or a block).

10

2.7 Decision Making: Equality and Relational Operators

@ Good Programming Practice 2.12
Indent the statement(s) in the body of an 1 f statement to
enhance readability.

Good Programming Practice 2.13
| For readability, there should be no more than one state-
ment per line in a program.

Good Programming Practice 2.14

| A lengthy statement may be spread over several lines. If a
single statement must be split across lines, choose mean-
ingfiul breaking points, such as after a comma in a com-
ma-separated list, or after an operator in a lengthy
expression. If a statement is split across two or more lines,
indent all subsequent lines and lefi-align the group of in-
dented lines.

11

2.7 Decision Making: Equality and Relational Operators

7z Common Programming Error 2.8

LA Placing a semicolon immediately after the right paren-
thesis after the condition in an 1T statement is often a
logic error (although not a syntax error). The semicolon
causes the body of the 1T statement to be empty, so the f
statement performs no action, regardless of whether or
not its condition is true. Worse yet, the original body
statement of the 1t statement now becomes a statement
in sequence with the 1T statement and always executes,
often causing the program to produce incorrect results.

s22 Common Programming Error 2.9
LA It a syntax ervor to split an identifier by inserting white-
space characters (e.g., writing main as ma in).

12

2.7 Decision Making: Equality and Relational Operators

O left to right
& 7 % left to right
+ = left to right
<< >> left to right
< <= > >= left to right
== 1= left to right
= right to left

parentheses

multiplicative

additive

stream insertion/extraction
relational

equality

assignment

Fig. 2.14 | Precedence and associativity of the operators discussed so

far.

13

2.7 Decision Making: Equality and Relational Operators

g Good Programming Practice 2.15
“ Refer to the operator precedence and associativity chart

when writing expressions containing mamny operarors.
Confirm that the operators in the expression are per-
[formed in the order you expect. If you 're uncertain about
the order of evaluation in a complex expression, break
the expression into smaller statements or use parentheses
to force the order of evaluation, exactly as you'd do in an
algebraic expression. Be sure to observe that some opera-
tors such as assignment (=) associate right to left rather

than left to right.

14

