Solutions

- (1) (10 pts) Answer the following questions:
 - (a) (5 pts) Give a language that cannot be recognized by a DFA with a single final state. Why? Sol: $L = \{\epsilon, a\}$. For a DFA to accept ϵ , the initial state must be a final state. We need another state to accept a.
 - (b) (5 pts) Prove/disprove that any regular language can be recognized by an NFA with a single final state. Sol: YES. For each final state of an NFA, add an ϵ transition to a new final state. Then then original final state can be made non-final.
- (2) (15 pts) Given a language $L \subseteq \Sigma^*$ and a $w \in \Sigma^*$, the *residual* of L with respect to w, denoted as L^w , is $L^w = \{u \in \Sigma^* \mid wu \in L\}.$
 - (a) (3 pts) State the *Myhill-Nerode Theorem* in terms of residuals of a language. Sol: A language L is regular if and only if it has finitely many residuals.
 - (b) (8 pts) Consider language $L = aa^*b$. Complete the following table:

String w	Residual L^w
a	a^*b
b	Ø
ab	ϵ
ϵ	aa^*b

(c) (4 pts) Based on the results above, draw a 4-state DFA M accepting L. Note that each node in M should be labeled with a residual. Be sure to clearly mark the initial and the final states.

- (3) (10 pts)
 - (a) (5 pts) Convert the following NFA M (over alphabet $\{a,b,c\})$ to an equivalent DFA using the subset construction

- (b) (5 pts) Suppose we define a so-called *universal NFA* which is an NFA $M = (Q, \Sigma, \delta, q_0, F)$ except that the language it accepts is defined as $\{w \in \Sigma^* \mid \delta^*(q_0, w) \subseteq F\}$, i.e., to accept w all the computations must enter some states in F. Recall that the the original definition of acceptance for NFA is $\{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}$. Here $\delta^*(q_0, w)$ denotes the set of states reachable form q_0 upon reading w.
 - (Question) Explain how to convert the DFA constructed in (a) to accept the language of M, assuming that M is a universal NFA.
 - (a) **Sol:**
 - (b)**Sol:** Make $\{q_0, q_1, q_2\}$ a non-final state, as q_0 is not a final state in the NFA.

- (4) (5 pts) Given a language L, perm(L) consists of all permutations of strings in L. For example, for L = {abc}, perm(L) = {abc, acb, bac, bca, cab, cba}. Suppose L is regular, is perm(L) always regular? Justify your answer.
 Sol: Not necessarily regular. Consider L = (ab)*. perm(L) = {w ∈ {a,b}* | the number of a's = the number of b's}, which is not regular.
- (5) (5 pts) Let L be a regular language. Is $\{w \in \Sigma^* \mid ww \in L\}$ always regular? Give a brief yet convincing argument. Sol: YES. Suppose $M = (q, \Sigma, \delta, q_0, F)$ is a FA accepting L. Construct an NFA with initial state q'_0 and each of its remaining states of the form (p, q, r) such that
 - $q'_0 \xrightarrow{\epsilon} (q, q_0, q), \forall q \in Q$
 - $(q, p, r) \xrightarrow{a} (q, p', r')$ if $p \xrightarrow{a} p'$ and $r \xrightarrow{a} r'$,
 - (q, q, q_f) is a final state if $q_f \in F$.

Note: the the construction is very similar to what we did for accepting $\frac{1}{2}L$ discussed in class.

- (6) (10 pts) A DFA $M = (Q, \Sigma, \delta, q_0, F)$ is *reversible* if no input symbol can enter a state from two distinct states, i.e. for every $p, q \in Q$ and $a \in \Sigma$, if $\delta(p, a) = \delta(q, a)$, then p = q.
 - (a) (5 pts) Give a reversible DFA recognizing $L = \{ab, ba, bb\}$. Note that for a DFA, every input symbol must be defined on every state except for those sink states (i.e., states without outgoing transitions).

(b) (5 pts) Is there a unique minimal reversible DFA recognizing L (up to isomorphism)? Justify your answer. **Sol:** No.

(7) (5 pts) Suppose we use the pumping lemma to show that

 $L = \{0^n 1^m \mid n, m \ge 1, m \text{ leves a remainder of 3 when divided by } n\}$

is not regular. (For example, $0^4 1^7, 0^5 1^{13} \in L$.)

(Proof) Let p be the pumping constant. Consider $w = 0^{p+4}1^{p+7}$. Let w = xyz be any partition that $|xy| \le p$, and |y| > 0. Suppose $x = 0^r$, $y = 0^s$, $z = 0^t 1^{p+7}$, where r + s + t = p + 4, $r + s \le p$, s > 0. Now consider $xy^2z = 0^{r+2s+t}1^{p+7} = 0^{p+4+s}1^{p+7}$.

(Question:) Complete the proof by showing the remaining details that xy^2z is not in L. Sol: Consider the following two cases:

- if $p + 4 + s \le p + 7$, then $(p + 7 \mod p + 4 + s) \le 2$
- if p + 4 + s > p + 7, then $(p + 7 \mod p + 4 + s) = p + 7 > 3$.

In either case, we have a contradiction.

- (8) (20 pts) For each of the languages below, decide whether the language is context-free or not. Mark \bigcirc if it is context-free. mark \times if not. No explanations are needed. No penalty for wrong answer.
 - (1) $\{0^{n}1^{n}1^{n} \mid n \ge 0\}$ Sol: \bigcirc . The language is $\{0^{n}1^{2n} \mid n \ge 0\}$
 - (2) $\{0^n 1^n 1^n 0^n \mid n \ge 0\}$ Sol: ×. The language is $\{0^n 1^{2n} 0^n \mid n \ge 0\}$
 - (3) $\{0^n 1^m \mid m, n \text{ are either both odd or both even}\}$ Sol: \bigcirc . Use states to keep track of whether m, n is odd or even.
 - (4) $\{0^{n}1^{n}0^{m}1^{m} \mid m, n \ge 0\}$ Sol: \bigcirc Can be accepted by a PDA.
 - (5) $\{(0^n 1^n)^m \mid m, n \ge 0\}$ Sol: ×. Use pumping lemma.
 - (6) $\{wxw \mid w, x \in \{0, 1\}^*\}$ Sol: \bigcirc . Set w to ϵ . The language = $\{0, 1\}^*$.
 - (7) $\overline{\{a^n b^n c^n \mid n \ge 0\}}$, i.e., the complement of $\{a^n b^n c^n \mid n \ge 0\}$. **Sol:** \bigcirc . The set is the union of (1) not of the form $a^* b^* c^*$; (2) $\{a^i b^j c^k \mid i \ne j\}$; (3) $\{a^i b^j c^k \mid i \ne k\}$; (4) $\{a^i b^j c^k \mid k \ne j\}$
 - (8) $\{a^i b^j \mid i+j=n^2, \text{ for some } n \ge 0\}$ Sol: ×. Intersecting with a^* yields $\{a^{n^2} \mid n \ge 0\}$, which is not CF.
 - (9) $\{a^p b^q c^r \mid p, q, r \ge 0, \ p = r = 2q\}$ Sol: ×. Use pumping lemma.
 - (10) $\{a^p b^q c^r \mid p, q, r \ge 0, p+r=2q\}$ Sol:(). Can be accepted by a PDA.
- (9) (10 pts) Consider language $L = \{0^i 1^j \mid 0 \le 2i \le j\}.$
 - (a) (5 pts) Give a context-free grammar for L. Sol: $S \rightarrow 0S11 \mid S1 \mid \epsilon$
 - (b) (5 pts) Give a PDA for L. Draw the diagram of the PDA.

(10) (10 pts) Consider the following CFG G in CNF.

$$\begin{split} S &\to AB \mid BC \\ A &\to BA \mid a \\ B &\to CC \mid b \\ C &\to AB \mid a \end{split}$$

Use CYK algorithm to decide whether string baaba is in L(G) or not. Complete the following Table.

Recall that $X_{i,j} = \{A \mid A \stackrel{*}{\Longrightarrow} w_{i,j}\}$, where $w_{i,j}$ is the substring from positions *i* to *j*. For example, for string baaba, $w_{1,1} = b$ and $w_{2,4} = aab$.

{S, A, C}	← X _{1, 5}			
ø	{S, A, C}			
ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а