Theory of Computation

Spring 2024, Midterm Exam. (April 9, 2024)

Solutions

(1) (10 pts) Answer the following questions:
(a) (5 pts) Give a language that cannot be recognized by a DFA with a single final state. Why?

Sol: $L=\{\epsilon, a\}$. For a DFA to accept ϵ, the initial state must be a final state. We need another state to accept a.
(b) (5 pts) Prove/disprove that any regular language can be recognized by an NFA with a single final state.

Sol: YES. For each final state of an NFA, add an ϵ transition to a new final state. Then then original final state can be made non-final.
(2) (15 pts) Given a language $L \subseteq \Sigma^{*}$ and a $w \in \Sigma^{*}$, the residual of L with respect to w, denoted as L^{w}, is $L^{w}=\left\{u \in \Sigma^{*} \mid w u \in L\right\}$.
(a) (3 pts) State the Myhill-Nerode Theorem in terms of residuals of a language.

Sol: A language L is regular if and only if it has finitely many residuals.
(b) (8 pts) Consider language $L=a a^{*} b$. Complete the following table:

String w	Residual L^{w}
a	$a^{*} b$
b	\emptyset
$a b$	ϵ
ϵ	$a a^{*} b$

(c) (4 pts) Based on the results above, draw a 4 -state DFA M accepting L. Note that each node in M should be labeled with a residual. Be sure to clearly mark the initial and the final states.

(3) (10 pts)
(a) (5 pts) Convert the following NFA M (over alphabet $\{a, b, c\}$) to an equivalent DFA using the subset construction

(b) (5 pts) Suppose we define a so-called universal NFA which is an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ except that the language it accepts is defined as $\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \subseteq F\right\}$, i.e., to accept w all the computations must enter some states in F. Recall that the the original definition of acceptance for NFA is $\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}$. Here $\delta^{*}\left(q_{0}, w\right)$ denotes the set of states reachable form q_{0} upon reading w.

- (Question) Explain how to convert the DFA constructed in (a) to accept the language of M, assuming that M is a universal NFA.
(a) Sol:
(b)Sol: Make $\left\{q_{0}, q_{1}, q_{2}\right\}$ a non-final state, as q_{0} is not a final state in the NFA.

(4) (5 pts) Given a language L, $\operatorname{perm}(L)$ consists of all permutations of strings in L. For example, for $L=\{a b c\}$, $\operatorname{perm}(L)=\{a b c, a c b, b a c, b c a, c a b, c b a\}$. Suppose L is regular, is $\operatorname{perm}(L)$ always regular? Justify your answer.
Sol: Not necessarily regular. Consider $L=(a b)^{*} \cdot \operatorname{perm}(L)=\left\{w \in\{a, b\}^{*} \mid\right.$ the number of $a^{\prime} s=$ the number of $\left.b^{\prime} s\right\}$, which is not regular.
(5) (5 pts) Let L be a regular language. Is $\left\{w \in \Sigma^{*} \mid w w \in L\right\}$ always regular? Give a brief yet convincing argument. Sol: YES. Suppose $M=\left(q, \Sigma, \delta, q_{0}, F\right)$ is a FA accepting L. Construct an NFA with initial state q_{0}^{\prime} and each of its remaining states of the form (p, q, r) such that
- $q_{0}^{\prime} \xrightarrow{\epsilon}\left(q, q_{0}, q\right), \forall q \in Q$
- $(q, p, r) \xrightarrow{a}\left(q, p^{\prime}, r^{\prime}\right)$ if $p \xrightarrow{a} p^{\prime}$ and $r \xrightarrow{a} r^{\prime}$,
- $\left(q, q, q_{f}\right)$ is a final state if $q_{f} \in F$.

Note: the the construction is very similar to what we did for accepting $\frac{1}{2} L$ discussed in class.
(6) (10 pts) A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is reversible if no input symbol can enter a state from two distinct states, i.e. for every $p, q \in Q$ and $a \in \Sigma$, if $\delta(p, a)=\delta(q, a)$, then $p=q$.
(a) (5 pts) Give a reversible DFA recognizing $L=\{a b, b a, b b\}$. Note that for a DFA, every input symbol must be defined on every state except for those sink states (i.e., states without outgoing transitions).

(b) (5 pts) Is there a unique minimal reversible DFA recognizing L (up to isomorphism)? Justify your answer. Sol: No.

(7) (5 pts) Suppose we use the pumping lemma to show that

$$
L=\left\{0^{n} 1^{m} \mid n, m \geq 1, m \text { leves a remainder of } 3 \text { when divided by } n\right\}
$$

is not regular. (For example, $0^{4} 1^{7}, 0^{5} 1^{13} \in L$.)
(Proof) Let p be the pumping constant. Consider $w=0^{p+4} 1^{p+7}$. Let $w=x y z$ be any partition that $|x y| \leq p$, and $|y|>0$. Suppose $x=0^{r}, y=0^{s}, z=0^{t} 1^{p+7}$, where $r+s+t=p+4, r+s \leq p, s>0$. Now consider $x y^{2} z=0^{r+2 s+t} 1^{p+7}=0^{p+4+s} 1^{p+7}$.
(Question:) Complete the proof by showing the remaining details that $x y^{2} z$ is not in L.
Sol: Consider the following two cases:

- if $p+4+s \leq p+7$, then $(p+7 \bmod p+4+s) \leq 2$
- if $p+4+s>p+7$, then $(p+7 \bmod p+4+s)=p+7>3$.

In either case, we have a contradiction.
(8) (20 pts) For each of the language below, decide whether the language is context-free or not. Mark \bigcirc if it is context-free. mark \times if not. No explanations are needed. No penalty for wrong answer.
(1) $\left\{0^{n} 1^{n} 1^{n} \mid n \geq 0\right\}$

Sol: \bigcirc. The language is $\left\{0^{n} 1^{2 n} \mid n \geq 0\right\}$
(2) $\left\{0^{n} 1^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$

Sol: \times. The language is $\left\{0^{n} 1^{2 n} 0^{n} \mid n \geq 0\right\}$
(3) $\left\{0^{n} 1^{m} \mid m, n\right.$ are either both odd or both even $\}$

Sol: \bigcirc. Use states to keep track of whether m, n is odd or even.
(4) $\left\{0^{n} 1^{n} 0^{m} 1^{m} \mid m, n \geq 0\right\}$

Sol: \bigcirc Can be accepted by a PDA.
(5) $\left\{\left(0^{n} 1^{n}\right)^{m} \mid m, n \geq 0\right\}$

Sol: \times. Use pumping lemma.
(6) $\left\{w x w \mid w, x \in\{0,1\}^{*}\right\}$

Sol: \bigcirc. Set w to ϵ. The language $=\{0,1\}^{*}$.
(7) $\overline{\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}}$, i.e., the complement of $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Sol: \bigcirc.
The set is the union of (1) not of the form $a^{*} b^{*} c^{*} ;(2)\left\{a^{i} b^{j} c^{k} \mid i \neq j\right\} ;(3)\left\{a^{i} b^{j} c^{k} \mid i \neq k\right\} ;(4)\left\{a^{i} b^{j} c^{k} \mid k \neq j\right\}$
(8) $\left\{a^{i} b^{j} \mid i+j=n^{2}\right.$, for some $\left.n \geq 0\right\}$

Sol: \times. Intersecting with a^{*} yields $\left\{a^{n^{2}} \mid n \geq 0\right\}$, which is not CF.
(9) $\left\{a^{p} b^{q} c^{r} \mid p, q, r \geq 0, p=r=2 q\right\}$

Sol: \times. Use pumping lemma.
(10) $\left\{a^{p} b^{q} c^{r} \mid p, q, r \geq 0, p+r=2 q\right\}$

Sol: \bigcirc. Can be accepted by a PDA.
(9) (10 pts) Consider language $L=\left\{0^{i} 1^{j} \mid 0 \leq 2 i \leq j\right\}$.
(a) (5 pts) Give a context-free grammar for L.

Sol: $S \rightarrow 0 S 11|S 1| \epsilon$
(b) (5 pts) Give a PDA for L. Draw the diagram of the PDA.

(10) (10 pts) Consider the following CFG G in CNF.

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Use CYK algorithm to decide whether string baaba is in $L(G)$ or not. Complete the following Table.

Recall that $X_{i, j}=\left\{A \mid A \xlongequal{*} w_{i, j}\right\}$, where $w_{i, j}$ is the substring from positions i to j. For example, for string $b a a b a, w_{1,1}=b$ and $w_{2,4}=a a b$.

