
Theory of Computation

Spring 2024, Homework # 4 Reference Solutions

1. As stated in the hint, for any L ∈ NP , there exists a polynomial time TM M and a
polynomial p : N → N such that for every x ∈ {0, 1}∗, x ∈ L ⇔ ∃u ∈ {0, 1}p(|x|) s.t.
M(x, u) = 1. Consider the following reduction f from L to HALTTM : “On input w:

(i) Use ⟨M⟩ to construct M ′ = “On input x:

(1) Nondeterministically select u ∈ {0, 1}p(|x|).
(2) If M(x, u) = 1, accept. Otherwise loop forever. ”

(ii) Output ⟨M ′, w⟩. ”

We can see that w ∈ L ⇔ M ′ halts on w (i.e., f(w) = ⟨M ′, w⟩ ∈ HALTTM). And also M ′

can be constructed in polynomial time. Therefore L ≤p HALTTM .

Since HALTTM is not in NP (because HALTTM is undecidable) and L ≤p HALTTM for
any L ∈ NP , HALTTM is NP-hard.

2. Let wR represent the reversal of w where w is a string. Let L be a language where L ∈ NP .

(a) Let M be the nondeterministic polynomial time Turing machine that decides L.
Construct a NTM MR = “On input w:

(i) Nondeterministically generate a string x where x = wR.

(ii) Run M on x.

(iii) If M accepts, accept. If M rejects, reject. ”

Since (wR)R = w, MR accepts wR iff M accepts w. So L(MR) = (L(M))R. Since
M is a decider, MR is also a decider. Finally, since step (i) and (ii) can both be
done in polynomial time (w.r.t. |w|), M is a polynomial time decider. Therefore
L(MR) ∈ NP .

(b) Let V be the polynomial time verifier for L. That is, for w ∈ L, V accepts ⟨w, c⟩ for
some c. Consider
V ′ = “On input ⟨w, c⟩:
(i) Simulate V on ⟨wR, c⟩.
(ii) If V accepts, accept; otherwise reject. ”

For w ∈ L, V accepts ⟨w, c⟩ so V ′ accepts ⟨wR, c⟩ and vice versa. Since wR can be
constructed in polynomial time (w.r.t. |w|) and V is a polynomial time verifier, step
(i) can be done in polynomial time. So V ′ is a polynomial time verifier for LR hence
LR ∈ NP .
Note that it is okay not to reverse c since it only needs to be a certificate and not
necessarily the solution itself.

1

3. If ATM ≤m L1, then ATM ≤m L1. Since ATM is not Turing-recotnizable, if we can prove
that L1 is Turing-recognizable, then ATM cannobe be many-one reducible to L1.
Construct a TM M ′ = “On input ⟨M⟩:

(i) If ⟨M⟩ is not a TM, accept.

(ii) Run M on ⟨M⟩.
(iii) If M accepts ⟨M⟩, accept.
(iv) If M rejects ⟨M⟩, reject. ”

Since L1 = {⟨M⟩ | (M is not a TM) OR (M is a TM and ⟨M⟩ ∈ L(M))}, clearly
L(M ′) = L1. Therefore L1 is Turing-recognizable.

4. We prove this by showing that HALTTM ≤m L2. Consider F = “On input ⟨M,w⟩:

(i) Use M and w to construct
M ′ = “On input x:

(1) If ⟨M,w⟩ does not encode a TM and a string, accept.

(2) Run M on w for |x| steps.
(3) If M halts on w within |x| steps, loop forever.

(4) If M doesn’t halt on w within |x| steps, accept. ”
(ii) Output ⟨M ′⟩. ”

F is clearly computable. We then prove the correctness of our reduction by showing
⟨M,w⟩ ∈ HALTTM ⇔ ⟨M ′⟩ ∈ L2.

� If ⟨M,w⟩ ∈ HALTTM , then M ′ accepts all strings. This means M ′ halts on all
palindromes and therefore ⟨M ′⟩ ∈ L2.

� If ⟨M,w⟩ ∈ HALTTM , assume M accepts w in n steps. We can find a palindrome p
where |p| ≥ n. Then M ′ will loop forever on p, hence ⟨M ′⟩ /∈ L2.

5. We prove this by showing ATM ≤m P . Consider F = “On input ⟨M,w⟩:

(i) Use M and w to construct
Mw = “On input x:

(1) In parallel, run Min on x, Mout on x, and M on w (if ⟨M,w⟩ does not encode a
TM and a string, don’t run M and just assume that M does not accept w).

(2) If M accepts w and Mout accepts x, accept.

(3) If Min accepts x, accept. ”

(ii) Output ⟨Mw⟩.”

F is clearly computable. We then prove the correctness of our reduction by showing
⟨M,w⟩ ∈ ATM ⇔ ⟨Mw⟩ ∈ P :

� If ⟨M,w⟩ ∈ ATM , then L(Mw) = L(Min) since Mw can only accept in step (3). Based
on the property of P , ⟨Mw⟩ ∈ P since ⟨Min⟩ ∈ P .

� If ⟨M,w⟩ /∈ ATM , then L(Mw) = L(Mout) ∪ L(Min). Since L(Min) ⊂ L(Mout),
L(Mw) = L(Mout). So ⟨Mw⟩ /∈ P since ⟨Mout⟩ /∈ P .

2

