Theory of Computation

Spring 2024, Homework $# 4$ Reference Solutions

- 1. As stated in the hint, for any $L \in NP$, there exists a polynomial time TM M and a polynomial $p: N \to N$ such that for every $x \in \{0,1\}^*, x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$ s.t. $M(x, u) = 1$. Consider the following reduction f from L to $HALT_{TM}$: "On input w:
	- (i) Use $\langle M \rangle$ to construct $M' =$ "On input x:
		- (1) Nondeterministically select $u \in \{0,1\}^{p(|x|)}$.
		- (2) If $M(x, u) = 1$, accept. Otherwise loop forever. "
	- (ii) Output $\langle M', w \rangle$. "

We can see that $w \in L \Leftrightarrow M'$ halts on w (i.e., $f(w) = \langle M', w \rangle \in HALT_{TM}$). And also M' can be constructed in polynomial time. Therefore $L \leq_{p} HALT_{TM}$.

Since $HALT_{TM}$ is not in NP (because $HALT_{TM}$ is undecidable) and $L \leq_{p} HALT_{TM}$ for any $L \in NP$, $HALT_{TM}$ is NP-hard.

- 2. Let w^R represent the reversal of w where w is a string. Let L be a language where $L \in NP$.
	- (a) Let M be the nondeterministic polynomial time Turing machine that decides L . Construct a NTM M_R = "On input w:
		- (i) Nondeterministically generate a string x where $x = w^R$.
		- (ii) Run M on x .
		- (iii) If M accepts, accept. If M rejects, reject. "

Since $(w^R)^R = w$, M_R accepts w^R iff M accepts w. So $L(M_R) = (L(M))^R$. Since M is a decider, M_R is also a decider. Finally, since step (i) and (ii) can both be done in polynomial time (w.r.t. $|w|$), M is a polynomial time decider. Therefore $L(M_R) \in NP$.

- (b) Let V be the polynomial time verifier for L. That is, for $w \in L$, V accepts $\langle w, c \rangle$ for some c. Consider
	- $V' = "On input \langle w, c \rangle:$
		- (i) Simulate V on $\langle w^R, c \rangle$.
	- (ii) If V accepts, accept; otherwise reject. "

For $w \in L$, V accepts $\langle w, c \rangle$ so V' accepts $\langle w^R, c \rangle$ and vice versa. Since w^R can be constructed in polynomial time (w.r.t. $|w|$) and V is a polynomial time verifier, step (i) can be done in polynomial time. So V' is a polynomial time verifier for L^R hence $L^R \in NP$.

Note that it is okay not to reverse c since it only needs to be a certificate and not necessarily the solution itself.

- 3. If $A_{TM} \leq_m L_1$, then $\overline{A_{TM}} \leq_m \overline{L_1}$. Since $\overline{A_{TM}}$ is not Turing-recotnizable, if we can prove that $\overline{L_1}$ is Turing-recognizable, then A_{TM} cannobe be many-one reducible to L_1 . Construct a TM $M' =$ "On input $\langle M \rangle$:
	- (i) If $\langle M \rangle$ is not a TM, accept.
	- (ii) Run M on $\langle M \rangle$.
	- (iii) If M accepts $\langle M \rangle$, accept.
	- (iv) If M rejects $\langle M \rangle$, reject. "

Since $\overline{L_1} = \{ \langle M \rangle | (M \text{ is not a TM}) \text{ OR } (M \text{ is a TM and } \langle M \rangle \in L(M) \}$, clearly $L(M') = \overline{L_1}$. Therefore $\overline{L_1}$ is Turing-recognizable.

- 4. We prove this by showing that $\overline{HALT_{TM}} \leq_m L_2$. Consider $F = \text{``On input }\langle M, w\rangle$:
	- (i) Use M and w to construct $M' = "On input x:$
		- (1) If $\langle M, w \rangle$ does not encode a TM and a string, accept.
		- (2) Run M on w for $|x|$ steps.
		- (3) If M halts on w within $|x|$ steps, loop forever.
		- (4) If M doesn't halt on w within |x| steps, accept. "
	- (ii) Output $\langle M' \rangle$. "

 F is clearly computable. We then prove the correctness of our reduction by showing $\langle M, w \rangle \in \overline{HALT_{TM}} \Leftrightarrow \langle M' \rangle \in L_2.$

- If $\langle M, w \rangle \in \overline{HALT_{TM}}$, then M' accepts all strings. This means M' halts on all palindromes and therefore $\langle M' \rangle \in L_2$.
- If $\langle M, w \rangle \in HALT_{TM}$, assume M accepts w in n steps. We can find a palindrome p where $|p| \ge n$. Then M' will loop forever on p, hence $\langle M' \rangle \notin L_2$.
- 5. We prove this by showing $\overline{A_{TM}} \leq_m P$. Consider $F = \text{``On input }(M, w)$:
	- (i) Use M and w to construct $M_w =$ "On input x:
		- (1) In parallel, run M_{in} on x, M_{out} on x, and M on w (if $\langle M, w \rangle$ does not encode a TM and a string, don't run M and just assume that M does not accept w).
		- (2) If M accepts w and M_{out} accepts x, accept.
		- (3) If M_{in} accepts x, accept. "
	- (ii) Output $\langle M_w \rangle$."

 F is clearly computable. We then prove the correctness of our reduction by showing $\langle M, w \rangle \in \overline{A_{TM}} \Leftrightarrow \langle M_w \rangle \in P$:

- If $\langle M, w \rangle \in \overline{A_{TM}}$, then $L(M_w) = L(M_{in})$ since M_w can only accept in step (3). Based on the property of P , $\langle M_w \rangle \in P$ since $\langle M_{in} \rangle \in P$.
- **If** $\langle M, w \rangle \notin \overline{A_{TM}}$, then $L(M_w) = L(M_{out}) \cup L(M_{in})$. Since $L(M_{in}) \subset L(M_{out})$, $L(M_w) = L(M_{out})$. So $\langle M_w \rangle \notin P$ since $\langle M_{out} \rangle \notin P$.