Theory of Computation
Spring 2024, Homework # 4 Reference Solutions

1. As stated in the hint, for any L € NP, there exists a polynomial time TM M and a
polynomial p : N — N such that for every z € {0,1}*, z € L < Ju € {0,1}?(#D gt.
M (z,u) = 1. Consider the following reduction f from L to HALTrpr: “On input w:

(i) Use (M) to construct M’ = “On input z:

(1) Nondeterministically select u € {0, 1}2(=D.

(2) If M(z,u) =1, accept. Otherwise loop forever.
(ii) Output (M’ w). ”

R

We can see that w € L < M’ halts on w (i.e., f(w) = (M',w) € HALTr)). And also M’
can be constructed in polynomial time. Therefore L <, HALTr .

Since HALTrpys is not in NP (because HALTr ) is undecidable) and L <, HALTry for
any L € NP, HALTr); is NP-hard.

2. Let w® represent the reversal of w where w is a string. Let L be a language where L € N P.

(a) Let M be the nondeterministic polynomial time Turing machine that decides L.
Construct a NTM Mg = “On input w:

(i) Nondeterministically generate a string  where x = w®.

(ii) Run M on z.
(iii) If M accepts, accept. If M rejects, reject. ”

Since (w™)® = w, Mg accepts w' iff M accepts w. So L(Mg) = (L(M))%. Since
M is a decider, Mg is also a decider. Finally, since step (i) and (ii) can both be

done in polynomial time (w.r.t. |w|), M is a polynomial time decider. Therefore
L(Mg) € NP.

(b) Let V' be the polynomial time verifier for L. That is, for w € L, V accepts (w, ¢) for
some c. Consider
V' = “On input (w, c):
(i) Simulate V on (wf, c).

(ii) If V accepts, accept; otherwise reject. ”

For w € L, V accepts (w,c) so V' accepts (w!t, c) and vice versa. Since w’ can be

constructed in polynomial time (w.r.t. |w|) and V is a polynomial time verifier, step
(i) can be done in polynomial time. So V' is a polynomial time verifier for L hence
L e NP.

Note that it is okay not to reverse c since it only needs to be a certificate and not
necessarily the solution itself.



3. If ATﬁ < L1, then A7y <, Li. Since Apjs is not Turing-recotnizable, if we can prove
that L, is Turing-recognizable, then Arjp; cannobe be many-one reducible to L.
Construct a TM M’ = “On input (M):

(i) If (M) is not a TM, accept.

(ii) Run M on (M).
(iii) If M accepts (M), accept.
(iv) If M rejects (M), reject. ”

Since Ly = {(M)|(M is not a TM) OR (M is a TM and (M) € L(M))}, clearly
L(M') = Ly. Therefore L; is Turing-recognizable.

. We prove this by showing that HALTryr <., Lo. Consider F = “On input (M, w):

(i) Use M and w to construct
M’ = “On input z:
(1) If (M, w) does not encode a TM and a string, accept.
(2) Run M on w for |z| steps.
(3) If M halts on w within |z| steps, loop forever.
(4) If M doesn’t halt on w within |z| steps, accept. ”

(ii) Output (M').”

F' is clearly computable. We then prove the correctness of our reduction by showing
<M,’LU> c HALTry & <M/> € Lo.

o If (M,w) € HALTr), then M’ accepts all strings. This means M’ halts on all
palindromes and therefore (M’) € Lo.

o If (M,w) € HALTr);, assume M accepts w in n steps. We can find a palindrome p
where |p| > n. Then M’ will loop forever on p, hence (M) ¢ L.

. We prove this by showing Aty <, P. Consider F' = “On input (M, w):

(i) Use M and w to construct
M, = “On input z:
(1) In parallel, run M, on z, M,y on z, and M on w (if (M, w) does not encode a
TM and a string, don’t run M and just assume that M does not accept w).
(2) If M accepts w and M,,; accepts x, accept.
(3) If M, accepts x, accept. ”
(ii) Output (M,,).”

F' is clearly computable. We then prove the correctness of our reduction by showing
(M,w) € Arp & (M) € P:

o If (M, w) € Appy, then L(M,,) = L(M;,) since M,, can only accept in step (3). Based
on the property of P, (M,,) € P since (M;,) € P.

o If (M,w) ¢ Arnr, then L(M,) = L(Myy) U L(M;,). Since L(M;,) C L(Myyt),
L(Mw) = L(Myyt). So (M) ¢ P since (My,:) ¢ P.



