Theory of Computation

Spring 2024, Homework #4

Due: June 4, 2024

- 1. (20 pts) Recall that $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w\}$. Prove that $HALT_{TM}$ is NP-hard. (Hint: you may use the fact that if $L \in NP$, there exists a polynomial time TM M and a polynomial $p: N \to N$ such that for every $x \in \{0, 1\}^*, x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$ s.t. M(x, u) = 1 (i.e., accepts).)
- 2. Prove formally that NP is closed under reversal by
 - (a) (10 pts) construct a nondeterministic TM;
 - (b) (10 pts) construct a polynomial time verifier.
- 3. (20 pts) Let $L_1 = \{ \langle M \rangle | M \text{ is a TM and } \langle M \rangle \notin L(M) \}$. Prove that A_{TM} cannot be many-one reducible to L_1 (i.e., $A_{TM} \not\leq_m L_1$).
- 4. (20 pts) Prove that $L_2 = \{ \langle M \rangle | M \text{ is a TM and } M \text{ halts on all palindromes.} \}$ is not Turing-recognizable.
- 5. (20 pts) Let P be a property over TM descriptions. Assume that P satisfies the following properties:
 - For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, $\langle M_1 \rangle \in P$ if and only if $\langle M_2 \rangle \in P$.
 - There are TMs M_{in} and M_{out} , where $\langle M_{in} \rangle \in P$ and $\langle M_{out} \rangle \notin P$, such that $L(M_{in}) \subset L(M_{out})$.

Prove that L is not Turing-recognizable.