
Theory of Computation

Spring 2024, Homework # 3 Reference Solutions

1. (a) L1 is Decidable.
Let n = |w|+ |Q|+ 1, where Q is the set of states in M . Construct a decider
D1 = “On input ⟨M,w⟩ where M is a TM and w is a string:

i) Simulate M on w for n steps.

ii) if M ever makes a left move, accept. Otherwise reject. ”

To prove that L1 = L(D1):
If ⟨M,w⟩ /∈ L1, then M never moves left while computing w. So D1 rejects ⟨M,w⟩
thus ⟨M,w⟩ /∈ L(D1).
If ⟨M,w⟩ ∈ L1, then M makes at least one left move while computing w. We show
that M must make a left move during the first n steps. Let p = q1q2 . . . qk be the
shortest computation path of M ending in a left move (note that p need not be the
entire computation path, just the first part until M makes a left move) . Since the
tape contains only blank symbols after the first |w| squares, M reads only blank sym-
bols from the state q|w|. Therefore we can remove any cycles (there can be different
ones) that occurs afer the first |w| steps from the computation path and still have a
legal computation path ending in a left move. For p to contains no cycles after the
first |w| steps, (k−|w|) ≤ (|Q|+1) by the pigeonhole principle. This means M makes
a left move in at most |w|+ |Q|+ 1 = n steps thus ⟨M,w⟩ ∈ L(D1).

(b) L2 is undecidable. Following is a reduction from ATM to L2.
Suppose TM D decides L2. Construct a TM
S = “On input ⟨M,w⟩ where M is a TM and w is a string:

i) Use ⟨M,w⟩ to construct
Mw = “On input x:

i) Simulate M on w, but add two more moves (one right and one left) after
every left move. (That is, immediately after simulate a left move, S makes
a right move and then another left move, without changing the state or the
content of the tape.)

ii) If M rejects, reject.

iii) If M accepts, make three consecutive right moves following by three consec-
utive left moves, then accept. ”

ii) Run D on Mw. If D accepts, accept. If D rejects, reject. ”

S decides ATM but ATM is undecidable. A contradiction. So L2 is undecidable.
To prove ATM = L(S): If M accepts w, Mw accepts all input (including w) and
moves left three times in a row. So D accepts Mw, which means S accepts ⟨M,w⟩.
Otherwise (i.e., if M does not accept w) Mw makes at most two consecutive left moves
so D rejects Mw, which means S rejects ⟨M,w⟩.

2. Since ACFG is decidable (as per page 14 of lecture notes Chapter 4), let D be a TM that
decides it. Construct a TM
N = “On input w:
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i) Check whether w = ⟨G1, G2⟩ for some context-free grammars G1 and G2. If not,
accept.

ii) Nondeterministically generate a string s. Run D on ⟨G1, s⟩ and ⟨G2, s⟩.
� if D accepts ⟨G1, s⟩ but rejects ⟨G2, s⟩, accept.
� if D rejects ⟨G1, s⟩ but accepts ⟨G2, s⟩, accept.

iii) Reject. ”

The proof of correctness is left for exercise.
Note: It is decidable whether w = ⟨G1, G2⟩ for some context-free grammars G1 and G2.
After nondeterministically picking a position in w to separate G1 and G2, the rest is simply
checking the two encodings to see if they match the definitions of CFG.

3. B1 is decidable. Asume M is deterministic. Let Q be the set of states and Γ the tape
alphabet of M . Recall that a configuration of any TM includes the current state, the

position of the tape head, and the content of the tape. So k = |Q| · 2|w| · |Γ|2|w|
is the

maximum number of configurations M can have if M accesses at most 2|w| tape squares.
We then construct a decider D1 that recognizes B1. For convenience, let D1 have three
tapes, one for input, one for simulation, and one for counting the number of moves of M .
D1 = “On input ⟨M#w⟩:

i) Write a special symbol (that is not in Γ) at the (2|w| + 1)-th square of the simulation
tape.

ii) Copy the string w to the simulation tape and initialize the count to 0.

iii) Simulate M on w using the simulation tape as following:

(1) If the special symbol is being read, reject. Otherwise, simulate the next move (of
M) and increase the count by 1.

(2) If M halts, accept.

(3) If the count is k + 1 (i.e., already simulated k + 1 moves of M), accept.

(4) Repeat (1). ”

D1 is a decider since it halts after simulating at most k + 1 moves. In step iii), the cor-
rectness of steps (1) and (2) should be obvilus. So here we only prove that (3) is correct.
Assume M does not accesses more than 2|w| tape squares during the first k+1 moves. By
pigeonhole principle, at least one configuration would have been repeated (since k is the
maximum number of configurations). This indicates a cycle in the computation history.
Since M is deterministic, upon entering the cycle, it will continue to repeat the same cycle
forever. So M does not access beyond the 2|w| tape squares and ⟨M#w⟩ should be ac-
cepted.
Note: For the case when M is nondeterministic, the definition of spaceBound can be con-
fusing. Specifically, should you take the view that spaceBound(M,w, n) is true if M never
access more than n tape squares in any paths of its computation tree, or do so only when
w is not accepted. Also, even though we can build an equivalent deterministic TM from
M , it only guarantees that resulting languages are the same but not necessarily the TM
behaviors (i.e., how many squares of the tape were actually used). So for the sake of this
homework, we only consider the deterministic TM’s.
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B2 is undecidable. We prove this by the following reduction from ATM .
Let R be a TM deciding B2. Construct the TM
S = “On input ⟨M,w⟩, where M is a TM and w is a string:

i) Use ⟨M⟩ to construct the LBA
LB2

= “On input ⟨C1, C2, . . . , Cl⟩, where Ci’s are configurations of M :

(1) If C1 is not the start configuration of M on w, reject.

(2) If Cl is not an accepting configuration of M , reject.

(3) For each 1 ≤ i ≤ l, if Ci does not yield Ci+1, reject.

(4) Otherwise, accept. ”

ii) Use ⟨M⟩ and ⟨LB2⟩ to construct the TM
MB2 = “On input ⟨C1, C2, . . . , Cl⟩, where Ci’s are configurations of M :

(1) Simulate LB2
on ⟨C1, C2, . . . , Cl⟩.

(2) If LB2
rejects, reject.

(3) If LB2
accepts, first access (either read from or write to) the n-th position on the

tape where n = 1 + 2|⟨C1,C2,...,Cl⟩|, then accept. ”

iii) Run R on ⟨MB2
⟩.

iv) If R rejects, accept. If R accepts, reject. ”

Since LB2 is an LBA, step ii)(1)and ii)(2) can be completed without exceeding the limi-
tation placed by B2. So the only scenario where MB2 exceeds the limit is if step ii)(3) is
executed. This is the key to the reduction.
Proof of the correctness by showing that L(S) = ATM : If M accepts w, there must be an
accepting computation history (let it be α0, α1, . . . , αk) for M on w. From the definition
of MB2, it accepts ⟨α0, α1, . . . , αk⟩ and also accesses the part of the tape not allowed by
B2. Therefore R rejects MB2 and S accepts ⟨M,w⟩. Similarly, if M does not accept w,
all computation history of M on w will be non-accepting. So MB2 = ∅, which means step
ii)(3) never gets executed. Therefore R accepts ⟨MB2

⟩ and S rejects ⟨M,w⟩. So S decides
ATM which is a contradiction. So B2 is undecidable.

4. (a) PCP⋆ is undecidable.

Proof by reducing PCP⋆ from PCP: Let u = u1 . . . un be a string where ui ̸= ϵ
for 1 ≤ i ≤ n. Define ⋆u = ⋆u1 ⋆ u2 ⋆ · · · ⋆ un. For consistency, let ⋆ϵ = ϵ (although
we won’t be using it). Given a PCP P : {[ t1b1 ], . . . , [

tk
bk
]} where ti ̸= ϵ and bi ̸= ϵ for all

1 ≤ i ≤ k, construct P⋆ : {[ ⋆t1⋆b1
], . . . , [ ⋆tk⋆bk

]}. Clearly every domino in P⋆ is a ⋆ -domino.

If P ∈ PCP , let [
ti1
bi1

][
ti2
bi2

] · · · [ timbim
] be a match in P . So ti1ti2 · · · tim = bi1bi2 · · · bim .

Since til ̸= ϵ and bil ̸= ϵ for 1 ≤ l ≤ m, ⋆ti1 ⋆ ti2 · · · ⋆ tim = ⋆bi1 ⋆ bi2 · · · ⋆ bim and

[
⋆ti1
⋆bi1

][
⋆ti2
⋆bi2

] · · · [ ⋆tim⋆bim
] is a match in P⋆. So ⟨P⋆⟩ ∈ PCP⋆. The reverse is also true. We

can get a match in PCP by removing the ⋆’s from the dominos used in any match in
PCP⋆. Therefore PCP ≤ PCP⋆ and PCP⋆ is undecidable.

Note: We explicitely excluded the use of empty strings in dominos. (And our so-
lution would not work for those cases.) So our proof is correct but incomplete.
However it is know that for every P = {[ t1b1 ], . . . , [

tk
bk
]} in standard PCP, there is

a P ′ = {[ t
′
1

b′1
], . . . , [

t′l
b′l
]} in PCP such that t′j and b′j are not empty for all j and P has
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a match if and only if P ′ has a match. Besides, P ′ can be constructed efficiently.
So this would fill the gap in our proof. The detailed proof is somewhat tedious and
therefore will not be included here. But the idea is to first reduce standard PCP to
MPCP, then from MPCP to the restricted PCP where empty startings are not allowed.

(b) PCP1 is decidable.

Let P = {[ t1b1 ], . . . , [
tn
bn
]} in PCP1 over Σ. To be consistent, we ask that either ti

or bi be a nonempty string for 1 ≤ i ≤ n. Claim that P has a match iff there is a
sequence ii, . . . , im with m ≤ n such that ti1 · · · tim = bi1 · · · bim . If the claim is true,
we only need to test all the possible sequences of dominos whose length is no greater
than n to be able to decide whether a match exists. Clearly there are only finite
number of such sequences, so the problem is decidable.

To prove our claim is true: If there is i such that ti = bi, then the sequence i is already
a solution (i.e., domino [ tibi ] is a match) and the claim is true. Assume that ti ̸= bi
for all i. Let i1, . . . , im be the shortest sequence such that ti1 · · · tim = bi1 · · · bim
and m > n. Since ti ̸= bi for all i, either ti1 = ϵ or bi1 = ϵ. For convenience, let
bi1 = ϵ. Then tim = ϵ and |ti2 · · · tim−1

| = |bi2 · · · bim−1
|. If there is l < m such that

|ti1 · · · til | ≤ |bi1 · · · bil |, then there is a solution with length shorter than m (see Note
1). Accordingly, assume that |ti1 · · · til | > |bi1 · · · bil | for each l < m. Since m > n,
there are j, k ∈ {1, . . . ,m} and j < k such that ij = ik. Now, we want to subtract ij
from the sequence (without invalidate the match, of course). Firstly, there are three
possible cases, |bij | = 0, |tij | = 0, and |tij | = |bij | = 1. Since case |bij | = 0 and
|tij | = 0 are symmetric and |tij | = |bij | = 1 can be seen as the combination of the
|bij | = 0 and |tij | = 0, we only discuss case |bij | = 0 here.
If |bij | = 0, |tij | = 1, and α is the index such that biα ̸= ϵ and |ti1 · · · tij | = |bi1 · · · biα |
(i.e., ti1 · · · tij = bi1 · · · biα and moreover tij = biα), then α > j and α ̸= k. We subtract
iα from the sequence and the process is completing; otherwise, use the same logic,
identy the domino whose bottom symbol corresponds to the top symbol of tiα and sub-
tract it, continue until the top of the domino removed is ϵ. Since |ti1 · · · til | > |bi1 · · · bil |
for each l < m, after the subtracting processes, the sequence is still nonempty and
remains a match. Finally, we have a sequence that contains no dupilicate dominos
and therefore m ≤ n. The claim is true.

If tiα = ϵ, then (ij , iα) is a pair where the tij corresponds to biα in the match so
removing both of them keeps the resulting sequence as a valid match. otherwise con-
tinue this procedure until we reach

Note 1: If |ti1 · · · til | ≤ |bi1 · · · bil |, since bi1 = ϵ, there must be at least one ϵ in
ti1 · · · til . By repeatedly removing the trailing sequence starting with the last ϵ on
the top, one can find another sequence with |ti1 · · · til′ | = |bi1 · · · bil′ | which means
i1, . . . , il′ is a solution with length (l′) shorter than m.
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