Theory of Computation

Spring 2024, Homework \# 2 Reference Solutions

1. (a) Let $L=L_{1} \cup L_{2}$ where $L_{1}=\left\{a^{n} b^{m} c^{k} \mid n=m\right\}, L_{2}=\left\{a^{n} b^{m} c^{k} \mid m \neq k\right\}$. Let $G=\{V, \Sigma, R, S\}$ be the context-free grammar of L, where R is
$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow M_{1} K \quad\left(S_{1}\right.$ is for $\left.L_{1}.\right)$
$M_{1} \rightarrow a M_{1} b \mid \epsilon \quad$ (This ensures that $n=m \geq 0$.)
$K \rightarrow c K \mid \epsilon \quad$ (This ensures that $k \geq 0$.)
$S_{2} \rightarrow N M_{2} \quad\left(S_{2}\right.$ is for $\left.L_{2}.\right)$
$N \rightarrow a N \mid \epsilon \quad$ (This ensures that $n \geq 0$.)
$M_{2} \rightarrow b M_{2} c|B| C \quad$ (This ensures that either $m>k$ or $m<k$.)
$B \rightarrow b B \mid b \quad$ (This ensures that $m \geq 1$.)
$C \rightarrow C c \mid c \quad$ (This ensures that $k \geq 1$.)
(b) The PDA follows acceptance by Final State. So it doens't require the stack to be empty upon accepting the input.

2. Assume that C is context-free. Let p be the pumping length and $s=a^{p} b^{p} c^{p} d^{p} \in C$. Consider a partition $s=u v x y z$ with $|v x y| \leq p$ and $|v y|>0$. Consider the following cases:

- If v contains at least one a, then y must not contain any c 's (since $|v x y| \leq p$). Therefore $u v^{2} x y^{2} z \notin C$ since it has more a 's than c 's.
- If v contains at least one b, then similar to the previous case, y must not contain any d 's and hence $u v^{2} x y^{2} z \notin C$.
- If v contains only c and/or d, then $u x z \notin C$ since it has fewer than $p c$'s (and/or d 's) while the number of a 's and b 's stay the same (i.e., p).
- $|v|=0$. Since $|x y| \leq p, y$ cannot contain more than 2 types of symbols. If y contains only one type of symbols, then $u x z \notin C$. If y contains two types of symbols, it still cannot contain a and c (or b and d, respectively) at the same time, so $u x z \notin C$.

So we've shown that pumping lemma doesn't hold for C. Hence C is not context-free.
3. Denote the shuffle operation as $\|$. Let $L_{1}=\left\{a^{n} c^{n} \mid n \geq 0\right\}, L_{2}=\left\{b^{n} d^{n} \mid n \geq 0\right\}$, and $L_{3}=a^{*} b^{*} c^{*} d^{*}$. So L_{1} and L_{2} are CFL's while L_{3} is regular. If $L=L_{1} \| L_{2}$ is context-free, then $L_{4}=L \cap L_{3}$ is also context-free since the intersection of a CFL with a regular language is always a CFL (see p. 60 of Chapter 2 lecture notes). However, $L_{4}=L \cap L_{3}=\left\{a^{n} b^{m} c^{n} d^{m} \mid m, n \geq 0\right\}$ is not context-free (according to Q2). A contradiction. Therefore L is not context-free, which means the class of CFLs is not closed under shuffle.
4. Let $P=\left\{Q, \Sigma, \Gamma, \delta, q_{0}, F\right\}$ be a PDA, where

- $Q=Q_{1} \cup Q_{2} \cup\left\{q_{0}, f\right\}$, assume $Q_{1} \cap Q_{2}=\emptyset$ and $q_{0}, f \notin\left(Q_{1} \cup Q_{2}\right)$;
- $\Gamma=\{\perp, a\}$;
- $F=\{f\}$;
- δ is defined as following:

$$
\begin{align*}
\delta\left(q_{0}, \epsilon, \epsilon\right)=\left(q_{01}, \perp\right) & \tag{1}\\
\delta(p, \sigma, \epsilon)=(q, a) & \text { if } \delta_{1}(p, \sigma)=q \tag{2}\\
\delta(p, \sigma, a)=(q, \epsilon) & \text { if } p \in F_{1} \text { and } \delta_{2}\left(q_{02}, \sigma\right)=q \tag{3}\\
\delta(p, \sigma, a)=(q, \epsilon) & \text { if } \delta_{2}(p, \sigma)=q \tag{4}\\
\delta(p, \epsilon, \perp)=(f, \epsilon) & \text { if } p \in F_{2} \tag{5}
\end{align*}
$$

First we prove that $w \in L(P) \Longrightarrow w \in A \diamond B$. Let $w=w_{1} w_{2} \in L(P)$, where P executes (3) upon reading the first symbol in w_{2}. According to the construct of $P, w_{1} \in L\left(M_{1}\right)=A$, $w_{2} \in L\left(M_{2}\right)=B$, and $\left|w_{1}\right|=\left|w_{2}\right|$. So $L(P) \subseteq A \diamond B$.
Then we prove that $w \in A \diamond B \Longrightarrow w \in L(P)$. Consider $x y \in A \diamond B$ where $|x|=|y|$. Since $x \in A, \delta_{1}^{*}\left(q_{01}, x\right)=p_{1} \in F_{1}$. So P excutes (3) upon reading the first symbol in y. (Note that this is only possible because P is nondeterministic.) Since $y \in B, \delta_{2}^{*}\left(q_{02}, y\right)=p_{2} \in F_{2}$. So after reading y, P executes (5) and enters f. This means P accepts $x y$ so $A \diamond B \subseteq L(P)$. This proves that $L(P)=A \diamond B$, i.e., P accepts $A \diamond B$.
5. Following are the step-by-step conversion.
(a) Introduce the new start variable S_{0} and a new rule $S_{0} \rightarrow S$. So the CFG becomes:
$S_{0} \rightarrow S$
$S \rightarrow B S B|B| \epsilon$
$B \rightarrow 00 \mid \epsilon$
(b) Remove ϵ rules:

- Removing $B \rightarrow \epsilon$. So the CFG becomes:
$S_{0} \rightarrow S$
$S \rightarrow B S B|B S| S B|S| B \mid \epsilon$
$B \rightarrow 00$
- Removing $S \rightarrow \epsilon$. So the CFG becomes:
$S_{0} \rightarrow S \mid \epsilon$
$S \rightarrow B S B|B B| B S|S B| S \mid B$
$B \rightarrow 00$
(c) Remove unit rules:
- Removing $S \rightarrow S$. So the CFG becomes:
$S_{0} \rightarrow S \mid \epsilon$
$S \rightarrow B S B|B B| B S|S B| B$
$B \rightarrow 00$
- Removing $S \rightarrow B$. So the CFG becomes:
$S_{0} \rightarrow S \mid \epsilon$
$S \rightarrow B S B|B B| B S|S B| 00$
$B \rightarrow 00$
- Removing $S_{0} \rightarrow S$. So the CFG becomes:
$S_{0} \rightarrow B S B|B B| B S|S B| 00 \mid \epsilon$
$S \rightarrow B S B|B B| B S|S B| 00$
$B \rightarrow 00$
(d) Replace ill-placed terminals 0 by a new variable U with a new rule $U \rightarrow 0$. So the CFG becomes:

$$
\begin{aligned}
& S_{0} \rightarrow B S B|B B| B S|S B| U U \mid \epsilon \\
& S \rightarrow B S B|B B| B S|S B| U U \\
& B \rightarrow U U \\
& U \rightarrow 0
\end{aligned}
$$

(e) Shorten the rules where RHS contains more than two variables by introducing new variables. So the CFG (the final version) becomes:

$$
\begin{aligned}
& S_{0} \rightarrow B A_{1}|B B| B S|S B| U U \mid \epsilon \\
& S \rightarrow B A_{1}|B B| B S|S B| U U \\
& B \rightarrow U U \\
& U \rightarrow 0 \\
& A_{1} \rightarrow S B
\end{aligned}
$$

Note that for the final CFG in Chomsky normal form, the start variable is S_{0} and the set of variables is $V=\left\{S_{0}, S, B, U, A_{1}\right\}$.

