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Spring 2024, Homework # 1 Reference Solutions

1. Let ≡L be the equivalence relation induced by L. According to Myhill-Nerode theorem,
L is regular iff ≡L is of finite index (see p. 95 of Chapter 1 lecture notes). Consider the
following sequence of strings: ab, ab2, ab3, . . .. Pick any two strings abi and abj from the
sequence where i, j ∈ N and i < j. Since abici ∈ L and abjci /∈ L, abi and abj must be
in different equivalence classes of ≡L. In other words, ≡L must have a unique equivalence
class for every string in the above-mentioned sequence. As there are infinitely many strings
in the sequence, ≡L has infinitely many equivalence classes. Therefore L is not regular.

2. (a) Correct. Let Γ = {c} and h a morphism from Σ to Γ∗ where h(a) = h(b) = c
and h(σ) = ϵ for all σ ∈ Σ\{a, b}. Let Lh = h(A). Then Lh ⊆ Γ∗ and for every
u ∈ Γ∗, u ∈ Lh if and only if u = h(w) for some w ∈ A. According to the def-
inition of h, h(w) = c#a(w)+#b(w) for every w ∈ Σ∗. Therefore Lh = {cn | ∃w ∈
A,#a(w) + #b(w) = n}. Since regular languages are closed under morphism, Lh is
regular if A is regular.

(b) Incorrect. Let L1 = a∗ and L2 = b∗. Then L = {an0bn|n ∈ N}. Let h be a
morphism from {a, b, 0}∗ to {a, b}∗ where h(a) = a, h(b) = b, and h(0) = ϵ. Then
L′ = h(L) = {anbn|n ∈ N}. Since L′ is not regular, L is not regular (since regular
languages are closed under morphism).

(c) Correct. Let L′
1 = {x | ax ∈ L} and L′

2 = {x |xb ∈ L}. Clearly L′ = L′
1 ∪ L′

2. If we
can prove that L′

1 and L′
2 are both regular, we can then prove that L′ is regular since

regular languages are closed under union.
Let D = (Q,Σ, δ, q0, F ) be a DFA that recognized L (D must exists since L is regular).
So L(D) = L. Construct an NFA N ′

1 = (Q ∪ q′0,Σ, δ
′
1, q

′
0, F ) where

δ′1(q, w) =


δ(q, w) if q ∈ Q

δ(q0, a) if q = q′0 and w = ϵ

∅ if q = q′0 and w ̸= ϵ

Note that Q ∩ {q′0} = ∅. Then L(N ′
1) = {x | ax ∈ L(D)} = L′

1. Alternatively,
since D is a DFA, δ(q0, a) is unique. One can use it to construct a DFA D′

1 =
(Q,Σ, δ1, δ(q0, a), F ), where L(D′

1) is also L′
1. This proves that L

′
1 is regular.

As for L′
2, construct a DFA D′

2 = (Q,Σ, δ, q0, F
′) where F ′ = {q | δ(q, b) ∈ F}. Then

we have L(D′
2) = {x |xb ∈ L(D)} = L′

2, which proves that L′
2 is regular.

(d) Correct. Let L′ = L∩ a∗ = {ap | p is prime }. Since regular languages are closed un-
der intersection, L is regular iff L′ is regular. Assume that L′ is regular. Let p be the
pumping length. Choose s = ap

′
, where p′ is a prime number and p′ > p+ 1. By the

pumping lemma, there is a partition s = xyz such that |y| > 0, |xy| ≤ p, and xyiz ∈ L′

for i ≥ 0. Consider s′ = xyp
′−|y|z. Note that p′− |y| > 0 since |y| ≤ |xy| ≤ p < p′− 1.

|s′| = |x|+ |z|+ (p′ − |y|)|y| = (p′ − |y|) + (p′ − |y|) ∗ |y| = (p′ − |y|)(1 + |y|) is not a
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prime number. So s′ /∈ L′. This is a contradition. Therefore L′ is not regular. Hence
L is not regular.

3. (a) Add a new initial state and two ϵ-transitions from the new initial state to the initial
states of A and B. Let A = (QA,Σ, δA, qA0, FA) and B = (QB ,Σ, δB , qB0, FB).
Without loss of generality, assume QA ∩QB = ∅. Construct C = (QC ,Σ, δC , qC0, FC)
as following:

� QC = QA ∪QB ∪ {qC0}. Note that qC0 /∈ QA ∪QB .

� δC(qi, si) =


δA(qi, si) if qi ∈ QA

δB(qi, si) if qi ∈ QB

{qA0, qB0} if qi = qC0 and si = ϵ

∅ if qi = qC0 and si ̸= ϵ

� FC = FA ∪ FB

To prove that L(C) = L(A) ∪ L(B), we need to show that (i) L(C) ⊆ (L(A) ∪ L(B))
and (ii) L(A) ∪ L(B) ⊆ L(C). For any s ∈ L(C), let r = r0, r1, r2, . . . be the ac-
cepting run of C on s. Based on the way C is constructed, we have r0 = qC0 and
r1 ∈ {qA0, qB0}. If r1 = qA0, then ri ∈ QA∀i ≥ 2. Since inf(r) ∩ FC ̸= ∅ and
inf(r) ∩ QB = ∅, inf(r) ∩ FA ̸= ∅. Hence r is an accepting run of A on s. That is,
s ∈ L(A). Similarly, if r1 = qB0, then r is an acepting run of B on s and s ∈ L(B).
Therefore L(C) ⊆ L(A)∪L(B). The proof for L(A)∪L(B) ⊆ L(C) is let as an exercise.

Note: If you choose not to use ϵ-transitions and instead directly combine qA0 and qB0

into the new state qC0, you need to also handle any transitions in A and B that might
be linking back to their respective initial states. You need to avoid the case where C
starts off with A then at some point returns to qC0, which is also qB0, and starts
running in B. In this case an acccepting run could potentially contains states from
both A and B, which means C might accept strings not in L(A) ∪ L(B).

(b) As suggested in the hint, C needs to accept the runs where FA and FB were visited
infinitely many times but not necessarily simultaneously. So the idea is to construct C
in such a way that it records the visits to FA and FB in “pairs” (you can think of it as a
partial run rp = rA, r1, . . . , rB where rA ∈ FA and rB ∈ FB) and only accept the runs
where the pairs were visited infinitely many times. Note the usual steps for dealing
with intersection problems by constructing C so that A and B run synchronously still
need to be followed. Construct C = (QC ,Σ, δC , qC0, FC) as following:

� QC = QA ×QB × {1, 2}
� qC0 = (qA0, qB0, 1)

� δC((qa, qb, j), si) =


(δA(qa, si), δB(qb, si), 1) if j = 1 and qa /∈ FA

(δA(qa, si), δB(qb, si), 2) if j = 1 and qa ∈ FA

(δA(qa, si), δB(qb, si), 2) if j = 2 and qb /∈ FB

(δA(qa, si), δB(qb, si), 1) if j = 2 and qb ∈ FB

� FC = QA × FB × {2}

To prove that L(C) = L(A) ∪ L(B), we need to show that (i) L(C) ⊆ (L(A) ∪
L(B)) and (ii) L(A) ∪ L(B) ⊆ L(C). For any s ∈ L(C), let r = r0, r1, . . . =
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(rA0 , r
B
0 , j0), (r

A
1 , r

B
1 , j1), . . . be the accepting run of C on s, then inf(r) ∩ FC ̸= ∅.

Let rA = rA0 , r
A
1 , . . . and rB = rB0 , rB1 , . . .. Since FC = QA × FB × {2}, rB ∩ FB ̸= ∅.

So rB is an accepting run of B on s and s ∈ L(B). Observe that each time an accept-
ing state ((qa, qb,2) where qb ∈ FB) is visited, the next state must be (q′a, q

′
b,1) (per

the fourth line of the transition function). Then before reaching the next accepting
state, the second line of the transition function must be executed, which means a state
(q′′a , q

′′
b , 1) where q′′a ∈ FA must be visited. Therefore inf(rA)∩FA ̸= ∅ and s ∈ L(A).

Since s ∈ L(A) ∩ L(B), L(C) ⊆ L(A) ∩ L(B). The proof of L(A) ∩ L(B) ⊆ L(C) is
left as an exercies.

(c) (i) The following nondeterminstic IIFA accepts L.

𝑞0 𝑞10,1
0

0

(ii) Let D be a deterministic IIFA that accepts L(M). Since t1 = 10ω ∈ L(M),
D must have an accepting run on t1. Note the run must be unique since D is
deterministic. We can find a string p1 = 10n1 where n1 ≥ 1 so that D entered
an accepting state after reading p1. Since t2 = 10n1100ω ∈ L(M), D must also
have an unique run on t2, which extends the aforementioned run on p1, that
is accepting. Therefore we can find a string p2 = p110

n2 = 10n110n2 where
n2 ≥ 1 so that D enters an accepting state after reading p2. Note that the
accepting state D enters after reading p1 need not be the same as the one D
enters after reading p2. Repeating the same argument infinitely many time,
we can construct a string t = 10n110n210n3 . . . with infinite length where pi
is a prefix of t ∀i = 1, 2, . . .. Consider the unique run r of D on t. Since D
visits an accepting state after reading p1, p2, p3, . . . , r contains infinitely many
occurrences of accepting states. Since the set of accepting states F contains only
finite number of states, some of which must be visited infinitely many times, i.e.,
inf(r) ∩ F ̸= ∅. This means r is an accepting run and therefore t ∈ L(D).
However, since t has infinitely many 1’s, t /∈ L(M). A contradiction.
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