Theory of Computation

Spring 2024, Homework \# 1 Reference Solutions

1. Let \equiv_{L} be the equivalence relation induced by L. According to Myhill-Nerode theorem, L is regular iff \equiv_{L} is of finite index (see p. 95 of Chapter 1 lecture notes). Consider the following sequence of strings: $a b, a b^{2}, a b^{3}, \ldots$. Pick any two strings $a b^{i}$ and $a b^{j}$ from the sequence where $i, j \in \mathbb{N}$ and $i<j$. Since $a b^{i} c^{i} \in L$ and $a b^{j} c^{i} \notin L, a b^{i}$ and $a b^{j}$ must be in different equivalence classes of \equiv_{L}. In other words, \equiv_{L} must have a unique equivalence class for every string in the above-mentioned sequence. As there are infinitely many strings in the sequence, \equiv_{L} has infinitely many equivalence classes. Therefore L is not regular.
2. (a) Correct. Let $\Gamma=\{c\}$ and h a morphism from Σ to Γ^{*} where $h(a)=h(b)=c$ and $h(\sigma)=\epsilon$ for all $\sigma \in \Sigma \backslash\{a, b\}$. Let $L_{h}=h(A)$. Then $L_{h} \subseteq \Gamma^{*}$ and for every $u \in \Gamma^{*}, u \in L_{h}$ if and only if $u=h(w)$ for some $w \in A$. According to the definition of $h, h(w)=c^{\#_{a}(w)+\#_{b}(w)}$ for every $w \in \Sigma^{*}$. Therefore $L_{h}=\left\{c^{n} \mid \exists w \in\right.$ $\left.A, \#_{a}(w)+\#_{b}(w)=n\right\}$. Since regular languages are closed under morphism, L_{h} is regular if A is regular.
(b) Incorrect. Let $L_{1}=a^{*}$ and $L_{2}=b^{*}$. Then $L=\left\{a^{n} 0 b^{n} \mid n \in \mathbb{N}\right\}$. Let h be a morphism from $\{a, b, 0\}^{*}$ to $\{a, b\}^{*}$ where $h(a)=a, h(b)=b$, and $h(0)=\epsilon$. Then $L^{\prime}=h(L)=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$. Since L^{\prime} is not regular, L is not regular (since regular languages are closed under morphism).
(c) Correct. Let $L_{1}^{\prime}=\{x \mid a x \in L\}$ and $L_{2}^{\prime}=\{x \mid x b \in L\}$. Clearly $L^{\prime}=L_{1}^{\prime} \cup L_{2}^{\prime}$. If we can prove that L_{1}^{\prime} and L_{2}^{\prime} are both regular, we can then prove that L^{\prime} is regular since regular languages are closed under union.
Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognized L (D must exists since L is regular). So $L(D)=L$. Construct an NFA $N_{1}^{\prime}=\left(Q \cup q_{0}^{\prime}, \Sigma, \delta_{1}^{\prime}, q_{0}^{\prime}, F\right)$ where

$$
\delta_{1}^{\prime}(q, w)= \begin{cases}\delta(q, w) & \text { if } q \in Q \\ \delta\left(q_{0}, a\right) & \text { if } q=q_{0}^{\prime} \text { and } w=\epsilon \\ \emptyset & \text { if } q=q_{0}^{\prime} \text { and } w \neq \epsilon\end{cases}
$$

Note that $Q \cap\left\{q_{0}^{\prime}\right\}=\emptyset$. Then $L\left(N_{1}^{\prime}\right)=\{x \mid a x \in L(D)\}=L_{1}^{\prime}$. Alternatively, since D is a DFA, $\delta\left(q_{0}, a\right)$ is unique. One can use it to construct a DFA $D_{1}^{\prime}=$ $\left(Q, \Sigma, \delta_{1}, \delta\left(q_{0}, a\right), F\right)$, where $L\left(D_{1}^{\prime}\right)$ is also L_{1}^{\prime}. This proves that L_{1}^{\prime} is regular.
As for L_{2}^{\prime}, construct a DFA $D_{2}^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ where $F^{\prime}=\{q \mid \delta(q, b) \in F\}$. Then we have $L\left(D_{2}^{\prime}\right)=\{x \mid x b \in L(D)\}=L_{2}^{\prime}$, which proves that L_{2}^{\prime} is regular.
(d) Correct. Let $L^{\prime}=L \cap a^{*}=\left\{a^{p} \mid p\right.$ is prime $\}$. Since regular languages are closed under intersection, L is regular iff L^{\prime} is regular. Assume that L^{\prime} is regular. Let p be the pumping length. Choose $s=a^{p^{\prime}}$, where p^{\prime} is a prime number and $p^{\prime}>p+1$. By the pumping lemma, there is a partition $s=x y z$ such that $|y|>0,|x y| \leq p$, and $x y^{i} z \in L^{\prime}$ for $i \geq 0$. Consider $s^{\prime}=x y^{p^{\prime}-|y|} z$. Note that $p^{\prime}-|y|>0$ since $|y| \leq|x y| \leq p<p^{\prime}-1$. $\left|s^{\prime}\right|=|x|+|z|+\left(p^{\prime}-|y|\right)|y|=\left(p^{\prime}-|y|\right)+\left(p^{\prime}-|y|\right) *|y|=\left(p^{\prime}-|y|\right)(1+|y|)$ is not a
prime number. So $s^{\prime} \notin L^{\prime}$. This is a contradition. Therefore L^{\prime} is not regular. Hence L is not regular.
3. (a) Add a new initial state and two ϵ-transitions from the new initial state to the initial states of A and B. Let $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{A 0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{B 0}, F_{B}\right)$. Without loss of generality, assume $Q_{A} \cap Q_{B}=\emptyset$. Construct $C=\left(Q_{C}, \Sigma, \delta_{C}, q_{C 0}, F_{C}\right)$ as following:

- $Q_{C}=Q_{A} \cup Q_{B} \cup\left\{q_{C 0}\right\}$. Note that $q_{C 0} \notin Q_{A} \cup Q_{B}$.
- $\delta_{C}\left(q_{i}, s_{i}\right)= \begin{cases}\delta_{A}\left(q_{i}, s_{i}\right) & \text { if } q_{i} \in Q_{A} \\ \delta_{B}\left(q_{i}, s_{i}\right) & \text { if } q_{i} \in Q_{B} \\ \left\{q_{A 0}, q_{B 0}\right\} & \text { if } q_{i}=q_{C 0} \text { and } s_{i}=\epsilon \\ \emptyset & \text { if } q_{i}=q_{C 0} \text { and } s_{i} \neq \epsilon\end{cases}$
- $F_{C}=F_{A} \cup F_{B}$

To prove that $L(C)=L(A) \cup L(B)$, we need to show that (i) $L(C) \subseteq(L(A) \cup L(B))$ and (ii) $L(A) \cup L(B) \subseteq L(C)$. For any $s \in L(C)$, let $r=r_{0}, r_{1}, r 2, \ldots$ be the accepting run of C on s. Based on the way C is constructed, we have $r_{0}=q_{C 0}$ and $r_{1} \in\left\{q_{A 0}, q_{B 0}\right\}$. If $r_{1}=q_{A 0}$, then $r_{i} \in Q_{A} \forall i \geq 2$. Since $\inf (r) \cap F_{C} \neq \emptyset$ and $\inf (r) \cap Q_{B}=\emptyset, \inf (r) \cap F_{A} \neq \emptyset$. Hence r is an accepting run of A on s. That is, $s \in L(A)$. Similarly, if $r_{1}=q_{B 0}$, then r is an acepting run of B on s and $s \in L(B)$. Therefore $L(C) \subseteq L(A) \cup L(B)$. The proof for $L(A) \cup L(B) \subseteq L(C)$ is let as an exercise.

Note: If you choose not to use ϵ-transitions and instead directly combine $q_{A 0}$ and $q_{B 0}$ into the new state $q_{C 0}$, you need to also handle any transitions in A and B that might be linking back to their respective initial states. You need to avoid the case where C starts off with A then at some point returns to $q_{C 0}$, which is also $q_{B 0}$, and starts running in B. In this case an acccepting run could potentially contains states from both A and B, which means C might accept strings not in $L(A) \cup L(B)$.
(b) As suggested in the hint, C needs to accept the runs where F_{A} and F_{B} were visited infinitely many times but not necessarily simultaneously. So the idea is to construct C in such a way that it records the visits to F_{A} and F_{B} in "pairs" (you can think of it as a partial run $r_{p}=r_{A}, r_{1}, \ldots, r_{B}$ where $r_{A} \in F_{A}$ and $r_{B} \in F_{B}$) and only accept the runs where the pairs were visited infinitely many times. Note the usual steps for dealing with intersection problems by constructing C so that A and B run synchronously still need to be followed. Construct $C=\left(Q_{C}, \Sigma, \delta_{C}, q_{C 0}, F_{C}\right)$ as following:

- $Q_{C}=Q_{A} \times Q_{B} \times\{1,2\}$
- $q_{C 0}=\left(q_{A 0}, q_{B 0}, 1\right)$
- $\delta_{C}\left(\left(q_{a}, q_{b}, j\right), s_{i}\right)= \begin{cases}\left(\delta_{A}\left(q_{a}, s_{i}\right), \delta_{B}\left(q_{b}, s_{i}\right), 1\right) & \text { if } j=1 \text { and } q_{a} \notin F_{A} \\ \left(\delta_{A}\left(q_{a}, s_{i}\right), \delta_{B}\left(q_{b}, s_{i}\right), 2\right) & \text { if } j=1 \text { and } q_{a} \in F_{A} \\ \left(\delta_{A}\left(q_{a}, s_{i}\right), \delta_{B}\left(q_{b}, s_{i}\right), 2\right) & \text { if } j=2 \text { and } q_{b} \notin F_{B} \\ \left(\delta_{A}\left(q_{a}, s_{i}\right), \delta_{B}\left(q_{b}, s_{i}\right), 1\right) & \text { if } j=2 \text { and } q_{b} \in F_{B}\end{cases}$
- $F_{C}=Q_{A} \times F_{B} \times\{2\}$

To prove that $L(C)=L(A) \cup L(B)$, we need to show that (i) $L(C) \subseteq(L(A) \cup$ $L(B)$) and (ii) $L(A) \cup L(B) \subseteq L(C)$. For any $s \in L(C)$, let $r=r_{0}, r_{1}, \ldots=$
$\left(r_{0}^{A}, r_{0}^{B}, j_{0}\right),\left(r_{1}^{A}, r_{1}^{B}, j_{1}\right), \ldots$ be the accepting run of C on s, then $\inf (r) \cap F_{C} \neq \emptyset$. Let $r^{A}=r_{0}^{A}, r_{1}^{A}, \ldots$ and $r^{B}=r_{0}^{B}, r_{1}^{B}, \ldots$. Since $F_{C}=Q_{A} \times \mathbf{F}_{\mathbf{B}} \times\{2\}, r^{B} \cap F_{B} \neq \emptyset$. So r^{B} is an accepting run of B on s and $s \in L(B)$. Observe that each time an accepting state $\left(\left(q_{a}, q_{b}, \mathbf{2}\right)\right.$ where $\left.q_{b} \in F_{B}\right)$ is visited, the next state must be $\left(q_{a}^{\prime}, q_{b}^{\prime}, \mathbf{1}\right)$ (per the fourth line of the transition function). Then before reaching the next accepting state, the second line of the transition function must be executed, which means a state $\left(q_{a}^{\prime \prime}, q_{b}^{\prime \prime}, 1\right)$ where $q_{a}^{\prime \prime} \in F_{A}$ must be visited. Therefore $\inf \left(r^{A}\right) \cap F_{A} \neq \emptyset$ and $s \in L(A)$. Since $s \in L(A) \cap L(B), L(C) \subseteq L(A) \cap L(B)$. The proof of $L(A) \cap L(B) \subseteq L(C)$ is left as an exercies.
(c) (i) The following nondeterminstic IIFA accepts L.

(ii) Let D be a deterministic IIFA that accepts $L(M)$. Since $t_{1}=10^{\omega} \in L(M)$, D must have an accepting run on t_{1}. Note the run must be unique since D is deterministic. We can find a string $p_{1}=10^{n_{1}}$ where $n_{1} \geq 1$ so that D entered an accepting state after reading p_{1}. Since $t_{2}=10^{n_{1}} 100^{\omega} \in L(M), D$ must also have an unique run on t_{2}, which extends the aforementioned run on p_{1}, that is accepting. Therefore we can find a string $p_{2}=p_{1} 10^{n_{2}}=10^{n_{1}} 10^{n_{2}}$ where $n_{2} \geq 1$ so that D enters an accepting state after reading p_{2}. Note that the accepting state D enters after reading p_{1} need not be the same as the one D enters after reading p_{2}. Repeating the same argument infinitely many time, we can construct a string $t=10^{n_{1}} 10^{n_{2}} 10^{n_{3}} \ldots$ with infinite length where p_{i} is a prefix of $t \forall i=1,2, \ldots$. Consider the unique run r of D on t. Since D visits an accepting state after reading $p_{1}, p_{2}, p_{3}, \ldots, r$ contains infinitely many occurrences of accepting states. Since the set of accepting states F contains only finite number of states, some of which must be visited infinitely many times, i.e., $\inf (r) \cap F \neq \emptyset$. This means r is an accepting run and therefore $t \in L(D)$. However, since t has infinitely many 1 's, $t \notin L(M)$. A contradiction.

