Theory of Computation
Spring 2024, Homework # 1 Reference Solutions

1. Let =1 be the equivalence relation induced by L. According to Myhill-Nerode theorem,
L is regular iff =}, is of finite index (see p. 95 of Chapter 1 lecture notes). Consider the
following sequence of strings: ab, ab?,ab?,.... Pick any two strings ab® and ab’ from the
sequence where i,j € N and i < j. Since ab’c’ € L and ab/c’ ¢ L, ab’ and ab’ must be
in different equivalence classes of =;,. In other words, =7, must have a unique equivalence
class for every string in the above-mentioned sequence. As there are infinitely many strings
in the sequence, =y, has infinitely many equivalence classes. Therefore L is not regular.

2.

(a)

Correct. Let I' = {c} and h a morphism from ¥ to I'* where h(a) = h(b) = ¢
and h(o) = € for all o € X\{a,b}. Let L, = h(A). Then L; C T'* and for every
u € T*, w € Ly if and only if u = h(w) for some w € A. According to the def-
inition of h, h(w) = c#a(WFT#o(W) for every w € ¥*. Therefore L, = {c"|3w €
A, #q(w) + #p(w) = n}. Since regular languages are closed under morphism, Ly, is
regular if A is regular.

Incorrect. Let L; = a* and Ly = b*. Then L = {a"0b"|n € N}. Let h be a
morphism from {a,b,0}* to {a,b}* where h(a) = a, h(b) = b, and h(0) = e. Then
L' = h(L) = {a"b"|n € N}. Since L’ is not regular, L is not regular (since regular
languages are closed under morphism).

Correct. Let L) = {z|ax € L} and L, = {x|xb € L}. Clearly L' = L] U L},. If we
can prove that L} and L/, are both regular, we can then prove that L’ is regular since
regular languages are closed under union.

Let D = (Q,%, 6, qo, F) be a DFA that recognized L (D must exists since L is regular).
So L(D) = L. Construct an NFA N = (Q U ¢, %, 8, ¢}, F') where

o(g,w) ifgeq
61(q, w) = { 6(qo, a) ifg=q¢)and w=¢
0 ifg=gq) and w # ¢

Note that @ N {¢,} = 0. Then L(N{) = {z]ax € L(D)} = L}. Alternatively,
since D is a DFA, 0(qo,a) is unique. Omne can use it to construct a DFA D] =
(Q,%,01,d(qo,a), F), where L(D]) is also L}. This proves that L} is regular.

As for L), construct a DFA Dj = (Q, X%, 0, qo, F') where F' = {q|d(q,b) € F'}. Then
we have L(D4) = {x|ab € L(D)} = L}, which proves that L} is regular.

Correct. Let L’ = LNa* = {a? |p is prime }. Since regular languages are closed un-
der intersection, L is regular iff L’ is regular. Assume that L’ is regular. Let p be the
pumping length. Choose s = ap/, where p’ is a prime number and p’ > p + 1. By the
pumping lemma, there is a partition s = xyz such that |y| > 0, |zy| < p, and zy'z € L'
for i > 0. Consider s’ = zy? ~1¥/2. Note that p’ — ly| > 0 since |y| < |zy| <p<p —1.
|s'] = ||+ [2| + (0" = [yDlyl = @ = lyl) + (0" = [y * [y| = @' = [y[)(1 + [y]) is not a



prime number. So s’ ¢ L'. This is a contradition. Therefore L’ is not regular. Hence
L is not regular.

3. (a) Add a new initial state and two e-transitions from the new initial state to the initial
states of A and B. Let A = (Qa,%,04,q40,F4) and B = (@Qp,%,08,980, FB).
Without loss of generality, assume Q4 NQp = (. Construct C' = (Qc¢, 3, d¢, 9c0, Fc)
as following:

* Qc =QaUQpU{gco}. Note that goo € Qa U Q5.
6,4((]1',51‘) if qi € QA
05(qi, S:) ifg; € Qp
{ga0,980}  if @i =qco and s; =€
0 if ¢; = qoo and s; # €

o o =F,UFp
To prove that L(C) = L(A) U L(B), we need to show that (i) L(C) C (L(A) U L(B))
and (ii) L(A) U L(B) C L(C). For any s € L(C), let r = rg,r1,72,... be the ac-
cepting run of C' on s. Based on the way C' is constructed, we have rg = gco and
r1 € {qao,qBo}- If 11 = qao, then m; € QaVi > 2. Since inf(r) N Fo # 0 and
nf(r)NQp =0, inf(r) N F4 # 0. Hence r is an accepting run of A on s. That is,
s € L(A). Similarly, if 71 = ¢po, then r is an acepting run of B on s and s € L(B).
Therefore L(C') € L(A)UL(B). The proof for L(A)UL(B) C L(C) is let as an exercise.

o 0c(qi,8:) =

Note: If you choose not to use e-transitions and instead directly combine qag and qgo
into the new state qco, you need to also handle any transitions in A and B that might
be linking back to their respective initial states. You need to avoid the case where C
starts off with A then at some point returns to qco, which is also qpg, and starts
running in B. In this case an acccepting run could potentially contains states from
both A and B, which means C' might accept strings not in L(A) U L(B).

(b) As suggested in the hint, C' needs to accept the runs where Fiy and Fp were visited
infinitely many times but not necessarily simultaneously. So the idea is to construct C
in such a way that it records the visits to F4 and Fg in “pairs” (you can think of it as a
partial run rp, =74,71,...,7p where ry € F4 and rg € Fg) and only accept the runs
where the pairs were visited infinitely many times. Note the usual steps for dealing
with intersection problems by constructing C' so that A and B run synchronously still
need to be followed. Construct C' = (Q¢, X, dc, gco, Fo) as following:

e Qc=QaxQpx{1,2}

® gco = (qa0,9B0,1)

(5,4(%751')753(%, Sl)’ 1) lf.] =1 and da ¢ FA
. 04(qa,5:),0 ,Si),2 ifj=1andq, € F
o Ge(tar o) i) = § (Ao o) Ol ), 2) A anc o € P
(04(qa;5i),0B(q, 5:),2) if j =2and g, ¢ Fp
(5A(qa7si),6B<Qba 81)7 1) lf,] =2 and qy € FB

.FCZQAXFBX{Q}

To prove that L(C) = L(A) U L(B), we need to show that (i) L(C) C (L(A) U
L(B)) and (ii) L(A) U L(B) C L(C). For any s € L(C), let r = rg,r1,... =



()

(rgt, v, 4o), (r{, 7B 31), ... be the accepting run of C on s, then inf(r) N Fg # 0.
Let 74 = rgt,rft, .. and B = rf 7B, ... Since Fo = Qa x Fp x {2}, 7P N Fp # 0.
So 7B is an accepting run of B on s and s € L(B). Observe that each time an accept-
ing state ((qq,qp, 2) where g, € F) is visited, the next state must be (¢}, ¢, 1) (per
the fourth line of the transition function). Then before reaching the next accepting
state, the second line of the transition function must be executed, which means a state
(q”,q),1) where ¢/ € Fa must be visited. Therefore inf(r4) N F4 # () and s € L(A).
Since s € L(A) N L(B), L(C) C L(A) N L(B). The proof of L(A) N L(B) C L(C) is

left as an exercies.

(i) The following nondeterminstic ITFA accepts L.

|
0,1C 0 0

(ii) Let D be a deterministic IIFA that accepts L(M). Since t; = 10¥ € L(M),
D must have an accepting run on ¢;. Note the run must be unique since D is
deterministic. We can find a string p; = 10™ where n; > 1 so that D entered
an accepting state after reading p;. Since to = 10"1100% € L(M), D must also
have an unique run on t;, which extends the aforementioned run on p;, that
is accepting. Therefore we can find a string po = p;10™ = 10™10™2 where
ny > 1 so that D enters an accepting state after reading p,. Note that the
accepting state D enters after reading p; need not be the same as the one D
enters after reading ps. Repeating the same argument infinitely many time,
we can construct a string ¢ = 1072107210 ... with infinite length where p;
is a prefix of t Vi = 1,2,.... Consider the unique run r of D on ¢. Since D
visits an accepting state after reading p1, p2, ps, ..., r contains infinitely many
occurrences of accepting states. Since the set of accepting states F' contains only
finite number of states, some of which must be visited infinitely many times, i.e.,
inf(r) N F # (. This means r is an accepting run and therefore ¢t € L(D).
However, since ¢ has infinitely many 1’s, ¢t ¢ L(M). A contradiction.



