
Theory of Computation
Fall 2024, Final Exam. (Solutions)

June 4, 2024

1. (50 pts) True or False? Mark O for True, and × for False. Score = max{0, Right - 1
2 Wrong}. No explanations

are needed. On the answer sheet, draw the following table and fill in O or ×.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
× O × O O × O × × O × O O O O × O O × O O O O × O

We write ≤p for ”polynomial-time reduction”; ≤m for ”mapping reduction”; P for ”polynomial time”; NP for
”nondeterministic polynomial time”; DTM for ”deterministic Turing machine”; TM for ”Turing machine” (possibly
nondeterministic).

(1) {〈G,H〉 | graphs G and H are isomorphic} is NP-complete.
False. GI is in NP, but not known to be NP-complete. See Class Notes.

(2) {〈F, x〉 | F is a 3-CNF which evaluates to true on truth assignment x} is in P .
True. Once a truth assignment x is given, checking the value of F is easy (in P ).

(3) {〈M,w〉 | M is a DTM that does not accept input w} is Turing-recognizable.
False. The language is ATM , which is not Turing-recognizable.

(4) {〈M,w〉 | M is a DTM that accepts w in at most 2|w| steps} is not in P .
True. P 6= EXPTIME - Time Hierarchy Theorem.

(5) If A ≤p B and B is in PSPACE, then A is in PSPACE.
True. Property of ≤p.

(6) Recursive languages are closed under homomorphism.
False. {〈M,w, (#)n〉 | M acepts w in ≤ n steps} is recursive. However, if the homomorphism maps # to ε
and leave all the other symbols intact, the resulting language becomes {〈M,w〉 |M acepts w} = ATM .

(7) If L ≤p {0n1n | n ≥ 0}, then L is in P .
True. {0n1n | n ≥ 0} is in P .

(8) REGULARTM = {〈M〉 | the language recognized by Turing machine M is regular} is Turing-recognizable but
not Turing-decidable.
False. The language is not Turing-recognizable. See Class Note (Chapter-4, p.53).

(9) It is a theorem that NP ∩ co-NP = P .
False. It is not known whether NP ∩ co-NP = P .

(10) If L is in NP , so is L∗.
True. Given x, guess x = x1x2...xn, and check ∀i, xi ∈ L(M).

(11) All decidable languages are NP -hard.
False. 0∗ is a decidable language, which is clearly not NP-hard.

(12) If L1 and L2 are not recursive, it is possible that L1 ∪ L2 is recursive.
True. ATM ∪ATM = Σ∗.

(13) {〈M,w〉 | DTM M moves right exactly twice on input w} is recursive.
True. The TM can only reads from (at most) the first three input symbols.

(14) The set of Turing-recognizable languages is countably infinite.
True. Each corresponds to a TM . The set of TMs is countably infinite.

(15) If there is a DTM operating in DSPACE(log n) to check whether or not two vertices in a directed graph are
connected, then DSPACE(log n) = NSPACE(log n).
True. Graph reachability problem is complete for NSPACE(log n). If the hardest problem in NSPACE(log n)
is also in DSPACE(log n), then DSPACE(log n) = NSPACE(log n).

(16) There is a language in BPP that is not in PSPACE.
False. BPP ⊆ PSPAcE. See Class Notes.

(17) The class RP remains the same if the error probability is made 2−n in the definition. (Here, as usual, n is the
length of the input.)
True. See Class Notes.

1



(18) There is an algorithm that can take an undirected graph and two vertices s, t as input and output whether or
not there is a path between s and t in O(log2 n) deterministic space.
True. Graph reachability problem is complete for NSPACE(log n), which is in DSPACE(log2 n) – Savitch’s
Theorem

(19) Every NP -hard language is recognizable by a Turing machine.
False. EQTM is also NP-hard.

(20) There is a function f : {0, 1}∗ → {0, 1} that cannot be computed by any Turing machine.
True. The set of such functions is not countably infinite.

(21) Suppose L is TM recognizable but not TM decidable. Then any TM that recognizes L must fail to halt on an
infinite number of strings.
True. If not (i.e., if the set if finite), we can design a decider for L in the following way: first compare input to
the elements of that finite set and if it is there reject. Otherwise simulate recognizer of L on the input (always
halt) and return what it returns.

(22) { 〈M〉 | M is a DTM and if we start M with a blank input tape, then it will finally write some non-blank
symbol on its tape.} is decidable.
True. If it the TM never prints a non-blank symbol, after at least |Q| + 1 steps (Q is the set of states of the
TM), either the TM halts or a state would repeat.

(23) Given two context-free languages L1 and L2, then L1 ∩ L2 is Turing decidable.
True. CFLs are recursive, and recursive languages are closed under intersection.

(24) PCP instance {[ac ], [ a
aa ], [ cbaa ]} has a match (i.e., solution).

False. Easy observation.

(25) co-NP ⊆ IP , where IP stands for interactive proof systems.
True. See Class Notes.

2. (10 pts) Let A1, A2 ⊆ {0, 1}∗ be Turing-recognizable languages such that A1 ∪A2 = {0, 1}∗ and A1 ∩A2 6= ∅. Prove
that A1 ≤m (A1 ∩A2).
(Hint: find a reduction f such that x ∈ A1 iff f(x) ∈ A1 ∩ A2. To find f , simulate M1 and M2 (which accept A1

and A2, respectively) in parallel. Then ... )
Solution: Let y ∈ A1 ∩A2. Consider the following mapping f :
On input x, simulate M1 and M2 in parallel, one of the following two must hold (because A1 ∪A2 = {0, 1}∗):

• If M1 accepts x, then x ∈ A1, maps x to y, i.e. , f(x) = y ∈ A1 ∩A2;

• If M2 accepts x, then x ∈ A2, maps x to x (i.e., f(x) = x). Note that x ∈ A1 iff x ∈ A1 ∩A2 since we already
know x ∈ A2.

3. (10 pts) Suppose we want to prove thatODDTM = {〈M〉 |M is a TM and L(M) does not contain any string of odd length}
is undecidable. Let us reduce ATM to ODDTM . In other words, given a decider R for ODDTM , let us show how
to build a decider D for ATM .

On input 〈M,w〉
Construct TM NM,w that works as follows:

(1) on input x, NM,w 1© (5 pts) ..........................

Run R on NM,w 2©(5 pts)..........................

• (Question) Complete the reduction by filling in missing details for the two blanks 1© and 2© in the above.

Solution:

1© Simulate M on w; accept x if M accepts w.

2© Accept if R rejects; reject if R accepts.

Note that L(NM,w) = Σ∗ or ∅.

• If L(NM,w) = Σ∗, R(NM,w) rejects, meaning that M accepts w;

• If L(NM,w) = ∅, R(NM,w) accepts, meaning that M does not accept w.
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4. (10 pts) Assume that L1 is NP -complete and L1 ∈ NP . Prove that for all L ∈ NP , it must be the case that
L ∈ NP . Here L denotes the complement of L.
Solution:

• L1 is NP -complete ⇒ ∀L ∈ NP , L ≤p L1 – Definition of NP-hardness

• L ≤p L1 ⇒ L ≤p L1 – Simple property of ≤p

• L ≤p L1 and L1 ∈ NP ⇒ L ∈ NP .

5. (10 pts) Consider the four types of computations (labelled 1-4) shown in the figure. Consider the following table in
which each column is associated with a complexity class C. For a machine M , L(M) ∈ C, and an input w, we put i
in (accepting, C) entry if type-i is an accepting computation for M on w in C. Likewise, we put j in (rejecting, C)
entry if type-j is a rejecting computation for M on w in C. Fill in the blank entries with numbers from {1, 2, 3, 4},
or 0 if none applies. Note that you may need to put in multiple numbers in each entry.

co-NP RP co-RP ZPP BPP
accepting 1 1,2 1 1 1,2
rejecting 2,3,4 4 3,4 4 3,4

6. (10 pts) Suppose the following is a fragment of a computation of a DTM M on some input.

c0 ` · · ·
c1︷ ︸︸ ︷

1101qa0110 `
c2︷ ︸︸ ︷

110qb11110 `
c3︷ ︸︸ ︷

1100qb1110 ` · · ·

(a) (4 pts) What are the two transitions executed from c1 to c2, and from c2 to c3? Write down the transition in
the standard form (i.e., δ(...) = (...)).

(b) (2 pts) What is the configuration immediately following (i.e., after) c3?

(c) (4 pts) Explain how to check 1101qa0110 ` (110qb11110)R using a pushdown automaton (PDA). Here R denotes
the ”reversal” of a string. Give your explanation in English or Chinese.

Solution:

(a) δ(qa, 0) = (qb, 1, L); δ(qb, 1) = (qb, 0, R)

(b) 11000qb110

(c) • While reading 1101qa0110, push 1, 1, 0, 1, qa, 0, 1, 1, 0 onto the stack. After that the stack contains 1101qa0110
(top).

• After reading `, the PDA pops 0, 1, 1 while reading the first three symbols of (110qb11110)R = 01111qb011

• the PDA nondeterministically reads the next three symbols 1, 1, qb of 01111qb011 and stores them in the
finite state, while popping three symbols 0, qa, 1 from the stack and stores them in the final state,

• the PDA checks the transition function of the Turing machine to make sure that 1qa0 ` 11qb is a legal
move.

• finally, the PDA pops 0, 1, 1 while reading 0, 1, 1.
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