June 4, 2024

1. (50 pts) True or False? Mark O for **True**, and \times for **False**. Score = max $\{0, Right - \frac{1}{2}$ Wrong}. No explanations are needed. On the answer sheet, draw the following table and fill in O or \times .

We write \leq_p for "polynomial-time reduction"; \leq_m for "mapping reduction"; P for "polynomial time"; NP for "nondeterministic polynomial time"; DTM for "deterministic Turing machine"; TM for "Turing machine" (possibly nondeterministic).

- (1) $\{ \langle G, H \rangle \mid \text{ graphs } G \text{ and } H \text{ are isomorphic} \}$ is NP-complete. False. GI is in NP, but not known to be NP-complete. See Class Notes.
- (2) $\{F, x\}$ | F is a 3-CNF which evaluates to true on truth assignment x is in P. **True.** Once a truth assignment x is given, checking the value of F is easy (in P).
- (3) $\{M, w\}$ | M is a DTM that does not accept input w} is Turing-recognizable. **False**. The language is $\overline{A_{TM}}$, which is not Turing-recognizable.
- (4) $\{ \langle M, w \rangle \mid M \text{ is a DTM that accepts } w \text{ in at most } 2^{|w|} \text{ steps} \}$ is not in P. **True.** $P \neq EXPTIME$ - Time Hierarchy Theorem.
- (5) If $A \leq_{p} B$ and B is in PSPACE, then A is in PSPACE. **True.** Property of \leq_p .
- (6) Recursive languages are closed under homomorphism. **False.** $\{(M, w, (\#)^n) \mid M \text{ accepts } w \text{ in } \leq n \text{ steps}\}$ is recursive. However, if the homomorphism maps # to ϵ and leave all the other symbols intact, the resulting language becomes $\{M, w\} | M$ acepts $w\} = A_{TM}$.
- (7) If $L \leq_p \{0^n1^n \mid n \geq 0\}$, then L is in P. **True.** $\{0^n 1^n \mid n \ge 0\}$ is in *P*.
- (8) REGULAR_{TM} = { $\langle M \rangle$ | the language recognized by Turing machine M is regular} is Turing-recognizable but not Turing-decidable.

False. The language is not Turing-recognizable. See Class Note (Chapter-4, p.53).

- (9) It is a theorem that $NP \cap co-NP = P$. **False**. It is not known whether $NP \cap co-NP = P$.
- (10) If L is in NP , so is L^* . True. Given x, guess $x = x_1x_2...x_n$, and check $\forall i, x_i \in L(M)$.
- (11) All decidable languages are NP-hard. False. 0[∗] is a decidable language, which is clearly not NP-hard.
- (12) If L_1 and L_2 are not recursive, it is possible that $L_1 \cup L_2$ is recursive. **True.** $A_{TM} \cup \overline{A_{TM}} = \Sigma^*$.
- (13) $\{M, w\}$ DTM M moves right exactly twice on input w} is recursive. True. The TM can only reads from (at most) the first three input symbols.
- (14) The set of Turing-recognizable languages is countably infinite. **True.** Each corresponds to a TM . The set of TMs is countably infinite.
- (15) If there is a DTM operating in $DSPACE(log n)$ to check whether or not two vertices in a directed graph are connected, then $DSPACE(\log n) = NSPACE(\log n)$. **True.** Graph reachability problem is complete for $NSPACE(\log n)$. If the hardest problem in $NSPACE(\log n)$ is also in $DSPACE(\log n)$, then $DSPACE(\log n) = NSPACE(\log n)$.
- (16) There is a language in BPP that is not in $PSPACE$. False. $BPP \subseteq PSPACE$. See Class Notes.
- (17) The class RP remains the same if the error probability is made 2^{-n} in the definition. (Here, as usual, n is the length of the input.) True. See Class Notes.
- (18) There is an algorithm that can take an undirected graph and two vertices s, t as input and output whether or not there is a path between s and t in $O(\log^2 n)$ deterministic space. **True.** Graph reachability problem is complete for $NSPACE(\log n)$, which is in $DSPACE(\log^2 n)$ – Savitch's Theorem
- (19) Every NP-hard language is recognizable by a Turing machine. **False.** EQ_{TM} is also NP-hard.
- (20) There is a function $f: \{0,1\}^* \to \{0,1\}$ that cannot be computed by any Turing machine. True. The set of such functions is not countably infinite.
- (21) Suppose L is TM recognizable but not TM decidable. Then any TM that recognizes L must fail to halt on an infinite number of strings. True. If not (i.e., if the set if finite), we can design a decider for L in the following way: first compare input to the elements of that finite set and if it is there reject. Otherwise simulate recognizer of L on the input (always halt) and return what it returns.
- (22) $\{M\}$ | M is a DTM and if we start M with a blank input tape, then it will finally write some non-blank symbol on its tape.} is decidable. **True.** If it the TM never prints a non-blank symbol, after at least $|Q| + 1$ steps $(Q$ is the set of states of the TM), either the TM halts or a state would repeat.
- (23) Given two context-free languages L_1 and L_2 , then $L_1 \cap L_2$ is Turing decidable. True. CFLs are recursive, and recursive languages are closed under intersection.
- (24) PCP instance $\{\left[\frac{a}{c}\right], \left[\frac{a}{aa}\right], \left[\frac{cba}{a}\right]\}$ has a match (i.e., solution). False. Easy observation.
- (25) co-NP \subseteq IP, where IP stands for *interactive proof* systems. True. See Class Notes.
- 2. (10 pts) Let $A_1, A_2 \subseteq \{0,1\}^*$ be Turing-recognizable languages such that $A_1 \cup A_2 = \{0,1\}^*$ and $A_1 \cap A_2 \neq \emptyset$. Prove that $A_1 \leq_m (A_1 \cap A_2)$. (Hint: find a reduction f such that $x \in A_1$ iff $f(x) \in A_1 \cap A_2$. To find f, simulate M_1 and M_2 (which accept A_1 and A_2 , respectively) in parallel. Then \dots)

Solution: Let $y \in A_1 \cap A_2$. Consider the following mapping f :

On input x, simulate M_1 and M_2 in parallel, one of the following two must hold (because $A_1 \cup A_2 = \{0,1\}^*$):

- If M_1 accepts x, then $x \in A_1$, maps x to y, i.e., $f(x) = y \in A_1 \cap A_2$;
- If M_2 accepts x, then $x \in A_2$, maps x to x (i.e., $f(x) = x$). Note that $x \in A_1$ iff $x \in A_1 \cap A_2$ since we already know $x \in A_2$.
- 3. (10 pts) Suppose we want to prove that $ODD_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ does not contain any string of odd length} \}$ is undecidable. Let us reduce A_{TM} to ODD_{TM} . In other words, given a decider R for ODD_{TM} , let us show how to build a decider D for A_{TM} .

On input $\langle M, w \rangle$

Construct TM $N_{M,w}$ that works as follows: (1) on input x, NM,w 1 (5 pts) Run R on NM,w 2 (5 pts)..........................

• (Question) Complete the reduction by filling in missing details for the two blanks (1) and (2) in the above.

Solution:

- (I) Simulate M on w; accept x if M accepts w.
- (2) Accept if R rejects; reject if R accepts.

Note that $L(N_{M,w}) = \Sigma^*$ or \emptyset .

- If $L(N_{M,w}) = \Sigma^*$, $R(N_{M,w})$ rejects, meaning that M accepts w;
- If $L(N_{M,w}) = \emptyset$, $R(N_{M,w})$ accepts, meaning that M does not accept w.
- 4. (10 pts) Assume that L_1 is NP-complete and $\overline{L_1} \in NP$. Prove that for all $L \in NP$, it must be the case that $\overline{L} \in NP$. Here \overline{L} denotes the complement of L . Solution:
	- L_1 is NP-complete $\Rightarrow \forall L \in NP$, $L \leq_p L_1$ Definition of NP-hardness
	- $L \leq_{p} L_1 \Rightarrow \overline{L} \leq_{p} \overline{L_1}$ Simple property of \leq_{p}
	- $\overline{L} \leq_n \overline{L_1}$ and $\overline{L_1} \in NP \Rightarrow \overline{L} \in NP$.
- 5. (10 pts) Consider the four types of computations (labelled 1-4) shown in the figure. Consider the following table in which each column is associated with a complexity class C. For a machine M, $L(M) \in C$, and an input w, we put i in (accepting, C) entry if type-i is an accepting computation for M on w in C. Likewise, we put j in (rejecting, C) entry if type-j is a rejecting computation for M on w in C. Fill in the blank entries with numbers from $\{1, 2, 3, 4\}$, or 0 if none applies. Note that you may need to put in multiple numbers in each entry.

6. (10 pts) Suppose the following is a fragment of a computation of a DTM M on some input.

$$
c_0 \vdash \cdots \overbrace{1101q_a 0110}^{c_1} \vdash \overbrace{110q_b 11110}^{c_2} \vdash \overbrace{1100q_b 1110}^{c_3} \vdash \cdots
$$

- (a) (4 pts) What are the two transitions executed from c_1 to c_2 , and from c_2 to c_3 ? Write down the transition in the standard form (i.e., $\delta(...) = (...)$).
- (b) (2 pts) What is the configuration immediately following (i.e., after) c_3 ?
- (c) (4 pts) Explain how to check $1101q_a0110 \vdash (110q_b11110)^R$ using a pushdown automaton (PDA). Here R denotes the "reversal" of a string. Give your explanation in English or Chinese.

Solution:

- (a) $\delta(q_a, 0) = (q_b, 1, L); \delta(q_b, 1) = (q_b, 0, R)$
- (b) $11000q_b110$
- (c) While reading $1101q_a0110$, push $1, 1, 0, 1, q_a, 0, 1, 1, 0$ onto the stack. After that the stack contains $1101q_a0110$ (top).
	- After reading \vdash , the PDA pops 0, 1, 1 while reading the first three symbols of $(110q_b11110)^R = 0.1111q_b011$
	- the PDA nondeterministically reads the next three symbols $1, 1, q_b$ of $01111q_b011$ and stores them in the finite state, while popping three symbols $0, q_a, 1$ from the stack and stores them in the final state,
	- the PDA checks the transition function of the Turing machine to make sure that $1q_a0 \vdash 11q_b$ is a legal move.
	- finally, the PDA pops $0, 1, 1$ while reading $0, 1, 1$.