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Oracle Turing Machines

Definition 1
An oracle for a language A answers whether w ∈ A for any string w.
An oracle Turing machine MA is a Turing machine that can query an
oracle A. When MA write a string w on a special oracle tape, it is
informed whether w ∈ A in a single step.
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Oracle Computations

Let M be an oracle Turing machine (OTM)
Let x be any string in Σ∗

Let B be an oracle (which is now a language).
1 M starts with input x.
2 Whenever M writes a query word y on its query tape and enters a

query state qquery, y is automatically sent to oracle B.
3 The oracle B returns its answer (YES/NO) by changing M’s inner

state from qquery to either qyes or qno, depending on whether y ∈ B or
y 6∈ B, respectively.

4 M resumes its computation, starting with qyes or qno.

Definition 2
L(MB) = {x ∈ Σ∗ |M accepts x with oracle B}.
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Oracle Turing Machines

Definition 3
For two languages A and B, we say that A is Turing reducible to B
(written as A ≤T B) if there is an OTM M such that

1 A = L(MB); that is, for every input x, x ∈ A⇔MB accepts x via
making queries to the oracle B

Definition 4
Language A is polynomial-time Turing reducible to language B
(written as A ≤p

T B if there is an OTM M such that
1 A = L(MB); that is, for every input x, x ∈ A⇔MB accepts x via

making queries to the oracle B
2 M runs in polynomial time.
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Polynomial-time Oracle Turing Machines

Definition 5
PA = {L : L is decided by a polynomial time OTM with oracle A}
NPA = {L : L is decided by a polynomial time ONTM with oracle A}

Example 6

NP ⊆ PSAT and coNP ⊆ PSAT.

Proof.
For any A ∈ NP, use the polynomial reduction of A to SAT.
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Oracle Turing Machines

Two Boolean formulae φ and ψ over x1, . . . , xl are equivalent if
they have the same value on any assignments to x1, . . . , xl.
A formula is minimal if it is not equivalent to a smaller formula.
Consider

NONMINFORMULA = {〈φ〉 : φ is not a minimal Boolean formula}.

Example 7

NONMINFORMULA ∈ NPSAT.

Proof.
“On input 〈φ〉:

1 Nondeterministically select a smaller formula ψ.
2 Ask 〈φ XOR ψ〉 ∈ SAT.
3 If yes, accept; otherwise, reject.”
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Polynomial-time Hierarchy

Meyer and Stockmeyer (1972, 1973) introduced a notion of the
polynomial-time hierarchy over NP.
The polynomial hierarchy consists of the following complexity classes:
for every index k ≥ 1,

1 ∆P
1 = P

2 ΣP
1 = NP, ΠP

1 = co-NP
3 ∆P

k+1 = PΣP
k

4 ΣP
k+1 = NPΣP

k , ΠP
k+1 = co-ΣP

k+1
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Polynomial-time Hierarchy
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Polynomial-time Hierarchy
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Polynomial-time Hierarchy

We define the complexity class PH as follows:

PH =
⋃
k≥1

(ΣP
k ∪ΠP

k )

NP ⊆ PH ⊆ PSPACE
If P = NP, then P = PH.
PPH = NPPH = PH.
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Another Characterization of Polynomial-time
Hierarchy

We have already seen, that deciding whether a formula is satisfiable
∃x1 · · · xn(x1 ∨ x̄2 ∨ x8) ∧ · · · ∧ (x̄6 ∨ x3)

I only existential quantifier – NP-complete
∃x1∀x2∃x3...(x1 ∨ x̄2 ∨ x8) ∧ · · · ∧ (x̄6 ∨ x3)

I existential & universal quantifiers – PSPACE-complete

Definition 8
Consider language classes reducible to deciding the satisfiability of

ΣiSAT : ∃x1∀x2∃x3...R(x1, x2, x3...)

ΠiSAT : ∀x1∃x2∀x3...R(x1, x2, x3...)

with i alternating quantifiers and R(...) is a polynomial-time predicate.

ΣiSAT and ΠiSAT above define exactly the i-level of the
polynomial-time hierarchy using polynomial-time oracle TMs.
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Alternating Turing Machines

An alternating Turing machine (ATM) M = (Q,Σ,Γ, δ, q0,F) is a
Turing machine with a non-deterministic transition function
δ : Q× Γ→ 2Q×Γ×{L,R} whose set of states, in addition to
accepting/rejecting states, is partitioned into existential (∃ or ∨)
and universal (∀ or ∧) states.
A configuration C of an ATM M can reach acceptance if either of
the following is true:

I C is existential and some branch can reach acceptance.
I C is universal and all branches can reach acceptance.

M accepts a word w if the start configuration on w is accepting.
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Alternating Turing Machines
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Alternating Polynomial-time Hierarchy

Definition 9
Consider language classes

AΣ
p
i : the language accepted by polynomial time ATM using at

most i alternations with the initial state an ∃-state,
AΠ

p
i : the language accepted by polynomial time ATM using at

most i alternations with the initial state an ∀-state,

It turns out that AΣi and AΠi above again define exactly the i-level of
the polynomial-time hierarchy using polynomial-time oracle TMs.
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More on Alternating Complexity Classes

We define
APTime =

⋃
d≥1 ATime(nd)

AExpTime =
⋃

d≥1 ATime(2nd
)

ALogSpace =
⋃

d≥1 ASpace(log n)

APSpace =
⋃

d≥1 ASpace(nd)

AExpSpace =
⋃

d≥1 ASpace(2nd
)

Theorem 10
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Diagonalization - Cantor’s Argument

Recall Cantor’s Argument for showing 2N is not countable

Proof.
Suppose for a contradiction that 2N is countable.

Then the sets in 2S can be enumerated in a list A1,A2,A3, ... ⊆ S
For a contradiction, define a set T = {i | i ∈ N, i 6∈ Ai}.
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Diagonalization - General Idea

Given a string α ∈ {0, 1}∗, let Mα be the TM with encoding α.
Consider the function f : {0, 1}∗ → {0, 1} defined by

I f (α) = 1 if Mα(α) = 0;
I f (α) = 0 if Mα(α) = 1

Theorem 11
No Turing machine can compute f (α).

Proof.
Note that Mα(α) = f (α). However, f (α) = 1 (resp., 0) implies Mα(α) = 0
(resp., 1) - a contradiction.
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Applications of the Diagonalization Method

The Halting Problem:
Define Mα(x) as HALT(α, x) (=1, if Mα halts on x; =0, otherwise).
Consider f (α) = Mα(α).
Space Hierarchy Theorem:
Define function f : {0, 1}∗ → {0, 1}:

I f (α) = 1 if Mα(α) halts and outputs 0 using at most s(n) space;
I f (α) = 0 otherwise.

(Claim 1): f can be computed in O(s(n)) space.
(Claim 2): f cannot be computed in o(s(n)) space.
Time Hierarchy Theorem: Similar to the space hierarchy theorem.
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Applications of the Diagonalization Method

Gödel Incompleteness theorem: ”Every consistent finite set of
axioms is incomplete.”

I Let K(x), x ∈ {0, 1}∗, be the length of the shortest TM Mα on blank
tape that outputs x.

I For each x ∈ {0, 1}∗,N ∈ N, define Sx,N as ”K(x) > N”.
I FACT: For every N ∈ N, there exists an x ∈ {0, 1}∗, Sx,N holds.

F (Reason): For every N ∈ N, the number of TMs (of length ≤ N) is
finite. Hence, there are only a finite number of x for which K(x) ≤ N.

I Given a finite set of axioms A, consider TM MN:
F Enumerate all (x, α), x, α ∈ {0, 1}∗, if α describes a proof of Sx.N

using A, output x.
I If A is complete, MN always holds and outputs x, for every x. Note

that |MN| = O(log N) (using binary encoding).
F What the above says is that for every x, the shortest TM generating x

is of length ≤ log N, which contradicts the ”proof”.
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Limits of the Diagonalization Method

We have seen many applications of the diagonalization methd.
I Particularly, the proofs of space and time hierarchy theorems.

Can we use the diagonalization method to show P ?
= NP?

I Say, to construct an NTM that accepts 〈M〉10n if and only if the
polynomial time TM M rejects 〈M〉10n.

We give a strong evdience to explain why it may not work.
The diagonalization method basically simulates a TM M by a TM
D. If M and D are given an oracle A, DA can simulate MA as well.

Hence if the diagonalization method can prove P ?
= NP, it can also

prove PA ?
= NPA for any oracle A.

We will now give two oracles A and B such that PA 6= NPA and
PB = NPB.

The diagonalization method does not suffice to prove P ?
= NP.
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Limits of the Diagonalization Method

Theorem 12
There are oracles A and B such that PA 6= NPA and PB = NPB.

Proof.
Let B be TQBF. Then NPTQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PTQBF.
For any oracle C, define

LC = {1n : ∃x ∈ C [ |x| = n ]}.
Clearly, LC ∈ NPC for any C. We construct a language A such that LA 6∈ PA.
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∃A,NPA 6∈ PA

Proof.
Let M?

1,M
?
2, ... be an enumeration of oracle DTMs that run in

polynomial time. Assume for simplicity that M?
i has running time

ni. Since oracle machines query their oracle as a black box, can
plug in any oracle.
We will build an oracle A so that none of these machines can
decide LA.
Inductive construction. We start with nothing, and at each stage
we declare a finite set of strings to be in the language of A or out
of it.
Goal: At stage i, make sure that L(MA

i ) and LA disagree on some
string.

(NTU EE) More on Intractability Spring 2024 22 / 24



∃A,NPA 6∈ PA

Proof.
Stage i

I Let MA
i have running time ni . Choose n larger than any string

declared for A, such that 2n > ni.
I We are going to run MA

i on 1n. When MA
i queries A with q, we

F Answer correctly if q has been declared,
F and answer NO otherwise.

I If MA
i accepts 1n, we declare all strings of length n to be NO-strings.

Then A has no YES-string of length n, and 1n 6∈ LA. .
I If MA

i rejects 1n, we find a string of length n that MA
i did not query.

This exists, since 2n > ni . Declare this string to be YES.

Finally, declare all undeclared strings of length up to n arbitrarily.

Hence Mi accepts 1n if and only if 1n 6∈ LA. Mi does not decide LA.
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∃A,NPA 6∈ PA
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 Mi accept 1n, declare all strings of length n to be NO-strings 
 Mi rejects 1n, we find a string w length n not queried by Mi and adds 

w to A 
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