Oracle Computation/Polynomial-time Hierarchy

(N	Т	U	Е	F

Oracle Turing Machines

Definition 1

An <u>oracle</u> for a language *A* answers whether $w \in A$ for any string *w*. An <u>oracle Turing machine</u> M^A is a Turing machine that can query an oracle *A*. When M^A write a string *w* on a special <u>oracle tape</u>, it is informed whether $w \in A$ in a single step.

Oracle Computations

- Let *M* be an oracle Turing machine (OTM)
- Let *x* be any string in Σ^*
- Let *B* be an oracle (which is now a language).
 - **1** M starts with input *x*.
 - Whenever *M* writes a query word *y* on its query tape and enters a query state *q_{query}*, *y* is automatically sent to oracle *B*.
 - Solution The oracle *B* returns its answer (YES/NO) by changing *M*'s inner state from *q_{query}* to either *q_{yes}* or *q_{no}*, depending on whether *y* ∈ *B* or *y* ∉ *B*, respectively.
 - If M resumes its computation, starting with q_{yes} or q_{no} .

Definition 2

 $L(M^B) = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ with oracle } B\}.$

Oracle Turing Machines

Definition 3

For two languages *A* and *B*, we say that *A* is Turing reducible to *B* (written as $A \leq_T B$) if there is an OTM *M* such that

• $A = L(M^B)$; that is, for every input $x, x \in A \Leftrightarrow M^B$ accepts x via making queries to the oracle B

Definition 4

Language *A* is polynomial-time Turing reducible to language *B* (written as $A \leq_T^p B$ if there is an OTM *M* such that

- $A = L(M^B)$; that is, for every input $x, x \in A \Leftrightarrow M^B$ accepts x via making queries to the oracle B
- 2 *M* runs in polynomial time.

Definition 5

 $P^{A} = \{L : L \text{ is decided by a polynomial time OTM with oracle } A\}$ $NP^{A} = \{L : L \text{ is decided by a polynomial time ONTM with oracle } A\}$

Example 6

 $NP \subseteq P^{SAT}$ and $coNP \subseteq P^{SAT}$.

Proof.

For any $A \in NP$, use the polynomial reduction of A to SAT.

イロト イポト イヨト イヨト

Oracle Turing Machines

- Two Boolean formulae φ and ψ over x₁,..., x_l are equivalent if they have the same value on any assignments to x₁,..., x_l.
- A formula is minimal if it is not equivalent to a smaller formula.
- Consider

NONMINFORMULA = { $\langle \phi \rangle$: ϕ is not a minimal Boolean formula}.

Example 7 NONMINFORMULA $\in NP^{SAT}$.

Proof.

"On input $\langle \phi \rangle$:

- Nondeterministically select a smaller formula ψ .
- **2** Ask $\langle \phi XOR \psi \rangle \in SAT$.
- If yes, accept; otherwise, reject."

Meyer and Stockmeyer (1972, 1973) introduced a notion of the polynomial-time hierarchy over NP.

The polynomial hierarchy consists of the following complexity classes: for every index $k \ge 1$,

•
$$\Delta_1^P = P$$

• $\Sigma_1^P = NP, \quad \Pi_1^P = co-NP$
• $\Delta_{k+1}^P = P^{\Sigma_k^P}$
• $\Sigma_{k+1}^P = NP^{\Sigma_k^P}, \quad \Pi_{k+1}^P = co-\Sigma_{k+1}^P$

Polynomial-time Hierarchy

Polynomial-time Hierarchy

э

- (E)

We define the complexity class *PH* as follows:

$$PH = \bigcup_{k \ge 1} (\Sigma_k^P \cup \Pi_k^P)$$

•
$$NP \subseteq PH \subseteq PSPACE$$

- If P = NP, then P = PH.
- $P^{PH} = NP^{PH} = PH$.

Another Characterization of Polynomial-time Hierarchy

We have already seen, that deciding whether a formula is satisfiable

- $\exists x_1 \cdots x_n (x_1 \lor \bar{x_2} \lor x_8) \land \cdots \land (\bar{x_6} \lor x_3)$
 - only existential quantifier NP-complete
- $\exists x_1 \forall x_2 \exists x_3 \dots (x_1 \lor \overline{x_2} \lor x_8) \land \dots \land (\overline{x_6} \lor x_3)$
 - existential & universal quantifiers PSPACE-complete

Definition 8

Consider language classes reducible to deciding the satisfiability of

 $\Sigma_i SAT : \exists x_1 \forall x_2 \exists x_3 \dots R(x_1, x_2, x_3 \dots)$

 $\Pi_i SAT : \forall x_1 \exists x_2 \forall x_3 \dots R(x_1, x_2, x_3 \dots)$

with *i* alternating quantifiers and R(...) is a polynomial-time predicate.

 $\Sigma_i SAT$ and $\Pi_i SAT$ above define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

(NTU EE)

More on Intractability

- An alternating Turing machine (ATM) M = (Q, Σ, Γ, δ, q₀, F) is a Turing machine with a non-deterministic transition function δ : Q × Γ → 2^{Q×Γ×{L,R}} whose set of states, in addition to accepting/rejecting states, is partitioned into existential (∃ or ∨) and universal (∀ or ∧) states.
- A configuration *C* of an ATM *M* can reach acceptance if either of the following is true:
 - *C* is existential and some branch can reach acceptance.
 - *C* is universal and all branches can reach acceptance.

M accepts a word *w* if the start configuration on *w* is accepting.

Alternating Turing Machines

Definition 9

Consider language classes

- *A*Σ^{*p*}_{*i*}: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∃-state,
- AΠ^p_i: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∀-state,

It turns out that $A\Sigma_i$ and $A\Pi_i$ above again define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

More on Alternating Complexity Classes

We define

- APTime = $\bigcup_{d \ge 1} ATime(n^d)$
- AExpTime = $\bigcup_{d \ge 1} ATime(2^{n^d})$
- ALogSpace = $\bigcup_{d \ge 1} ASpace(\log n)$
- APSpace = $\bigcup_{d \ge 1} ASpace(n^d)$

• AExpSpace =
$$\bigcup_{d \ge 1} ASpace(2^{n^d})$$

Theorem 10

L	⊆	PTime	⊆	PSpace	⊆	ExpTime	⊆	ExpSpace	
		Ш		П		П		н	
		ALogSpace	⊆	APTime	⊆	APSpace	⊆	AExpTime	

-(N)			
	ч.		Е.

Diagonalization - Cantor's Argument

Recall Cantor's Argument for showing $2^{\mathbb{N}}$ is not countable

Proof.

Suppose for a contradiction that $2^{\mathbb{N}}$ is countable.

- Then the sets in 2^S can be enumerated in a list $A_1, A_2, A_3, ... \subseteq S$
- For a contradiction, define a set $T = \{i \mid i \in N, i \notin A_i\}$.

(NTU EE)

Diagonalization - General Idea

- Given a string $\alpha \in \{0,1\}^*$, let M_{α} be the TM with encoding α .
- Consider the function $f: \{0,1\}^* \to \{0,1\}$ defined by

•
$$f(\alpha) = 1$$
 if $M_{\alpha}(\alpha) = 0$;

•
$$f(\alpha) = 0$$
 if $M_{\alpha}(\alpha) = 1$

Theorem 11

No Turing machine can compute $f(\alpha)$ *.*

Proof.

Note that $M_{\alpha}(\alpha) = f(\alpha)$. However, $f(\alpha) = 1$ (resp., 0) implies $M_{\alpha}(\alpha) = 0$ (resp., 1) - a contradiction.

(NTU EE)	More on Intractability	Spring 2024	
		メロトメ 御下 メヨトメヨト 三番	E nac

• The Halting Problem:

Define $M_{\alpha}(x)$ as $HALT(\alpha, x)$ (=1, if M_{α} halts on x; =0, otherwise). Consider $f(\alpha) = M_{\alpha}(\alpha)$.

• Space Hierarchy Theorem: Define function $f : \{0,1\}^* \rightarrow \{0,1\}$:

- $f(\alpha) = 1$ if $M_{\alpha}(\alpha)$ halts and outputs 0 using at most s(n) space;
- $f(\alpha) = 0$ otherwise.

(Claim 1): f can be computed in O(s(n)) space. (Claim 2): f cannot be computed in o(s(n)) space.

• **Time Hierarchy Theorem**: Similar to the space hierarchy theorem.

▶ < 프 ▶ < 프 ▶</p>

Applications of the Diagonalization Method

- Gödel Incompleteness theorem: "Every consistent finite set of axioms is incomplete."
 - ► Let K(x), $x \in \{0, 1\}^*$, be the length of the shortest TM M_α on blank tape that outputs x.
 - For each $x \in \{0,1\}^*$, $N \in \mathbb{N}$, define $S_{x,N}$ as "K(x) > N".
 - ▶ FACT: For every $N \in \mathbb{N}$, there exists an $x \in \{0, 1\}^*$, $S_{x,N}$ holds.
 - ★ (Reason): For every $N \in \mathbb{N}$, the number of TMs (of length $\leq N$) is finite. Hence, there are only a finite number of *x* for which $K(x) \leq N$.
 - ► Given a finite set of axioms *A*, consider TM *M*_{*N*}:
 - ★ Enumerate all (x, α) , $x, \alpha \in \{0, 1\}^*$, if α describes a proof of $S_{x.N}$ using A, output x.
 - ► If A is complete, M_N always holds and outputs x, for every x. Note that |M_N| = O(log N) (using binary encoding).
 - ★ What the above says is that for every *x*, the shortest TM generating *x* is of length $\leq \log N$, which contradicts the "proof".

イロト イ理ト イヨト イヨト

Limits of the Diagonalization Method

- We have seen many applications of the diagonalization methd.
 - Particularly, the proofs of space and time hierarchy theorems.
- Can we use the diagonalization method to show $P \stackrel{?}{=} NP$?
 - Say, to construct an NTM that accepts $\langle M \rangle 10^n$ if and only if the polynomial time TM *M* rejects $\langle M \rangle 10^n$.
- We give a strong evdience to explain why it may not work.
- The diagonalization method basically simulates a TM *M* by a TM *D*. If *M* and *D* are given an oracle *A*, *D*^{*A*} can simulate *M*^{*A*} as well.
- Hence if the diagonalization method can prove $P \stackrel{?}{=} NP$, it can also prove $P^A \stackrel{?}{=} NP^A$ for any oracle *A*.
- We will now give two oracles *A* and *B* such that $P^A \neq NP^A$ and $P^B = NP^B$.
- The diagonalization method does not suffice to prove $P \stackrel{?}{=} NP$.

Theorem 12

There are oracles A and B such that $P^A \neq NP^A$ and $P^B = NP^B$.

Proof.

Let *B* be *TQBF*. Then $NP^{TQBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{TQBF}$. For any oracle *C*, define

$$L_{C} = \{1^{n} : \exists x \in C [|x| = n]\}.$$

Clearly, $L_C \in NP^C$ for any *C*. We construct a language *A* such that $L_A \notin P^A$.

Proof.

- Let M[?]₁, M[?]₂, ... be an enumeration of oracle DTMs that run in polynomial time. Assume for simplicity that M[?]_i has running time nⁱ. Since oracle machines query their oracle as a black box, can plug in any oracle.
- We will build an oracle *A* so that none of these machines can decide *L*_{*A*}.
- Inductive construction. We start with nothing, and at each stage we declare a finite set of strings to be in the language of *A* or out of it.
- Goal: At stage *i*, make sure that $L(M_i^A)$ and L_A disagree on some string.

Proof.

• Stage *i*

- Let M_i^A have running time n^i . Choose n larger than any string declared for A, such that $2^n > n^i$.
- We are going to run M_i^A on 1^n . When M_i^A queries A with q, we
 - Answer correctly if *q* has been declared,
 - and answer NO otherwise.
- If M_i^A accepts 1^n , we declare all strings of length *n* to be NO-strings. Then *A* has no YES-string of length *n*, and $1^n \notin L_A$.
- If M_i^A rejects 1^n , we find a string of length n that M_i^A did not query. This exists, since $2^n > n^i$. Declare this string to be YES.
- Finally, declare all undeclared strings of length up to *n* arbitrarily.

Hence M_i accepts 1^n if and only if $1^n \notin L_A$. M_i does not decide L_A .

< □ > < □ > < □ > < □ >

- M_i accept 1ⁿ, declare all strings of length n to be NO-strings
- M_i rejects 1ⁿ, we find a string w length n not queried by M_i and adds w to A

1	'NT	TT I	EE)	
_ \	<u>т м</u> .	10	шы)	