Oracle Computation/Polynomial-time Hierarchy

(NTU EE) More on Intractability Spring 2024 1/24

Oracle Turing Machines

Definition 1

An oracle for a language A answers whether w € A for any string w.
An oracle Turing machine M# is a Turing machine that can query an

oracle A. When M* write a string w on a special oracle tape, it is
informed whether w € A in a single step.

Inner

state oracle
answer

—, twoway

Input/work tape

—> Oneway

query tape
(write-only)

(NTU EE) More on Intractability Spring 2024 2/24

Oracle Computations

@ Let M be an oracle Turing machine (OTM)
@ Let x be any string in X*
@ Let B be an oracle (which is now a language).
@ M starts with input x.
© Whenever M writes a query word y on its query tape and enters a
query state gguery, y is automatically sent to oracle B.
© The oracle B returns its answer (YES/NO) by changing M’s inner
state from ¢, to either gy.s or g,,0, depending on whether y € B or
y & B, respectively.
©Q M resumes its computation, starting with Gyes OT Gio-

Definition 2
L(MB) = {x € ¥* | M accepts x with oracle B}.

(NTU EE) More on Intractability Spring 2024 3/24

Oracle Turing Machines

Definition 3

For two languages A and B, we say that A is Turing reducible to B
(written as A <t B) if there is an OTM M such that

@ A = L(MP); that s, for every input x, x € A < MP accepts x via
making queries to the oracle B

Definition 4

Language A is polynomial-time Turing reducible to language B
(written as A g’; B if there is an OTM M such that

@ A = L(MP); that is, for every input x, x € A < MP accepts x via
making queries to the oracle B

@ M runs in polynomial time.

(NTU EE) More on Intractability Spring 2024 4/24

Polynomial-time Oracle Turing Machines

Definition 5

P4 = {L: L is decided by a polynomial time OTM with oracle A}
NP4 = {L: L is decided by a polynomial time ONTM with oracle A}

Example 6
NP C P5AT and coNP C PSAT,

Proof.
For any A € NP, use the polynomial reduction of A to SAT. O

(NTU EE) More on Intractability Spring 2024 5/24

Oracle Turing Machines

@ Two Boolean formulae ¢ and v over xq, ..., x; are equivalent if
they have the same value on any assignments to xq, ..., x;.

o A formula is minimal if it is not equivalent to a smaller formula.
o Consider

NONMINFORMULA = {(¢) : ¢ is not a minimal Boolean formula}.

Example 7
NONMINFORMULA € NPSAT,

Proof.

“On input (¢):
@ Nondeterministically select a smaller formula 1.
@ Ask (¢ XOR ¢) € SAT.

@ If yes, accept; otherwise, reject.” O

y

(NTU EE) More on Intractability Spring 2024 6/24

Polynomial-time Hierarchy

Meyer and Stockmeyer (1972, 1973) introduced a notion of the
polynomial-time hierarchy over NP.
The polynomial hierarchy consists of the following complexity classes:

for every index k > 1,

QO AP=P

@ =0 =NP, I = co-NP
_ pxf

Q@ Al =P%

P _ P P _ 3P
Q X, =NP™, 1L, =co-Xp

(NTU EE) More on Intractability Spring 2024 7 /24

Polynomial-time Hierarchy

5 | e
Level 3 -
- A
TP | TLp
Level 2 7 .
. A
Level 1
— inclusion
AP=P ©

(NTU EE) More on Intractability Spring 2024 8/24

Polynomial-time Hierarchy

“PSPACE

/

(NTU EE) More on Intractability Spring 2024 9/24

Polynomial-time Hierarchy

We define the complexity class PH as follows:

PH = | J({ UILY)
k>1

e NP C PH C PSPACE
@ If P = NP, then P = PH.
e PPH — NPPH — PH.

(NTU EE) More on Intractability Spring 2024 10 / 24

Another Characterization of Polynomial-time

Hierarchy

We have already seen, that deciding whether a formula is satisfiable
@ Jxy---xu(x1 Vo Vag) A+ A (Xg V X3)
» only existential quantifier - NP-complete
@ JxVapdxs...(x VA Vag) A+ A (Xg V x3)
» existential & universal quantifiers - PSPACE-complete

Definition 8

Consider language classes reducible to deciding the satisfiability of
iSAT : 3x1Vxp3xs...R(xq, X2, x3...)
IL;SAT : Vx13xpVx3...R(x1, X2, X3...)

with i alternating quantifiers and R(...) is a polynomial-time predicate. ’

YiSAT and II;SAT above define exactly the i-level of the
polynomial-time hierarchy using polynomial-time oracle TMs.
More on Intractability Spring 2024 11/24

Alternating Turing Machines

@ An alternating Turing machine (ATM) M = (Q, X,I',6,40,F) is a
Turing machine with a non-deterministic transition function
§:Q x I — 2QxIX{LR} whose set of states, in addition to
accepting/rejecting states, is partitioned into existential (3 or V)
and universal (V or A) states.

@ A configuration C of an ATM M can reach acceptance if either of
the following is true:

» Cis existential and some branch can reach acceptance.
» Cis universal and all branches can reach acceptance.

M accepts a word w if the start configuration on w is accepting.

(NTU EE) More on Intractability Spring 2024 12 /24

Alternating Turing Machines

TN
(A
e A\/ /\V\
\ /
\\ - O (v
. . (; v
(1) (1) — P
AN N \\ / \
oNORORRO
N/ __/ N N
e 1
i v
oY (o
% N

(NTU EE) More on Intractability Spring 2024

Alternating Polynomial-time Hierarchy

Definition 9
Consider language classes

p
o AY:: ’Fhe language accepted by polynomial time ATM using at
most 7 alternations with the initial state an 3-state,

° AHf : the language accepted by polynomial time ATM using at
most i alternations with the initial state an V-state,

It turns out that AY; and AIl; above again define exactly the i-level of
the polynomial-time hierarchy using polynomial-time oracle TMs.

(NTU EE) More on Intractability Spring 2024 14 / 24

More on Alternating Complexity Classes

We define
e APTime = J;5; ATime(n")
o AExpTime = |-, ATime(2"")
e ALogSpace = Ud;l ASpace(logn)
o APSpace = ;51 ASpace(n?)
e AExpSpace = ;54 ASpace(2™")

Theorem 10
L ¢ PTime C PSpace < ExpTime < ExpSpace

AlogSpace < APTime < APSpace < AExpTime

N
N

(NTU EE) More on Intractability Spring 2024

Diagonalization - Cantor’s Argument

Recall Cantor’s Argument for showing 2" is not countable
Proof.
Suppose for a contradiction that 2 is countable.

@ Then the sets in 25 can be enumerated in a list A1, A5, A3,... C S
@ For a contradiction, defineasetT = {i | i € N,i & A;}.

1 208 4§ e

A ap={iz.}
Ag A ={8

Agq Ag=[1.545
Ay Ay ={

Ag Az={123.1
T o o 1 1 T={245

T Moreon ety IS rer vy

Diagonalization - General Idea

e Given a string o € {0,1}*, let M,, be the TM with encoding .
@ Consider the functionf : {0,1}* — {0,1} defined by

» fla)=1if M,(a) =0;

> fla) =0if My(o) =1

Theorem 11
No Turing machine can compute f(c).

Proof.
Note that M, (o) = f(«). However, f(«) =1 (resp., 0) implies M, () =0
(resp., 1) - a contradiction. O

(NTU EE) More on Intractability Spring 2024 17 / 24

Applications of the Diagonalization Method

@ The Halting Problem:
Define M, (x) as HALT (o, x) (=1, if M,, halts on x; =0, otherwise).
Consider f(a) = My ().
@ Space Hierarchy Theorem:
Define function f : {0,1}* — {0,1}:
» f(a) = 1if M, () halts and outputs 0 using at most s(1) space;
» f(a) = 0 otherwise.

(Claim 1): f can be computed in O(s(n)) space.
(Claim 2): f cannot be computed in o(s(1)) space.

o Time Hierarchy Theorem: Similar to the space hierarchy theorem.

(NTU EE) More on Intractability Spring 2024 18 / 24

Applications of the Diagonalization Method

@ Godel Incompleteness theorem: "Every consistent finite set of
axioms is incomplete.”
» Let K(x), x € {0,1}*, be the length of the shortest TM M,, on blank
tape that outputs x.
For each x € {0,1}*,N € N, define S, y as "K(x) > N”.
» FACT: For every N € N, there exists an x € {0,1}*, Sy 5 holds.
* (Reason): For every N € N, the number of TMs (of length < N) is
finite. Hence, there are only a finite number of x for which K(x) < N.
Given a finite set of axioms A, consider TM My:
* Enumerate all (x, o), x,a € {0,1}7, if o describes a proof of Sx.n
using A, output x.
If A is complete, My always holds and outputs x, for every x. Note
that [My| = O(log N) (using binary encoding).
* What the above says is that for every x, the shortest TM generating x
is of length < log N, which contradicts the ”proof”.

v

v

v

(NTU EE) More on Intractability S y 19 / 24

Limits of the Diagonalization Method

@ We have seen many applications of the diagonalization methd.
» Particularly, the proofs of space and time hierarchy theorems.

@ Can we use the diagonalization method to show P L NP?
» Say, to construct an NTM that accepts (M)10" if and only if the
polynomial time TM M rejects (M)10".
@ We give a strong evdience to explain why it may not work.

@ The diagonalization method basically simulates a TM M by a TM
D. If M and D are given an oracle A, DA can simulate M4 as well.
@ Hence if the diagonalization method can prove P Z NP, it can also

prove P4 < NPA for any oracle A.

@ We will now give two oracles A and B such that P* # NP4 and
PP = NPP.
@ The diagonalization method does not suffice to prove P < NP.

(NTU EE) More on Intractability Spring 2024 20/ 24

Limits of the Diagonalization Method

Theorem 12
There are oracles A and B such that P* # NP and P® = NP®.

Proof.

Let B be TQBE. Then NP™?®F C NPSPACE C PSPACE C PTOF,
For any oracle C, define
Le={1":3xeC[|x|=n]}.

Clearly, Lc € NP* for any C. We construct a language A such that L4 & P*.

(NTU EE) More on Intractability Spring 2024

JA,NPA ¢ pA

Proof.
o Let M;, MZ, ... be an enumeration of oracle DTMs that run in
polynomial time. Assume for simplicity that M: has running time
n'. Since oracle machines query their oracle as a black box, can
plug in any oracle.
@ We will build an oracle A so that none of these machines can
decide L.

@ Inductive construction. We start with nothing, and at each stage
we declare a finite set of strings to be in the language of A or out
of it.

o Goal: At stage i, make sure that L(M#) and L, disagree on some
string.

Ol

(NTU EE) More on Intractability Spring 2024 22 /24

JA,NPA ¢ pA

Proof.
o Stagei

Let M4 have running time n' . Choose 7 larger than any string

declared for A, such that 2" > n'.
We are going to run M4 on 1". When M# queries A with g, we

Answer correctly if g has been declared,
and answer NO otherwise.

If M4 accepts 1", we declare all strings of length 1 to be NO-strings.
Then A has no YES-string of length n1, and 1" ¢ L. .

If M4 rejects 1", we find a string of length n that M4 did not query.
This exists, since 2" > n' . Declare this string to be YES.

@ Finally, declare all undeclared strings of length up to n arbitrarily.

Hence M; accepts 1" if and only if 1" & L. M; does not decide L4.

Ol

(NTU EE) More on Intractability Spring 2024 23 /24

JA,NPA ¢ pA

C o
M; M, P yes Answer correctly if q
has been declared
nt n2
QO no
Choosen, 2">n' M; n

¢ M; accept 1", declare all strings of length n to be NO-strings
¢ M;rejects 1", we find a string w length n not queried by M; and adds
wto A

(NTU EE) More on Intractability

	Relativization

