Oracle Computation/Polynomial-time Hierarchy

4 0 F

Oracle Turing Machines

Definition 1

An oracle for a language *A* answers whether $w \in A$ for any string w . An oracle Turing machine *M^A* is a Turing machine that can query an oracle *A*. When M^A write a string w on a special oracle tape, it is informed whether $w \in A$ in a single step.

Oracle Computations

- Let *M* be an oracle Turing machine (OTM)
- Let *x* be any string in Σ^*
- Let *B* be an oracle (which is now a language).
	- ¹ M starts with input *x*.
	- ² Whenever *M* writes a query word *y* on its query tape and enters a query state *qquery*, *y* is automatically sent to oracle *B*.
	- ³ The oracle *B* returns its answer (YES/NO) by changing *M*'s inner state from q_{query} to either q_{yes} or q_{no} , depending on whether $y \in B$ or $y \notin B$, respectively.
	- ⁴ *M* resumes its computation, starting with *qyes* or *qno*.

Definition 2

 $L(M^B) = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ with oracle } B\}.$

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Oracle Turing Machines

Definition 3

For two languages *A* and *B*, we say that *A* is Turing reducible to *B* (written as $A \leq_T B$) if there is an OTM *M* such that

 \bullet *A* = *L*(*M^B*); that is, for every input *x*, *x* \in *A* \Leftrightarrow *M^B* accepts *x* via making queries to the oracle *B*

Definition 4

Language *A* is polynomial-time Turing reducible to language *B* (written as $A \leq_T^p$ T_T^{μ} *B* if there is an OTM *M* such that

- \bullet *A* = *L*(*M^B*); that is, for every input *x*, *x* \in *A* \Leftrightarrow *M^B* accepts *x* via making queries to the oracle *B*
- 2 *M* runs in polynomial time.

つくい

∢ ロ ▶ ∢ 御 ▶ ∢ 走 ▶ ∢ 走 ▶

Definition 5

 $P^A = \{L : L \text{ is decided by a polynomial time OTM with oracle } A\}$ $NP^{A} = \{L : L$ is decided by a polynomial time ONTM with oracle *A*}

Example 6

 $NP \subseteq P^{SAT}$ and $coNP \subseteq P^{SAT}$.

Proof.

For any $A \in NP$, use the polynomial reduction of A to *SAT*.

 QQQ

イロト イ押 トイヨ トイヨ トー

Oracle Turing Machines

- Two Boolean formulae ϕ and ψ over x_1, \ldots, x_l are equivalent if they have the same value on any assignments to x_1, \ldots, x_l .
- A formula is minimal if it is not equivalent to a smaller formula.
- **o** Consider

NONMINFORMULA = $\{\langle \phi \rangle : \phi \text{ is not a minimal Boolean formula}\}.$

Example 7

```
NONMINFORMULA ∈ NPSAT
.
```
Proof.

"On input $\langle \phi \rangle$:

- Nondeterministically select a smaller formula ψ .
- 2 Ask $\langle \phi$ *XOR* $\psi \rangle \in SAT$.
- ³ If yes, accept; otherwise, reject."

Meyer and Stockmeyer (1972, 1973) introduced a notion of the polynomial-time hierarchy over NP.

The polynomial hierarchy consists of the following complexity classes: for every index $k > 1$,

\n- $$
\Delta_1^P = P
$$
\n- $\Sigma_1^P = NP$, $\Pi_1^P = co-NP$
\n- $\Delta_{k+1}^P = P^{\Sigma_k^P}$
\n- $\Sigma_{k+1}^P = NP^{\Sigma_k^P}$, $\Pi_{k+1}^P = co\Sigma_{k+1}^P$
\n

メロトメ 伊 トメ ミ トメ ミ ト

Polynomial-time Hierarchy

Polynomial-time Hierarchy

4.0.3.4

. B

医间周的间隔

 299

We define the complexity class *PH* as follows:

$$
PH = \bigcup_{k \ge 1} (\Sigma_k^P \cup \Pi_k^P)
$$

$$
\bullet\ NP\subseteq PH\subseteq PSPACE
$$

• If
$$
P = NP
$$
, then $P = PH$.

$$
\bullet \; P^{PH} = NP^{PH} = PH.
$$

4 0 8 4

Another Characterization of Polynomial-time Hierarchy

We have already seen, that deciding whether a formula is satisfiable

- \bullet $\exists x_1 \cdots x_n(x_1 \vee \overline{x_2} \vee x_8) \wedge \cdots \wedge (\overline{x_6} \vee x_3)$
	- \triangleright only existential quantifier NP-complete
- \bullet ∃*x*₁∀*x*₂ ∃*x*₃...(*x*₁ ∨ *x*₂ ∨ *x*₈) ∧ · · · ∧ (*x*₆ ∨ *x*₃)
	- \triangleright existential & universal quantifiers PSPACE-complete

Definition 8

Consider language classes reducible to deciding the satisfiability of

Σ*iSAT* : ∃*x*1∀*x*2∃*x*3...*R*(*x*1, *x*2, *x*3...)

Π*iSAT* : ∀*x*1∃*x*2∀*x*3...*R*(*x*1, *x*2, *x*3...)

with *i* alternating quantifiers and *R*(...) is a polynomial-time predicate.

Σ*iSAT* and Π*iSAT* above define exactly the *i*-level of the polynomial-time hierarchy using polyno[mia](#page-9-0)[l-t](#page-11-0)[i](#page-9-0)[m](#page-10-0)[e](#page-11-0) [o](#page-0-0)[r](#page-1-0)[ac](#page-23-0)[l](#page-0-0)[e](#page-1-0) [T](#page-23-0)[M](#page-0-0)[s.](#page-23-0)

(NTU EE) [More on Intractability](#page-0-0) Spring 2024 11 / 24

 290

- An alternating Turing machine (ATM) $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a Turing machine with a non-deterministic transition function $\delta:Q\times\Gamma\to 2^{Q\times\Gamma\times\{L,R\}}$ whose set of states, in addition to accepting/rejecting states, is partitioned into existential (\exists or \vee) and universal (\forall or \wedge) states.
- A configuration *C* of an ATM *M* can reach acceptance if either of the following is true:
	- ▶ *C* is existential and some branch can reach acceptance.
	- ▶ *C* is universal and all branches can reach acceptance.

M accepts a word *w* if the start configuration on *w* is accepting.

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Alternating Turing Machines

Definition 9

Consider language classes

- $A\Sigma_i^p$ $\mathcal{C}_i^{\mathcal{L}}$: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∃-state,
- $A\Pi_i^p$ $\mathcal{C}_i^{\mathcal{L}}$: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∀-state,

It turns out that *A*Σ*ⁱ* and *A*Π*ⁱ* above again define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

More on Alternating Complexity Classes

We define

- APTime = $\bigcup_{d\geq 1} ATime(n^d)$
- $A\text{ExpTime} = \bigcup_{d \geq 1} ATime(2^{n^d})$
- $\text{ALogSpace} = \bigcup_{d \geq 1} \text{ASpace}(\log n)$
- $\mathsf{APSpace} = \bigcup_{d \geq 1} \mathsf{ASpace}(n^d)$

• AExpSpace =
$$
\bigcup_{d\geq 1} ASpace(2^{n^d})
$$

Theorem 10

Diagonalization - Cantor's Argument

Recall Cantor's Argument for showing 2^N is not countable

Proof.

Suppose for a contradiction that $2^{\mathbb{N}}$ is countable.

- Then the sets in 2^{*S*} can be enumerated in a list $A_1, A_2, A_3, ... \subseteq S$
- For a contradiction, define a set $T = \{i \mid i \in N, i \notin A_i\}$.

Diagonalization - General Idea

- Given a string $\alpha \in \{0,1\}^*$, let M_α be the TM with encoding α .
- Consider the function $f: \{0,1\}^* \to \{0,1\}$ defined by

$$
\blacktriangleright f(\alpha) = 1 \text{ if } M_{\alpha}(\alpha) = 0;
$$

$$
\blacktriangleright f(\alpha) = 0 \text{ if } M_{\alpha}(\alpha) = 1
$$

Theorem 11

No Turing machine can compute f(α).

Proof.

Note that $M_\alpha(\alpha) = f(\alpha)$. However, $f(\alpha) = 1$ (resp., 0) implies $M_\alpha(\alpha) = 0$ (resp., 1) - a contradiction.

つくへ

The Halting Problem:

Define $M_{\alpha}(x)$ as $HALT(\alpha, x)$ (=1, if M_{α} halts on *x*; =0, otherwise). Consider $f(\alpha) = M_{\alpha}(\alpha)$.

Space Hierarchy Theorem: Define function $f: \{0,1\}^* \rightarrow \{0,1\}$:

- \blacktriangleright $f(\alpha) = 1$ if $M_\alpha(\alpha)$ halts and outputs 0 using at most $s(n)$ space;
- \blacktriangleright $f(\alpha) = 0$ otherwise.

(Claim 1): f can be computed in $O(s(n))$ space. (Claim 2): *f* cannot be computed in $o(s(n))$ space.

Time Hierarchy Theorem: Similar to the space hierarchy theorem.

 Ω

イロトメ 倒 トメ ヨ トメ ヨ トー ヨ

Applications of the Diagonalization Method

- **Gödel Incompleteness theorem:** "Every consistent finite set of axioms is incomplete."
	- ► Let $K(x)$, $x \in \{0, 1\}^*$, be the length of the shortest TM M_α on blank tape that outputs *x*.
	- ► For each $x \in \{0, 1\}^*, N \in \mathbb{N}$, define $S_{x,N}$ as " $K(x) > N$ ".
	- ► FACT: For every $N \in \mathbb{N}$, there exists an $x \in \{0, 1\}^*$, $S_{x,N}$ holds.
		- **★** (Reason): For every $N \in \mathbb{N}$, the number of TMs (of length $\leq N$) is finite. Hence, there are only a finite number of *x* for which $K(x) \le N$.
	- \triangleright Given a finite set of axioms *A*, consider TM M_N :
		- **★** Enumerate all (x, α) , $x, \alpha \in \{0, 1\}^*$, if α describes a proof of $S_{x,N}$ using *A*, output *x*.
	- If *A* is complete, M_N always holds and outputs *x*, for every *x*. Note that $|M_N| = O(log N)$ (using binary encoding).
		- \star What the above says is that for every *x*, the shortest TM generating *x* is of length \leq log *N*, which contradicts the "proof".

 QQ

イロト イ押 トイヨ トイヨ トー

Limits of the Diagonalization Method

- We have seen many applications of the diagonalization methd.
	- \blacktriangleright Particularly, the proofs of space and time hierarchy theorems.
- Can we use the diagonalization method to show $P \stackrel{?}{=} NP?$
	- Say, to construct an NTM that accepts $\langle M \rangle 10^n$ if and only if the polynomial time TM *M* rejects $\langle M \rangle 10^n$.
- We give a strong evdience to explain why it may not work.
- The diagonalization method basically simulates a TM *M* by a TM *D*. If *M* and *D* are given an oracle *A*, *D^A* can simulate *M^A* as well.
- Hence if the diagonalization method can prove $P \stackrel{?}{=} NP$, it can also prove $P^A \stackrel{?}{=} NP^A$ for any oracle A .
- We will now give two oracles A and B such that $P^A\neq NP^A$ and $P^B = NP^B$.
- The diagonalization method does not suffice to prove $P \stackrel{?}{=} NP.$

 QQ

Theorem 12

There are oracles A and B such that $P^A \neq NP^A$ *and* $P^B = NP^B$ *.*

Proof.

Let *B* be *TQBF*. Then $NP^{TQBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{TQBF}$. For any oracle *C*, define

$$
L_C = \{1^n : \exists x \in C \; | \; |x| = n \;]\}.
$$

Clearly, $L_C \in NP^C$ for any C . We construct a language A such that $L_A \not\in P^A$.

→ イ君→ イ君→

 \leftarrow \Box \rightarrow \leftarrow \Box

Proof.

- Let M_1^2, M_2^2, \dots be an enumeration of oracle DTMs that run in polynomial time. Assume for simplicity that $M_i^?$ has running time $n^{i}.$ Since oracle machines query their oracle as a black box*,* can plug in any oracle.
- We will build an oracle *A* so that none of these machines can decide *LA*.
- Inductive construction. We start with nothing, and at each stage we declare a finite set of strings to be in the language of *A* or out of it.
- Goal: At stage i , make sure that $L(M_i^A)$ and L_A disagree on some string.

つくい

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶.

Proof.

Stage *i*

- I Let M_i^A have running time n^i . Choose *n* larger than any string declared for *A*, such that $2^n > n^i$.
- \blacksquare We are going to run M_i^A on 1^n . When M_i^A queries A with q , we
	- \star Answer correctly if *q* has been declared,
		- and answer NO otherwise.
- If M_i^A accepts 1^{*n*}, we declare all strings of length *n* to be NO-strings. Then *A* has no YES-string of length *n*, and $1^n \notin L_A$.
- If M_i^A rejects 1^n , we find a string of length *n* that M_i^A did not query. This exists, since $2^n > n^i$. Declare this string to be YES.
- Finally, declare all undeclared strings of length up to *n* arbitrarily.

Hence M_i accepts 1^n if and only if $1^n \notin L_A$. M_i does not decide L_A .

つくい

イロト イ押ト イヨト イヨト

- \bullet M_i accept 1ⁿ, declare all strings of length n to be NO-strings
- \bullet M_i rejects 1ⁿ, we find a string w length n not queried by M_i and adds w to A

4 0 8 4

つくい