Reducibility

(NTU EE) Decidability Spring 2024 1/53

Reducibility

@ Eulerian path (resp., cycle) problem: Given graph G and two
nodes s and t, determine whether there is a path from s to ¢ (resp.,
cycle from s to s) visiting each edge in G exactly once.

@ To answer Eulerian path problem for G (EP(G)), construct a graph
G’ that is identical to G except an additional edge between s and .

» If EC(G’) returns true, there is a Eulerian path from s to t.
» If EC(G’) returns false, there is no Eulerian path from s to ¢.

@ We use EC(G’) as a subroutine.

@ We say the Eulerian path problem is reduced to the Eulerian cycle
problem, abbrev. as EP < EC.

e
t s
1543255 36 5 2 > 73354365755 154 5255 56 > 2 > 733456373551

(NTU EE) Decidability Spring 2024

Reducibility

Let us say A and B are two problems and A is reduced to B (or
equivalently, B is reduced from A).

Notation-wise, we often write A < B.
If we solve B, we solve A as well.

> Biseasy — A is easy.
» If we solve the Eulerian cycle problem, we solve the Eulerian path
problem.

If we can’t solve A, we can’t solve B.
» Aishard — Bis hard.

To show a problem P is not decidable, it suffices to reduce Aty to
P.

We will give examples in this chapter.

(NTU EE) Decidability Spring 2024 3/53

The Halting Problem for Turing Machines

@ The halting problem is to test whether a TM M halts on a string w.
@ As usual, we first give a language-theoretic formulation.

HALTTv = {(M,w) : M is a TM and M halts on the input w}.

Theorem 1
HALT 1 is undecidable.

Proof.

Suppose TM R decides HALT . Consider TM S using R as subroutine
S = “On input (M, w) where M is a TM and w is a string;:

© Run TM R on the input (M, w).

@ If R rejects, reject.

@ If R accepts, simulate M on w until it halts.

Q If M accepts, accept; if M rejects, reject.” O

Then S decides Ay - a contradiction.
Decidability Spring 2024 4 /53

Emptiness Problem for Turing Machines

e Consider Ery = {(M) : Misa TM and L(M) = 0}.

Theorem 2
ETp is undecidable.

Proof.

Suppose TM R decides Ety. Consider TM S using R as subroutine
S = “On input (M, w) where M is a TM and w a string:
Q@ Use (M, w) to construct
M; = “On input x:
@ If x # w, reject.
@ If x = w, run M on the input x (=w). If M accepts x, accept.”
@ Run R on the input (M;) to test whether L(M;) = 0.

@ If R accepts [M rejects w], reject; otherwise [M accepts w],
accept.”

Ol

Then Aty is decidable - a contradiction.

(NTU EE) Decidability Spring 2024 5/53

Regularity Problem for Turing Machines

REGULART\M = {(M) : Misa TM and L(M) is regular}.

Theorem 3
REGULARTy is undecidable.

Proof.
Let R be TM deciding REGULART\. Consider S using R as subroutine
S = “On input (M, w) where M is a TM and w a string;:
© Use (M, w) to construct
M; = “On input x:
@ If x is of the form 0"1", accept.
@ Otherwise, run M on the input w. If M accepts w, accepts.” (In this
case, L(M;) = ¥¥)

@ Run R on the input (Mj).
@ If R accepts [L(M;y) = X*], accept; otherwise [L(M;) = {0"1"}],

4

Rice’s Theorem

Consider the language C of all TMs, i.e., C = {{M) | Misa TM} .
@ A property P is a subset of C such that if L(M;) = L(M) then
either (M;) € P < (My) € P.
» REGULARTpM, ie., the set of all TMs that accept regular languages,
is a property.
» P’ = {{M) | M has more than 100 states} is NOT a property.
e A property P is trivial if (1) P = (), or (2) P=C.
» Pis non-trivial < 3M;, M, (M;) € P and (M,) € P.
» {(M) | L(M) = 0} is NOT a trivial property.
@ Goal: given a TM M, decide whether (M) € P.
@ Rice’s theorem: Undecidable, unless P is a trivial property.
e Why trivial properties are decidable?

C= {<M>| M isaTM}

o Ve < (0+1)0*1* Two Trivial Properties
(J'C’* A
™ [~ Regularmy, (Empty) All

(NTU EE) Decidability Spring 2024

Rice’s Theorem

Theorem 4

Let P be a language consisting of TM descriptions such that
@ P s not trivial (P # () and there is a TM M with (M) & P);
© IfL(Mi) = L(M>), (M1) € P iff (M) € P.

Then P is undecidable.

Proof.

Let R be a TM deciding P. Let Ty be a TM with L(Tp) = 0. WLOG, assume (Ty) & P.
Moreover, pick a TM T with (T) € P. Consider
S = “On input (M, w) where M is a TM and w a string:

@ Use (M, w) to construct
My = “On input x:
@ Run M on w. If M halts and rejects, reject.
@ If M acceptsw, run T on x.”
© Run R on (My).
© If R accepts, accept; otherwise, reject.” O

(NTU EE) Decidability Spring 2024 8/53

Rice’s Theorem

e (Ty) ¢ P and (T) € P, where L(Ty) = 0.
@ M accepts w will “trigger” the execution of T on input x.
@ Hence,

» M accepts w = L(M,) =L(T) € P
» M does not accept w = L(M,,) = L(Ty) ¢ P

@ Does REGULART) fit into the above framework?
How about E1p?

M

W

accept

o m

(NTU EE) Decidability Spring 2024

Language Equivalence Problem for Turing Machines

@ Consider

EQTM = {<M1,M2> : M1 and M, are TM’s with L(Ml) = L(Mz)}.

Theorem 5

EQrum is undecidable.

Proof.

We reduce the emptiness problem to the language equivalence
problem this time. Let the TM R decide EQmy and TM M; with
L(M;) = (. Consider
S = “On input (M) where M is a TM:

©Q Run R on (M, My).

@ If R accepts, accept; otherwise, reject.”

0J

(NTU EE) Decidability Spring 2024

Computation History

Definition 6

Let M be a TM and w an input string. An accepting computation
history for M on w is a sequence of configurations Cy, C, . .., C; where

@ (C; is the start configuration of M on w;
@ (;is an accepting configuration of M; and
@ C;yields CipyinMforl <i <l

@ A deterministic Turing machine has at most one computation
history on any given input.

@ A nondeterminsitic Turing machine may have several
computation histories on an input.

Cl C‘2 C3 Caccept
A y A y A \ A
QoW1 W "Wy # aAQz Wy = Wy # aCggWz W, ¢ # " Qaccept """

(NTU EE) Decidability Spring 2024

Languages Associated with Computation Histories

Suppose «a - 3 is a single step of a TM M.

left move | right move
a | abedqgefgh | abcdgefgh
B | abeq'de’fgh | abcde'q'fgh

Notice that in o and 3, at most 3 positions may change.

@ Can you check abcgh#(abcgh)R using a PDA?

(Keep (dge, q'de’) in finite state, process “abc” ”fgh” using stack)
e How about abcgh#abcgh?
Consider accepting computation g - a1 Fao - az b -+ - oy
o CS: ap#anftan#tas# - #an
@ CSg: ao#oﬂf#az#&g# - Fay
CSg is the intersection of two CFL L,;; and L., where
© Logg = {ao#af#tan#taf#t - Fan | a; b aiy,i is odd}
@ Lopen = {ao#alf#ag#alé# cFay | ai b oajyq,1 is even}
Decidability Spring 2024 12 /53

Linear Bounded Automaton

control

Y
Lofofrfofrfr]afo]

Figure: Schematic of Linear Bounded Automata

Definition 7

A linear bounded automaton is a nondeterministic Turing machine
whose tape head is not allowed to move off the portion of its input. If
an LBA tries to move its head off the input, the head stays.

o With a larger tape alphabet than its input alphabet, we may allow
an LBA to use ¢ x |w| tape cells on input w, where c is a constant.

(NTU EE) Decidability Spring 2024 13 /53

Acceptance Problem for Linear Bounded Automata

@ Consider

Arga = {{M,w) : M is an LBA and M accepts w}.

Lemma 8

Let M be an LBA. There are |Q| x n x |I'|" different configurations of M for a
tape of length n.

@ An LBA has |Q| x n x |I'|"* different configurations on an input of
length n. If an LBA runs for longer, it must repeat some
configuration and thus will never halt.

@ Many langauges can be decided by LBA’s.

» For instance, Apga, AcrG, Epra, and Ecgg.

o Every context-free langauges can be decided by LBA's.

(NTU EE) Decidability Spring 2024 14 / 53

Acceptance Problem for Linear Bounded Automata

Theorem 9
ALBA is decidable.

Proof.
Consider
L = “On input (M, w) where M is an LBA and w a string:

© Simulate M on w for |Q| x n x |I'|" steps or until it halts. (|Q|, n,
and |I'| are obtained from (M) and w.)

@ If M does not haltin |Q| x n x |I'|" steps, reject.
@ If M accepts w, accept; if M rejects w, reject.” O

@ The acceptance problem for LBA’s is decidable. What about the
emptiness problem for LBA's?

Eiga = {<M> : M is an LBA with L(M) = @}
Decidability Spring 2024 15 /53

Emptiness Problem for Linear Bounded Automata

Theorem 10
E;ga is undecidable.

Proof.
Reduce Aty to Eppa. Let R be a TM deciding E;ga. Consider
S = “On input (M, w) where M is a TM and w a string:

© Construct
B = “On input (C1,Cy, ..., Cj), Ci’s are configurations of M on w:
@ If G (resp.,) is not start (resp. accepting) config., reject.
@ Foreachl <i < if C; does not yield Ciy1, reject.
@ Otherwise, accept.”

@ Run Ron (B).
@ If R rejects [L(B) # 0], accept (M, w) € Ay|; otherwise, reject.” [

Ve —

(5] [aomawvn & ot & sty - H
—_— —
[C, Cs C

(NTU EE) Decidability Spring 2024

Context Sensitive Grammars

@ A context sensitive grammar (CSG) is a grammar where all
productions are of the form

aAB — ayB, a,B € (NUD)* ,ve (NUX)T,

During derivation non-terminal A will be replaced by ~ only
when it is present in context of « and f.

This definition shows clearly one aspect of this type of grammar;
it is noncontracting, in the sense that the length of successive
sentential forms can never decrease.

The production S — ¢ is also allowed if S is the start symbol and it
does not appear on the right side of any production.

A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = L(G).
An alternative definition of CSG:

u—o, |ul <|o,u,oe (NUX)T,

(NTU EE) Decidability Spring 2024 17 / 53

An Example

{a"b"c" | n > 1} is a CSL.

Consider the following CSG G

S — €| abc | aTBc

T — abC | aTBC

CB - CX; CX —BX; BX — BC
bB — bb

Cc — cc

E.g., To generate aaabbbccc, consider the following derivation:

S = aTBc = aaTBCBc¢ = aaabCBCBc¢ = aaabBCCBc = aaabBCBCc =
aaabBBCCc¢ = aaabbBCCc = aaabbbCCc = aaabbbCcc = aaabbbcce

(NTU EE) Decidability Spring 2024 18 / 53

More on CSLs

CSLs are closed under
@ Union
© Intersection
© Concatenation
© Kleene closure

@ Complement
Immerman-Szelepcsenyi theorem (1987).

(1)-(4) can be shown using LBA constructions. (5) follows from

“nondeterministic space being closed under complement,” whose
proof is not trivial.

(NTU EE) Decidability Spring 2024 19 /53

LBA = CSG

Theorem 11

A language is context-sensitive iff it can be accepted by a linear-bounded
automaton.

Proof.

(=) Recall in CSG, if u — v, then |u| < |v|. Use LBA’s tape to keep the
current derivation sentence, which never exceeds |w| (Why?)
(«=) Intuitive Idea.

Suppose LBA M has accepting comput. qoabed = aeqfd = eqa..fgh. CSG
G simulates the above in the following way

S = Viagon) Vo) Vieo) Vida) = Viaa) Vibe) Vicar) V(da)

= Viao)Voiueh) Vie) Vi) = Vi)tV cg)Vian = ViagbcVian = abed

L]
(NTU EE) Decidability Spring 2024 20 /53

Proof (Cont’d)

Proof.

To realize the above, need rules such as
® Ve Viyp) = Vire Viypw if 6(9,4) = (p, ¢, R); [...qab... — ...cpb...]
° ViynyVirgs = Viepn)Viye if 6(q,4) = (p,c,L); [...bga... — ...pbc...]

o V(=X XV 2 xy; Vigx = yx

xy’f]accy)

D 4
@ What rules are needed for S = V(. .a) V(b5 V(c.c)V(a.0)? Easy!
@ Why does the above grammar construction fail for r.e. languages?
» A bit tricky! You may generate
S :*> V(mqoﬂ)V(b’b)V(C’c) V(d,d) V(L_,’l_,)...V(_,ﬂ_‘) to "reserve” worktape
locations.
» But then you need rules to “contract” those L’s (rules such as
xV(_y) — x, which is not allowed in CSG.
» If contraction rules allowed, we have unrestricted grammars (or
called Type-0 grammars)

(NTU EE) Decidability Spring 2024 21 /53

Universality of Context-Free Grammars

@ Consider a problem related to the emptiness problem for CFL’s
ALLcrg = {(G) : Gisa CFG and L(G) = ¥*}.

e Let x be a string. Write xX for the string x in reverse order.

@ Let Cq,Cy, ..., C be the accepting configuration of M on input w.
Consider the following string in the next theorem:

H#(COF(Co) - #H{Cor1) #H(Con) - #(CO)H
Consider the following PDA:

—
o cR Cs c

vl [dowiwaw, #oacqsWs W B B ucon
H Y Y

W)

wy

o

(Fig. from M. Sipser’s class notes)

(NTU EE) Decidability Spring 2024

Universality of Context-Free Grammars

Theorem 12
ALLcrg is undecidable.

Proof.

We reduce Aty to ALLcrg. We construct a nondeterministic PDA D that accepts all
strings if and only if M does not accept w. The input and stack alphabets of D contain
symbols to encode M’s configurations.

D = “On input #x1#x2% - - - #x17:

@ Do one of the following branches nondeterministically:

If x1 # (C1) where C; is the start configuration of M on w, accept.
If x; # (C;) where C; is a rejecting configuration of M, accept.
Choose odd i nondeterministically. If x; # (C), xX ; # (C'), or C
does not yield C’ (C,C’ are configurations of M), then accept.”
Choose even i nondeterministically. If xR = (C), x;1q # (C’), or C
does not yield C’ (C, C’ are configurations of M), then accept.”

M accepts w iff the accepting computation history of M on w is not in L(D) iff
CFG(D) ¢ ALLckc. O

(NTU EE) Decidability Spring 2024 23 /53

Post Correspondence Problem (PCP)

@ A domino is a pair of strings: [;}

@ A match is a sequence of dominos h f ||k such
— bi || b bk

that t1fy - - -ty = b1by - - - by.
@ The Post correspondence problem is to test whether there is a
match for a given set of dominos.

PCP = {(P) : P is an instance of the PCP with a match}
el)
ca ab a | ¢ |

@ A matchin P:
a b ca a [abc |
ab ca a ab | ¢ |

(NTU EE) Decidability Spring 2024 24 /53

@ Consider

The Modified Post Correspondence Problem

@ The modified Post correspondence problem is a PCP where a
match starts with the first domino. That is,

MPCP = {(P) : Pis an instance of the PCP with a match
starting with the first domino}

Theorem 13
PCP is undecidable.

Proof idea.

We reduce the acceptance problem for TM’s to PCP. Given a TM M and
a string w, we first construct an MPCP P’ such that (P') € MPCP if and
only if M accepts w. The MPCP P’ encodes an accepting computation
history of M on w. Finally, we reduce MPCP P’ to PCP P.

(NTU EE) Decidability Spring 2024 25/53

The Post Correspondence Problem

Proof.

Let the TM R decide MPCP. Let M = (Q, X, T, 8, 40, Gaccept, Greject) be the given TM and
w = wyw; - - - wy the input. The set P’ of dominos has

T w# o as the first domino. Begin with the start configuration
0W1W2 -+ - W
(bottom).

#

#

(NTU EE) Decidability Spring 2024 26 /53

The Post Correspondence Problem

Proof (cont’d).
° Zi] if 5(q,a) = (r,b, R) with g # greject- Reads a at state q (top); writes b and

moves right (bottom).

[cqa
| rch
moves left (bottom).

} if 6(g,a) = (r,b,L) with g # greject. Reads a at state g (top); writes b and

o %} ifa € T'. Keeps other symbols intact.

5(q05 O) = (‘J% 27R)

(NTU EE) Decidability Spring 2024 27 /53

The Post Correspondence Problem

Proof (cont’d).

i } and { ##] Matches previous # (top) with a new # (bottom). Adds .
(I

when M moves out of the right end.

(NTU EE) Decidability Spring 2024 28 /53

The Post Correspondence Problem

Proof (cont’d).
A accept facceptd | .
@ (————| and | ———| ifa € I'. Eats up tape symbols around gaccept-
qaccept Qaccept
) %} . Completes the match.

(NTU EE) Decidability Spring 2024 29 /53

The Post Correspondence Problem

Proof (cont’d).

So far, we have reduced the acceptance problem of TM’s to MPCP. To complete the
proof, we need to reduce MPCP to PCP.
Let u = wjuz - - - uy. Define

XU = kU ok Uy ok -- % Uy
Ux = u * Uy * 000 * Uy *
XUk = k% U] Kk Uy ke ok Uy %
Given a MPCP P':
h t b
g | e
Construct a PCP P:
*t1 *t2 ity *Q
*xbix |7 box |7 ek [T O
Any match in P must start with the domino [*Ztl*] . O
1

(NTU EE) Decidability Spring 2024 30 /53

Some Applications of PCP

Theorem 14
Given two CFGs Gy and Gy, "L(G1) N L(Gy) = 0?” is undecidable.

Proof.

by by by
4 G1 g 51 —>u151t1 | azsltz... ’ aksltk | a1t | arts... ‘ Axty

For a PCP instance [i] [f2 } [b } , where t;, b; € ¥*, construct

o Gz g 52 —>a152b1 | a252b2... ‘ leSQbk | ﬂlbl ‘ azbz... | Elkbk

where a;,1 <i < k, are new symbols not in ¥. Clearly
L(G1) N L(Gy) # 0 < PCP has a match. O

@ Why do we need ay, ..., a;?
@ Can you modify the above construction to yield the following?

Theorem 15

Given a CEG G. checking whether G is ambiguous is undecidable.
_m‘ Decidability Spring 2024 31/53

More Undecidability Results for CFLs

Theorem 16

Given two CFGs Gy and Gy,and a regular language R, the following are
undecisable:

0 L(Gl) = L(GZ)
Q L(G1) CL(Gy)

Q L(G1) =R

QO RCL(Gy)
Proof.
For (1) and (2), let L(G1) = ¥*. For (3) and (4), let R = ¥*.
Undecidability following from the undecidablity of ALLcrc. O

(NTU EE) Decidability Spring 2024 32/53

More on CFLs

Note, in contrast, that checking L(G1) C R is decidable.
@ Let M be a FA accepting R.

L(G1) CR& L(Gl) N L(M) = 0.

The decidability result follows from L(G;) N L(M) being CFL, and
the emptiness problem being decidable for CFLs.

@ Why can we use a similar argument for R C L(G1)?

» Note that L(G;) may not be a CFL. E.g., &* — {a"b"c" | n > 0} is CF.
Why?

(NTU EE) Decidability Spring 2024 33 /53

Computable Functions

Definition 17

f X" = ¥* is computable if some Turing machine M, on input w, halts
with f(w) on its tape.

@ Usual arithmetic operations on integers are computable functions.
For instance, the addition operation is a computable function
mapping (m, n) to (m + n) where m, n are integers.

(NTU EE) Decidability Spring 2024 34 /53

Mapping Reducibility

Definition 18

A language A is mapping reducible (or many-one reducible) to a
language B (written A <, B) if there is a computable function

f X" — ¥* such that

w € Aif and only if f(w) € B, for every w € ¥*.

f is called the reduction of A to B.

(a7 A

(NTU EE) Decidability Spring 2024

35/53

Properties of Reducibility

Theorem 19
If A <, B and B is decidable, A is decidable.

Proof.

Let the TM M decide B and f the reduction of A to B. Consider
N = “On input w:

@ Construct f(w).
@ Run M on f(w).
@ If M accepts, accept; otherwise reject. O

Corollary 20

If A <,, Band A is undecidable (i.e., not recursive), then B is undecidable.

(NTU EE) Decidability Spring 2024 36 /53

Transitivity of Mapping Reductions

Lemma 21
IfA<uBandB <,, C,A <, C.

Proof.

Let f and g be the reductions of A to B and B to C respectively. g o f is a
reduction of A to C. O
Example 22

Give a mapping reduction from Aty to PCP.

Proof.

The proof of Theorem 13 gives such a reduction. We first show
Atm <, MPCP. Then we show MPCP <,,, PCP. O

(NTU EE) Decidability Spring 2024

More Properties about Mapping Reductions

Theorem 23
If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

Similar to the proof of Theorem 19 except that M and N are TM’s, not
deciders. O

Corollary 24

If A <, B and A is not Turing-recognizable (non-r.e.), then B is not
Turing-recognizable.

(NTU EE) Decidability Spring 2024 38 /53

More Properties about Mapping Reductions

@ Observe that A <,, Bif and only if A <, B.
» The same reduction applies to A and B as well.
@ Recall that Aty is not Turing-recognizable.
@ In order to show B is not Turing-recognizable, it suffices to show
At <m B (or Arm < B).
» Av <, B implies Aty < B. Thatis, Aty <, B.

(NTU EE) Decidability Spring 2024 39 /53

Mapping vs. General Reducibility

@ (General) Reducibility of A to B: Use B solver (as a subroutine) to
solve A.

» Conceptually simpler
» Useful for proving undecidability

A solver

B solver

@ Ais reducible to A.
@ A may not be mapping reducible to A.
@ Note that A1yt L ATm- Why7

(NTU EE) Decidability Spring 2024

Reducibility - General Framework

To prove B is undecidable (i.e., not recursive):

@ Show that undecidable A is reducible to B. (e.g., A is Arum)
@ Approach:

@ Assume TM R decides B.
@ Construct TM S deciding A. Contradiction.

To prove B is Turing-unrecognizable (i.e., non-r.e.):

@ Show that Turing-unrecognizable A is mapping reducible to B.
(e.g., Ais Ary)
e Approach:
© Give many-one reduction function f.

* Show f is computable.
* Showw € A < f(w) € B.

(NTU EE) Decidability Spring 2024 41/53

Example 25
Give a mapping reduction of Aty to HALT 1.

Proof.

We need to show a computable function f such that (M, w) € Aty if
and only if (M',w’) € HALTtp whenever (M', w') = f((M, w)).
Consider
F = “On input (M, w):
Q@ Use (M) and w to construct
M’ = “On input x:
@ Run Mon x.

@ If M accepts, accept.
@ If M rejects, loop.”

@ Output (M, w).” O

(NTU EE) Decidability Spring 2024 42 /53

Example 26

Give a mapping reduction of Aty to Regularmys = {(M) | L(M) is

regular}.

o f({M,w))= (M) described below

M’ takes input x:
o if x has form 0™1", accept

o else simulate M on w and
accept x if M accepts

M’ = {0"1"} if w & L(M)
=" if we L(M)

What would a formal proof of this
look like?

(NTU EE) Decidability

e is f computable?

@ YES maps to YES?
-i:M.w:f:— c ACCry =
f(M,w) € REGULAR

@ NO maps to NO?
(M, w) & ACCryy =
f(M,w) ¢ REGULAR

Spring 2024

Example 27

Give a mapping reduction from Ety to EQrm.

Proof.
The proof of Theorem 5 gives such a reduction. The reduction maps
the input (M) to (M, M) where M; is a TM with L(M;) = 0. O

(NTU EE) Decidability Spring 2024 44 / 53

Etym is not Turing-recognizable

Theorem 28
Etm is not Turing-recognizable.

Proof.
Show ATM <m ETM-
F = “On input (M, w):
Q@ Use (M) and w to construct
M’ = “On input x:
@ if x # w, reject; else run M on w.
@ If M accepts, accept.

@ Output (M').” O

e Fis clearly computable. Furthermore, (M, w) & Aty < L(M') =0
@ Is Etp co-Turing-recognizable?
(Nondeterministically generate a w on its tape, run M on w).

(NTU EE) Decidability Spring 2024 45 /53

Equivalence Problem for TM’s (revisited)

Theorem 29

EQrm is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.
We first show Aty <, EQmm. Consider
F = “On input (M, w) where M is a TM and w a string:

Q@ Construct
e My = “On input x: Reject.”
e My = “On input x:
@ Run M on w. If M accepts, accept.”

@ Output (M;, M).”

(NTU EE) Decidability Spring 2024

Equivalence Problem for TM’s (revisited)

Proof (cont’d).

Next we show Aty <;; EQmm. Consider
G = “On input (M, w) where M is a TM and w a string:
Q Construct

e M; = “On input x: Accept.”
e My = “On input x:

@ Run M on w.

@ If M accepts w, accept.”

@ Output (M, M,).”

EQ’\,'\
Ay A
Turing- Turing- Co-Turing-
recognizable | decidable recoghizable
(NTU EE)

Decidability

Spring 2024

Strong Rice’s Theorem

Theorem 30

Let P be a non-trivial property of TM descriptions, and M be a TM s.t. L(M) = X*. If
(M) & P, then P is not Turing-recognizable.

Proof.

If we could show Ay <, P, which in turn implies Aty <u P. Picka TM T with
(T) € P. Consider
S = “On input (M, w) :

@ If (M, w) does not encode a TM and a string, then accept.
@ Use (M, w) to construct
My = “On input x:

@ Run Mon w and T on x in parallel,
@ If either accepts, accept x

© Run the “supposed” recognizer for P on (M,,). Output what the recognizer says.

@ L(M,) = =* (M) € P)iff (M, w) € Ary

@ L(M,) =L(T T GP)Iff<M,w>€ATM
Decidability Spring 2024 48 / 53

Applications of Strong Rice’s Theorem

e Ery = {(M) | L(M) = 0} is not Turing-recognizable
» Clearly Ety is a non-trivial property
» For M with L(M) = ¥*, (M) &€ Erum.

@ Can you think of other applications?

(NTU EE) Decidability Spring 2024 49 / 53

Arithmetic Hierarchy

@ A language L is in ¥ (or Ilp) if it is recursive.

@ A language L is in X, where n > 1, if there is a recursive relation
R(x,y1,Y2, ..., yn) such that

xel < FynVya3ys...QunynR(X,Y1,Y2, -y Yn)-

where Q, is 3 (resp., V) if n is odd (resp., even).

@ A language L is in IT,, where n > 1, if there is a recursive relation
R(x,y1,Y2, ..., yn) such that

xeLl & Vy13yaVys...QuynR(X,y1,Y2, -, Yn)-

where Qj, is 3 (resp., V) if n is even (resp., odd).
o An = Zn ﬂ Hn.

(NTU EE) Decidability Spring 2024 50 / 53

Arithmetic Hierarchy

(NTU EE)

[\el

Recursively

enumerable (RE)

sets

A

Recursive sets

Co-RE sets

Decidability

ing 2024

51 /53

Some Examples in Arithmetic Hierarchy

In what follows, we let R(M, w, nn) be a predicate which is true if TM M
accepts w in < n steps. Clearly, R is a decidable predicate.

o Arv = {{M,w) | 3n,R(M,w, n)}.

» Atm € 31

® Erm = {<M> ‘ V(w,n>7 _'R(Mvwvn)}'
» Erp €1y

o ALLty = {(M) | L(M) = X*} = {(M) | Vp3u, RIM, w, n)}.
» ALLmp € 11,

@ FIN7y = {(M) | L(M) is finite} =
{<M> ‘ Elmv(w,n)(‘w’ < m) \ ﬁR(M,ZU,TZ)}.
» FINTym € 3p
e COFINty; = {(M) | L(M) is finite} =
{{M) | F3nVwIn(Jw| <m) Vv R(M,w,n)}.
» COFINTy € %5

(NTU EE) Decidability Spring 2024 52 /53

Some Examples in Arithmetic Hierarchy

How about the following languages:

® EQrm = {(M1,My) | L(M1) = L(M>)}
Note: EQTM = {<M1,M2> ‘
3<14’7”>V’"(R(M17 w, ?Z) A _'R(M27 w, m)) v (R(sz w, ?Z) A _‘R(Mh w, m))}
@ INFrym = {(M) | L(M) is infinite}
Note: INFry = {(M) | VT, (Jw| > m) AR(M,w,n)}
@ REGrm = {(M) | L(M) is regular}
Note: REGry = {{M) | Iy Vo In(R'(M’,w) & R(M, w,n))}, where M is a FA,
and R’ (M’, w) is true if FA M’ accepts w.
@ How about
CFLtm = {(M) | L(M) is coontxt-free}?
RECtm = {{M) | L(M) is recursive}?

(NTU EE) Decidability Spring 2024 53 /53

	Undecidable Problems from Language Theory
	Post Correspondence Problem
	Mapping Reducibility

