Reducibility

Reducibility

- Eulerian path (resp., cycle) problem: Given graph G and two nodes s and t, determine whether there is a path from s to t (resp., cycle from s to s) visiting each edge in G exactly once.
- To answer Eulerian path problem for $G(\overline{E P(G)})$, construct a graph G^{\prime} that is identical to G except an additional edge between s and t.
- If $E C\left(G^{\prime}\right)$ returns true, there is a Eulerian path from s to t.
- If $E C\left(G^{\prime}\right)$ returns false, there is no Eulerian path from s to t.
- We use $E C\left(G^{\prime}\right)$ as a subroutine.
- We say the Eulerian path problem is reduced to the Eulerian cycle problem, abbrev. as $E P \leq E C$.

$1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 5$

$1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 5 \rightarrow 1$

Reducibility

- Let us say A and B are two problems and A is reduced to B (or equivalently, B is reduced from A).
- Notation-wise, we often write $A \leq B$.
- If we solve B, we solve A as well.
- B is easy $\rightarrow A$ is easy.
- If we solve the Eulerian cycle problem, we solve the Eulerian path problem.
- If we can't solve A, we can't solve B.
- A is hard $\rightarrow B$ is hard.
- To show a problem P is not decidable, it suffices to reduce A_{TM} to P.
- We will give examples in this chapter.

The Halting Problem for Turing Machines

- The halting problem is to test whether a TM M halts on a string w.
- As usual, we first give a language-theoretic formulation.
$H A L T_{\mathrm{TM}}=\{\langle M, w\rangle: M$ is a TM and M halts on the input $w\}$.

Theorem 1

$H A L T_{T M}$ is undecidable.

Proof.

Suppose TM R decides $H A L T_{\mathrm{TM}}$. Consider TM S using R as subroutine $S=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:
(1) Run TM R on the input $\langle M, w\rangle$.
(2) If R rejects, reject.
(3) If R accepts, simulate M on w until it halts.
(9) If M accepts, accept; if M rejects, reject."

Then S decides $A_{T M}$ - a contradiction.

Emptiness Problem for Turing Machines

- Consider $E_{\mathrm{TM}}=\{\langle M\rangle: M$ is a TM and $L(M)=\emptyset\}$.

Theorem 2

$E_{T M}$ is undecidable.

Proof.

Suppose TM R decides E_{TM}. Consider TM S using R as subroutine $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M, w\rangle$ to construct
$M_{1}=$ "On input x :
(1) If $x \neq w$, reject.
(2) If $x=w$, run M on the input $x(=w)$. If M accepts x, accept."
(2) Run R on the input $\left\langle M_{1}\right\rangle$ to test whether $L\left(M_{1}\right)=\emptyset$.
(3) If R accepts [M rejects w], reject; otherwise [M accepts w], accept."
Then $A_{T M}$ is decidable - a contradiction.

Regularity Problem for Turing Machines

$$
\operatorname{REGULAR}_{\mathrm{TM}}=\{\langle M\rangle: M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\} .
$$

Theorem 3

REGULAR $_{T M}$ is undecidable.

Proof.

Let R be TM deciding $R E G U L A R_{\text {TM }}$. Consider S using R as subroutine $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M, w\rangle$ to construct $M_{2}=$ "On input x :
(1) If x is of the form $0^{n} 1^{n}$, accept.
(2) Otherwise, run M on the input w. If M accepts w, accepts." (In this case, $\left.L\left(M_{2}\right)=\Sigma^{*}\right)$
(2) Run R on the input $\left\langle M_{2}\right\rangle$.
(3) If R accepts $\left[L\left(M_{2}\right)=\Sigma^{*}\right]$, accept; otherwise $\left[L\left(M_{2}\right)=\left\{0^{n} 1^{n}\right\}\right.$], moinat "

Rice's Theorem

Consider the language \mathbb{C} of all TM , i.e., $\mathbb{C}=\{\langle M\rangle \mid M$ is a TM $\}$.

- A property P is a subset of \mathbb{C} such that if $L\left(M_{1}\right)=L\left(M_{2}\right)$ then either $\left\langle M_{1}\right\rangle \in P \Leftrightarrow\left\langle M_{2}\right\rangle \in P$.
- REGULAR ${ }_{T M}$, i.e., the set of all TMs that accept regular languages, is a property.
- $P^{\prime}=\{\langle M\rangle \mid M$ has more than 100 states $\}$ is NOT a property.
- A property P is trivial if (1) $P=\emptyset$, or (2) $P=\mathbb{C}$.
- P is non-trivial $\Leftrightarrow \exists M_{1}, M_{2},\left\langle M_{1}\right\rangle \in P$ and $\left\langle M_{2}\right\rangle \in \bar{P}$.
- $\{\langle M\rangle \mid L(M)=\emptyset\}$ is NOT a trivial property.
- Goal: given a TM M, decide whether $\langle M\rangle \in P$.
- Rice's theorem: Undecidable, unless P is a trivial property.
- Why trivial properties are decidable?

Two Trivial Properties

Rice's Theorem

Theorem 4

Let P be a language consisting of TM descriptions such that
(1) P is not trivial $(P \neq \emptyset$ and there is a TM M with $\langle M\rangle \notin P)$;
(2) If $L\left(M_{1}\right)=L\left(M_{2}\right),\left\langle M_{1}\right\rangle \in P$ iff $\left\langle M_{2}\right\rangle \in P$.

Then P is undecidable.

Proof.

Let R be a TM deciding P. Let T_{\emptyset} be a TM with $L\left(T_{\emptyset}\right)=\emptyset$. WLOG, assume $\left\langle T_{\emptyset}\right\rangle \notin P$. Moreover, pick a TM T with $\langle T\rangle \in P$. Consider $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M, w\rangle$ to construct
$M_{w}=$ "On input x :
(1) Run M on w. If M halts and rejects, reject.
(2) If M accepts w, run T on x."
(2) Run R on $\left\langle M_{w}\right\rangle$.
(3) If R accepts, accept; otherwise, reject."

Rice's Theorem

- $\left\langle T_{\emptyset}\right\rangle \notin P$ and $\langle T\rangle \in P$, where $L\left(T_{\emptyset}\right)=\emptyset$.
- M accepts w will "trigger" the execution of T on input x.
- Hence,
- M accepts $w \Rightarrow L\left(M_{w}\right)=L(T) \in P$
- M does not accept $w \Rightarrow L\left(M_{w}\right)=L\left(T_{\emptyset}\right) \notin P$
- Does REGULAR ${ }_{T M}$ fit into the above framework? How about $E_{T M}$?

Language Equivalence Problem for Turing Machines

- Consider

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle: M_{1} \text { and } M_{2} \text { are TM's with } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
$$

Theorem 5

$E Q_{T M}$ is undecidable.

Proof.

We reduce the emptiness problem to the language equivalence problem this time. Let the TM R decide $E Q_{\mathrm{TM}}$ and TM M_{1} with $L\left(M_{1}\right)=\emptyset$. Consider
$S=$ "On input $\langle M\rangle$ where M is a TM:
(1) Run R on $\left\langle M, M_{1}\right\rangle$.
(2) If R accepts, accept; otherwise, reject."

Computation History

Definition 6

Let M be a TM and w an input string. An accepting computation history for M on w is a sequence of configurations $C_{1}, C_{2}, \ldots, C_{l}$ where

- C_{1} is the start configuration of M on w;
- C_{l} is an accepting configuration of M; and
- C_{i} yields C_{i+1} in M for $1 \leq i<l$.
- A deterministic Turing machine has at most one computation history on any given input.
- A nondeterminsitic Turing machine may have several computation histories on an input.

$$
\overbrace{q_{0} w_{1} w_{2} \cdots w_{n}}^{C_{1}} \# \overbrace{a_{7} w_{2} \cdots w_{n}}^{C_{2}} \# \overbrace{\operatorname{acq}_{8} w_{3} \cdots w_{n}}^{C_{3}} \# \quad \cdots \quad \# \overbrace{\cdots q_{\text {accept }} \cdots}^{C_{\text {accept }}}
$$

Languages Associated with Computation Histories

Suppose $\alpha \vdash \beta$ is a single step of a TM M.

	left move	right move
α	abcdqefgh	abcdqefgh
β	abcq' ${ }^{\prime} e^{\prime} f g h$	$a b c d e^{\prime} q^{\prime} f g h$

Notice that in α and β, at most 3 positions may change.

- Can you check $a b c$ dqe fgh\# $\left(a b c \text { q }^{\prime} \mathrm{de}^{\prime} f g h\right)^{R}$ using a PDA? (Keep ($d q e, q^{\prime} d e^{\prime}$) in finite state, process " $a b c^{\prime \prime}$ " $f g h$ " using stack)
- How about $a b c$ dqe fgh $\# a b c$ q'de' $^{\prime} f g h$?

Consider accepting computation $\alpha_{0} \vdash \alpha_{1} \vdash \alpha_{2} \vdash \alpha_{3} \vdash \cdots \vdash \alpha_{n}$

- CS: $\alpha_{0} \# \alpha_{1} \# \alpha_{2} \# \alpha_{3} \# \cdots \# \alpha_{n}$
- CS $R_{R}: \alpha_{0} \# \alpha_{1}^{R} \# \alpha_{2} \# \alpha_{3}^{R} \# \cdots \# \alpha_{n}$
$C S_{R}$ is the intersection of two CFL $L_{\text {odd }}$ and $L_{\text {even }}$, where
- $L_{\text {odd }}=\left\{\alpha_{0} \# \alpha_{1}^{R} \# \alpha_{2} \# \alpha_{3}^{R} \# \cdots \# \alpha_{n} \mid \alpha_{i} \vdash \alpha_{i+1}, i\right.$ is odd $\}$
- $L_{\text {even }}=\left\{\alpha_{0} \# \alpha_{1}^{R} \# \alpha_{2} \# \alpha_{3}^{R} \# \cdots \# \alpha_{n} \mid \alpha_{i} \vdash \alpha_{i+1}, i\right.$ is even $\}$

Linear Bounded Automaton

Figure: Schematic of Linear Bounded Automata

Definition 7

A linear bounded automaton is a nondeterministic Turing machine whose tape head is not allowed to move off the portion of its input. If an LBA tries to move its head off the input, the head stays.

- With a larger tape alphabet than its input alphabet, we may allow an LBA to use $c \times|w|$ tape cells on input w, where c is a constant.

Acceptance Problem for Linear Bounded Automata

- Consider

$$
A_{\mathrm{LBA}}=\{\langle M, w\rangle: M \text { is an LBA and } M \text { accepts } w\} .
$$

Lemma 8

Let M be an LBA. There are $|Q| \times n \times|\Gamma|^{n}$ different configurations of M for a tape of length n.

- An LBA has $|Q| \times n \times|\Gamma|^{n}$ different configurations on an input of length n. If an LBA runs for longer, it must repeat some configuration and thus will never halt.
- Many langauges can be decided by LBA's.
- For instance, $A_{\mathrm{DFA}}, A_{\mathrm{CFG}}, E_{\mathrm{DFA}}$, and E_{CFG}.
- Every context-free langauges can be decided by LBA's.

Acceptance Problem for Linear Bounded Automata

Theorem 9

$A_{\text {LBA }}$ is decidable.

Proof.

Consider
$L=$ "On input $\langle M, w\rangle$ where M is an LBA and w a string:
(1) Simulate M on w for $|Q| \times n \times|\Gamma|^{n}$ steps or until it halts. ($|Q|, n$, and $|\Gamma|$ are obtained from $\langle M\rangle$ and w.)
(2) If M does not halt in $|Q| \times n \times|\Gamma|^{n}$ steps, reject.

- If M accepts w, accept; if M rejects w, reject."
- The acceptance problem for LBA's is decidable. What about the emptiness problem for LBA's?

$$
E_{\mathrm{LBA}}=\{\langle M\rangle: M \text { is an LBA with } L(M)=\emptyset\} .
$$

Emptiness Problem for Linear Bounded Automata

Theorem 10

$E_{L B A}$ is undecidable.

Proof.

Reduce $A_{T M}$ to $E_{L B A}$. Let R be a TM deciding $E_{\text {LBA }}$. Consider $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Construct
$B=$ "On input $\left\langle C_{1}, C_{2}, \ldots, C_{l}\right\rangle, C_{i}$'s are configurations of M on w :
(1) If C_{1} (resp., C_{l}) is not start (resp. accepting) config., reject.
(2) For each $1 \leq i<l$, if C_{i} does not yield C_{i+1}, reject.
(0) Otherwise, accept."
(2) Run R on $\langle B\rangle$.
(3) If R rejects $[L(B) \neq \emptyset]$, accept $\left[\langle M, w\rangle \in A_{T M}\right]$; otherwise, reject."

Context Sensitive Grammars

- A context sensitive grammar (CSG) is a grammar where all productions are of the form

$$
\alpha A \beta \rightarrow \alpha \gamma \beta, \quad \alpha, \beta \in(N \cup \Sigma)^{*}, \gamma \in(N \cup \Sigma)^{+},
$$

- During derivation non-terminal A will be replaced by γ only when it is present in context of α and β.
- This definition shows clearly one aspect of this type of grammar; it is noncontracting, in the sense that the length of successive sentential forms can never decrease.
- The production $S \rightarrow \epsilon$ is also allowed if S is the start symbol and it does not appear on the right side of any production.
- A language L is said to be context-sensitive if there exists a context-sensitive grammar G, such that $L=L(G)$.
- An alternative definition of CSG:

$$
u \rightarrow v, \quad|u| \leq|v|, u, v \in(N \cup \Sigma)^{+},
$$

An Example

$\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is a CSL.
Consider the following CSG G
$S \rightarrow \epsilon|a b c| a T B c$
$T \rightarrow a b C \mid a T B C$
$C B \rightarrow C X ; C X \rightarrow B X ; B X \rightarrow B C$
$b B \rightarrow b b$
$C c \rightarrow c c$
E.g., To generate aaabbbccc, consider the following derivation:
$S \Rightarrow a T B c \Rightarrow a a T B C B c \Rightarrow a a a b C B C B c \Rightarrow a a a b B C C B c \Rightarrow a a a b B C B C c \Rightarrow$ $a a a b B B C C c \Rightarrow$ aaabbBCCc \Rightarrow aaabbbCCc \Rightarrow aaabbbCcc \Rightarrow aaabbbccc

More on CSLs

CSLs are closed under
(1) Union
(2) Intersection
(3) Concatenation
(9) Kleene closure
(5) Complement Immerman-Szelepcsenyi theorem (1987).
(1)-(4) can be shown using LBA constructions. (5) follows from "nondeterministic space being closed under complement," whose proof is not trivial.

$\mathrm{LBA} \equiv \mathrm{CSG}$

Theorem 11

A language is context-sensitive iff it can be accepted by a linear-bounded automaton.

Proof.

(\Rightarrow) Recall in CSG, if $u \rightarrow v$, then $|u| \leq|v|$. Use LBA's tape to keep the current derivation sentence, which never exceeds $|w|$ (Why?) (\Leftarrow) Intuitive Idea.
Suppose LBA M has accepting comput. $q_{0} a b c d \stackrel{*}{\Rightarrow}$ aeqfd $\stackrel{*}{\Rightarrow}$ e $q_{\text {acc }} f g h$. CSG G simulates the above in the following way

$$
\begin{gathered}
S \stackrel{*}{\Rightarrow} V_{\left(a, q_{0} a\right)} V_{(b, b)} V_{(c, c)} V_{(d, d)} \stackrel{*}{\Rightarrow} V_{(a, a)} V_{(b, e)} V_{(c, q f)} V_{(d, d)} \\
\stackrel{*}{\Rightarrow} V_{(a, e)} V_{\left(b, q_{a c c}\right)} V_{(c, g)} V_{(d, h)} \Rightarrow V_{(a, e)} b V_{(c, g)} V_{(d, h)} \Rightarrow V_{(a, e)} b c V_{(d, h)} \stackrel{*}{\Rightarrow} \operatorname{abcd}
\end{gathered}
$$

Proof (Cont'd)

Proof.

To realize the above, need rules such as

- $V_{(x, q a)} V_{(y, b)} \rightarrow V_{(x, c)} V_{(y, p b)}$ if $\delta(q, a)=(p, c, R) ;[\ldots q a b \ldots \rightarrow \ldots c p b \ldots]$
- $V_{(y, b)} V_{(x, q a)} \rightarrow V_{(x, p b)} V_{(y, c)}$ if $\delta(q, a)=(p, c, L) ;[\ldots b q a \ldots \rightarrow \ldots p b c \ldots]$
- $V_{\left(x, q_{a c c} y\right)} \rightarrow x ; x V_{(y, z)} \rightarrow x y ; \quad V_{(y, z)} x \rightarrow y x$
- What rules are needed for $S \stackrel{*}{\Rightarrow} V_{\left(a, q_{0} a\right)} V_{(b, b)} V_{(c, c)} V_{(d, d)}$? Easy!
- Why does the above grammar construction fail for r.e. languages?
- A bit tricky! You may generate $S \stackrel{*}{\Rightarrow} V_{\left(a, q_{0} a\right)} V_{(b, b)} V_{(c, c)} V_{(d, d)} V_{(\sqcup, \sqcup)} \ldots V_{(\sqcup, \sqcup)}$ to "reserve" worktape locations.
- But then you need rules to "contract" those \sqcup 's (rules such as $x V_{(\llcorner, y)} \rightarrow x$, which is not allowed in CSG.
- If contraction rules allowed, we have unrestricted grammars (or called Type-0 grammars)

Universality of Context-Free Grammars

- Consider a problem related to the emptiness problem for CFL's

$$
A L L_{\mathrm{CFG}}=\left\{\langle G\rangle: G \text { is a CFG and } L(G)=\Sigma^{*}\right\} .
$$

- Let x be a string. Write x^{R} for the string x in reverse order.
- Let $C_{1}, C_{2}, \ldots, C_{l}$ be the accepting configuration of M on input w. Consider the following string in the next theorem:

$$
\#\left\langle C_{1}\right\rangle \#\left\langle C_{2}\right\rangle^{R} \# \cdots \#\left\langle C_{2 k-1}\right\rangle \#\left\langle C_{2 k}\right\rangle^{R} \# \cdots \#\left\langle C_{l}\right\rangle \#
$$

Consider the following PDA:

(Fig. from M. Sipser's class notes)

Universality of Context-Free Grammars

Theorem 12

$A L L_{\text {CFG }}$ is undecidable.

Proof.

We reduce $A_{T M}$ to $A L L_{C F G}$. We construct a nondeterministic PDA D that accepts all strings if and only if M does not accept w. The input and stack alphabets of D contain symbols to encode M 's configurations.
$D=$ "On input $\# x_{1} \# x_{2} \# \cdots \# x_{l} \#$:
(1) Do one of the following branches nondeterministically:

If $x_{1} \neq\left\langle C_{1}\right\rangle$ where C_{1} is the start configuration of M on w, accept.
If $x_{l} \neq\left\langle C_{l}\right\rangle$ where C_{l} is a rejecting configuration of M, accept.
Choose odd i nondeterministically. If $x_{i} \neq\langle C\rangle, x_{i+1}^{R} \neq\left\langle C^{\prime}\right\rangle$, or C does not yield $C^{\prime}\left(C, C^{\prime}\right.$ are configurations of $\left.M\right)$, then accept." Choose even i nondeterministically. If $x_{i}^{R} \neq\langle C\rangle, x_{i+1} \neq\left\langle C^{\prime}\right\rangle$, or C does not yield $C^{\prime}\left(C, C^{\prime}\right.$ are configurations of $\left.M\right)$, then accept."
M accepts w iff the accepting computation history of M on w is not in $L(D)$ iff $C F G(D) \notin A L L_{\mathrm{CFG}}$.

Post Correspondence Problem (PCP)

- A domino is a pair of strings: $\left[\frac{t}{b}\right]$
- A $\underline{\text { match }}$ is a sequence of dominos $\left[\frac{t_{1}}{b_{1}}\right]\left[\frac{t_{2}}{b_{2}}\right] \cdots\left[\frac{t_{k}}{b_{k}}\right]$ such that $t_{1} t_{2} \cdots t_{k}=b_{1} b_{2} \cdots b_{k}$.
- The Post correspondence problem is to test whether there is a match for a given set of dominos.

$$
P C P=\{\langle P\rangle: P \text { is an instance of the PCP with a match }\}
$$

- Consider

$$
P=\left\{\left[\frac{\mathrm{b}}{\mathrm{ca}}\right],\left[\frac{\mathrm{a}}{\mathrm{ab}}\right],\left[\frac{\mathrm{ca}}{\mathrm{a}}\right],\left[\frac{\mathrm{abc}}{\mathrm{c}}\right]\right\}
$$

- A match in P :

$$
\left[\frac{\mathrm{a}}{\mathrm{ab}}\right]\left[\frac{\mathrm{b}}{\mathrm{ca}}\right]\left[\frac{\mathrm{ca}}{\mathrm{a}}\right]\left[\frac{\mathrm{a}}{\mathrm{ab}}\right]\left[\frac{\mathrm{abc}}{\mathrm{c}}\right]
$$

The Modified Post Correspondence Problem

- The modified Post correspondence problem is a PCP where a match starts with the first domino. That is,

$$
\begin{aligned}
M P C P=\{\langle P\rangle: & P \text { is an instance of the PCP with a match } \\
& \text { starting with the first domino }\}
\end{aligned}
$$

Theorem 13
PCP is undecidable.

Proof idea.

We reduce the acceptance problem for TM's to PCP. Given a TM M and a string w, we first construct an MPCP P^{\prime} such that $\left\langle P^{\prime}\right\rangle \in M P C P$ if and only if M accepts w. The MPCP P^{\prime} encodes an accepting computation history of M on w. Finally, we reduce MPCP P^{\prime} to PCP P.

The Post Correspondence Problem

Proof.

Let the TM R decide MPCP. Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be the given TM and $w=w_{1} w_{2} \cdots w_{n}$ the input. The set P^{\prime} of dominos has

- $\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right]$ as the first domino. Begin with the start configuration (bottom).

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{q a}{b r}\right]$ if $\delta(q, a)=(r, b, R)$ with $q \neq q_{\text {reject }}$. Reads a at state q (top); writes b and moves right (bottom).
- $\left[\frac{c q a}{r c b}\right]$ if $\delta(q, a)=(r, b, L)$ with $q \neq q_{\text {reject }}$. Reads a at state q (top); writes b and moves left (bottom).
- $\left[\frac{a}{a}\right]$ if $a \in \Gamma$. Keeps other symbols intact.

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\llcorner \#}\right]$ Matches previous \# (top) with a new \# (bottom). Adds \sqcup when M moves out of the right end.

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{a q_{\text {accept }}}{q_{\text {accept }}}\right]$ and $\left[\frac{q_{\text {accept }} a}{q_{\text {accept }}}\right]$ if $a \in \Gamma$. Eats up tape symbols around $q_{\text {accept }}$.
- $\left[\frac{q_{\text {accept }} \# \#}{\#}\right]$. Completes the match.

The Post Correspondence Problem

Proof (cont'd).

So far, we have reduced the acceptance problem of TM's to MPCP. To complete the proof, we need to reduce MPCP to PCP.
Let $u=u_{1} u_{2} \cdots u_{n}$. Define

$$
\begin{array}{rllllllllll}
\star u & = & * & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & \\
u \star & = & & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & * \\
\star u \star & = & * & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & *
\end{array}
$$

Given a MPCP P^{\prime} :

$$
\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

Construct a PCP P:

$$
\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2 \star}}\right], \ldots,\left[\frac{\star t_{k}}{b_{k} \star}\right],\left[\frac{* \diamond}{\diamond}\right]\right\}
$$

Any match in P must start with the domino $\left[\frac{\star t_{1}}{\star b_{1} \star}\right]$.

Some Applications of PCP

Theorem 14

Given two CFGs G_{1} and $G_{2}, " L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?" is undecidable.

Proof.

For a PCP instance $\left[\frac{t_{1}}{b_{1}}\right]\left[\frac{t_{2}}{b_{2}}\right] \cdots\left[\frac{t_{k}}{b_{k}}\right]$, where $t_{i}, b_{i} \in \Sigma^{*}$, construct

- $G_{1}: S_{1} \rightarrow a_{1} S_{1} t_{1}\left|a_{2} S_{1} t_{2} \ldots\right| a_{k} S_{1} t_{k}\left|a_{1} t_{1}\right| a_{2} t_{2} \ldots \mid a_{k} t_{k}$
- $G_{2}: S_{2} \rightarrow a_{1} S_{2} b_{1}\left|a_{2} S_{2} b_{2} \ldots\right| a_{k} S_{2} b_{k}\left|a_{1} b_{1}\right| a_{2} b_{2} \ldots \mid a_{k} b_{k}$
where $a_{i}, 1 \leq i \leq k$, are new symbols not in Σ. Clearly $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset \Leftrightarrow$ PCP has a match.
- Why do we need a_{1}, \ldots, a_{k} ?
- Can you modify the above construction to yield the following?

Theorem 15

Given a CFG G, checking whether G is ambiouous is undecidable.

More Undecidability Results for CFLs

Theorem 16

Given two CFGs G_{1} and G_{2}, and a regular language R, the following are undecisable:
(1) $L\left(G_{1}\right)=L\left(G_{2}\right)$
(2) $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$
(3) $L\left(G_{1}\right)=R$
(9) $R \subseteq L\left(G_{1}\right)$

Proof.

For (1) and (2), let $L\left(G_{1}\right)=\Sigma^{*}$. For (3) and (4), let $R=\Sigma^{*}$. Undecidability following from the undecidablity of $A L L_{C F G}$.

More on CFLs

Note, in contrast, that checking $L\left(G_{1}\right) \subseteq R$ is decidable.

- Let M be a FA accepting \bar{R}.

$$
L\left(G_{1}\right) \subseteq R \Leftrightarrow L\left(G_{1}\right) \cap L(M)=\emptyset
$$

The decidability result follows from $L\left(G_{1}\right) \cap L(M)$ being CFL, and the emptiness problem being decidable for CFLs.

- Why can we use a similar argument for $R \subseteq L\left(G_{1}\right)$?
- Note that $\overline{L\left(G_{1}\right)}$ may not be a CFL. E.g., $\Sigma^{*}-\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is CF. Why?

Computable Functions

Definition 17
 $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if some Turing machine M, on input w, halts with $f(w)$ on its tape.

- Usual arithmetic operations on integers are computable functions. For instance, the addition operation is a computable function mapping $\langle m, n\rangle$ to $\langle m+n\rangle$ where m, n are integers.

Mapping Reducibility

Definition 18

A language A is mapping reducible (or many-one reducible) to a language B (written $A \leq_{m} B$) if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that

$$
w \in A \text { if and only if } f(w) \in B, \text { for every } w \in \Sigma^{*}
$$

f is called the reduction of A to B.

Properties of Reducibility

Theorem 19

If $A \leq_{m} B$ and B is decidable, A is decidable.

Proof.

Let the TM M decide B and f the reduction of A to B. Consider $N=$ "On input w :
(1) Construct $f(w)$.
(2) Run M on $f(w)$.
(3) If M accepts, accept; otherwise reject.

Corollary 20

If $A \leq_{m} B$ and A is undecidable (i.e., not recursive), then B is undecidable.

Transitivity of Mapping Reductions

```
Lemma 21
If }A\mp@subsup{\leq}{m}{}B\mathrm{ and }B\mp@subsup{\leq}{m}{}C,A\leq\mp@subsup{m}{m}{}C
```


Proof.

Let f and g be the reductions of A to B and B to C respectively. $g \circ f$ is a reduction of A to C.

Example 22

Give a mapping reduction from A_{TM} to $P C P$.

Proof.

The proof of Theorem 13 gives such a reduction. We first show $A_{\mathrm{TM}} \leq_{m} M P C P$. Then we show $M P C P \leq_{m} P C P$.

More Properties about Mapping Reductions

Theorem 23
If $A \leq_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

Similar to the proof of Theorem 19 except that M and N are TM's, not deciders.

Corollary 24

If $A \leq_{m} B$ and A is not Turing-recognizable (non-r.e.), then B is not Turing-recognizable.

More Properties about Mapping Reductions

- Observe that $A \leq_{m} B$ if and only if $\bar{A} \leq_{m} \bar{B}$.
- The same reduction applies to \bar{A} and \bar{B} as well.
- Recall that $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
- In order to show B is not Turing-recognizable, it suffices to show $A_{\mathrm{TM}} \leq_{m} \bar{B}\left(\right.$ or $\left.\overline{A_{\mathrm{TM}}} \leq_{m} B\right)$.
- $A_{\mathrm{TM}} \leq_{m} \bar{B}$ implies $\overline{A_{\mathrm{TM}}} \leq_{m} \overline{\bar{B}}$. That is, $\overline{A_{\mathrm{TM}}} \leq_{m} B$.

Mapping vs. General Reducibility

- (General) Reducibility of A to B : Use B solver (as a subroutine) to solve A.
- Conceptually simpler
- Useful for proving undecidability

A solver
 B solver

- A is reducible to \bar{A}.
- A may not be mapping reducible to \bar{A}.
- Note that $\overline{A_{T M}} \not \mathbb{Z}_{m} A_{T M}$. Why?

Reducibility - General Framework

To prove B is undecidable (i.e., not recursive):

- Show that undecidable A is reducible to B. (e.g., A is $A_{T M}$)
- Approach:
(1) Assume TM R decides B.
(2) Construct TM S deciding A. Contradiction.

To prove B is Turing-unrecognizable (i.e., non-r.e.):

- Show that Turing-unrecognizable A is mapping reducible to B. (e.g., A is $\overline{A_{T M}}$)
- Approach:
(1) Give many-one reduction function f.
* Show f is computable.
\star Show $w \in A \Leftrightarrow f(w) \in B$.

Examples

Example 25

Give a mapping reduction of A_{TM} to $H A L T_{\mathrm{TM}}$.

Proof.

We need to show a computable function f such that $\langle M, w\rangle \in A_{\text {TM }}$ if and only if $\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{\mathrm{TM}}$ whenever $\left\langle M^{\prime}, w^{\prime}\right\rangle=f(\langle M, w\rangle)$.
Consider
$F=$ "On input $\langle M, w\rangle$:
(1) Use $\langle M\rangle$ and w to construct
$M^{\prime}=$ "On input x :
(1) Run M on x.
(2) If M accepts, accept.
(3) If M rejects, loop."
(2) Output $\left\langle M^{\prime}, w\right\rangle$."

Examples

Example 26

Give a mapping reduction of $A_{T M}$ to $\operatorname{Regular}_{T M}=\{\langle M\rangle \mid L(M)$ is regular\}.

- $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$ described below
M^{\prime} takes input x :
- if x has form $0^{n} 1^{n}$, accept
- else simulate M on w and accept x if M accepts
$M^{\prime}=\left\{0^{n} 1^{n}\right\}$ if $w \notin L(M)$
$=\Sigma^{*}$ if $w \in L(M)$
What would a formal proof of this look like?
- is f computable?
- YES maps to YES? $\langle M, w\rangle \in A C C_{T M} \Rightarrow$ $f(M, w) \in$ REGULAR
- NO maps to NO? $\langle M, w\rangle \notin A C C_{T M} \Rightarrow$ $f(M, w) \notin R E G U L A R$

Examples

Example 27

Give a mapping reduction from E_{TM} to $E Q_{\mathrm{TM}}$.

Proof.

The proof of Theorem 5 gives such a reduction. The reduction maps the input $\langle M\rangle$ to $\left\langle M, M_{1}\right\rangle$ where M_{1} is a TM with $L\left(M_{1}\right)=\emptyset$.

$E_{T M}$ is not Turing-recognizable

Theorem 28

$E_{T M}$ is not Turing-recognizable.

Proof.

Show $\overline{A_{T M}} \leq_{m} E_{T M}$.
$F=$ "On input $\langle M, w\rangle$:
(1) Use $\langle M\rangle$ and w to construct
$M^{\prime}=$ "On input x :
(1) if $x \neq w$, reject; else run M on w.
(2) If M accepts, accept.
(2) Output $\left\langle M^{\prime}\right\rangle$."

- F is clearly computable. Furthermore, $\langle M, w\rangle \notin A_{T M} \Leftrightarrow L\left(M^{\prime}\right)=\emptyset$
- Is $E_{T M}$ co-Turing-recognizable?
(Nondeterministically generate a w on its tape, run M on w).

Equivalence Problem for TM's (revisited)

Theorem 29

$E Q_{T M}$ is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.

We first show $A_{\mathrm{TM}} \leq_{m} \overline{E Q_{\mathrm{TM}}}$. Consider $F=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Construct

- $M_{1}=$ "On input x : Reject."
- $M_{2}=$ "On input x :
(1) Run M on w. If M accepts, accept."
(2) Output $\left\langle M_{1}, M_{2}\right\rangle$."

Equivalence Problem for TM's (revisited)

Proof (cont'd).

Next we show $A_{\text {TM }} \leq_{m} E Q_{\text {TM }}$. Consider
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
© Construct

- $M_{1}=$ "On input x : Accept."
- $M_{2}=$ "On input x :
- Run M on w.
© If M accepts w, accept."
(2) Output $\left\langle M_{1}, M_{2}\right\rangle$."

Strong Rice's Theorem

Theorem 30

Let P be a non-trivial property of TM descriptions, and M be a TM s.t. $L(M)=\Sigma^{*}$. If $\langle M\rangle \notin P$, then P is not Turing-recognizable.

Proof.

If we could show $A_{T M} \leq_{m} \bar{P}$, which in turn implies $\overline{A_{T M}} \leq_{m} P$. Pick a TM T with $\langle T\rangle \in P$. Consider $S=$ "On input $\langle M, w\rangle$:
(1) If $\langle M, w\rangle$ does not encode a TM and a string, then accept.
(2) Use $\langle M, w\rangle$ to construct
$M_{w}=$ "On input x :
(1) Run M on w and T on x in parallel,
(2) If either accepts, accept x

B Run the "supposed" recognizer for P on $\left\langle M_{w}\right\rangle$. Output what the recognizer says.

- $L\left(M_{w}\right)=\Sigma^{*}\left(\left\langle M_{w}\right\rangle \notin P\right)$ iff $\langle M, w\rangle \in A_{T M}$
- $L\left(M_{w}\right)=L(T)(\langle T\rangle \in P)$ iff $\langle M, w\rangle \notin A_{T M}$

Applications of Strong Rice's Theorem

- $E_{T M}=\{\langle M\rangle \mid L(M)=\emptyset\}$ is not Turing-recognizable
- Clearly $E_{T M}$ is a non-trivial property
- For M with $L(M)=\Sigma^{*},\langle M\rangle \notin E_{T M}$.
- Can you think of other applications?

Arithmetic Hierarchy

- A language L is in $\Sigma_{0}\left(\right.$ or $\left.\Pi_{0}\right)$ if it is recursive.
- A language L is in Σ_{n}, where $n \geq 1$, if there is a recursive relation $R\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$ such that

$$
x \in L \Leftrightarrow \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q_{n} y_{n} R\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where Q_{n} is \exists (resp., \forall) if n is odd (resp., even).

- A language L is in Π_{n}, where $n \geq 1$, if there is a recursive relation $R\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$ such that

$$
x \in L \Leftrightarrow \forall y_{1} \exists y_{2} \forall y_{3} \ldots Q_{n} y_{n} R\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where Q_{n} is \exists (resp., \forall) if n is even (resp., odd).

- $\Delta_{n}=\Sigma_{n} \cap \Pi_{n}$.

Arithmetic Hierarchy

Some Examples in Arithmetic Hierarchy

In what follows, we let $R(M, w, n)$ be a predicate which is true if TM M accepts w in $\leq n$ steps. Clearly, R is a decidable predicate.

- $A_{T M}=\{\langle M, w\rangle \mid \exists n, R(M, w, n)\}$.
- $A_{T M} \in \Sigma_{1}$
- $E_{T M}=\left\{\langle M\rangle \mid \forall_{\langle w, n\rangle}, \neg R(M, w, n)\right\}$.
- $E_{T M} \in \Pi_{1}$
- $A L L_{T M}=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \forall_{w} \exists_{n}, R(M, w, n)\right\}$.
- $A L L_{T M} \in \Pi_{2}$
- $\operatorname{FIN}_{T M}=\{\langle M\rangle \mid L(M)$ is finite $\}=$ $\left\{\langle M\rangle \mid \exists_{m} \forall_{\langle w, n\rangle}(|w| \leq m) \vee \neg R(M, w, n)\right\}$.
- FIN $_{T M} \in \Sigma_{2}$
- COFIN $_{T M}=\{\langle M\rangle \mid \overline{L(M)}$ is finite $\}=$ $\left\{\langle M\rangle \mid \exists_{m} \forall_{w} \exists_{n}(|w| \leq m) \vee R(M, w, n)\right\}$.
- $\operatorname{COFIN}_{T M} \in \Sigma_{3}$

Some Examples in Arithmetic Hierarchy

How about the following languages:

- $E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

Note: $\overline{E Q_{T M}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid\right.$
$\left.\exists_{\langle w, n\rangle} \forall_{m}\left(R\left(M_{1}, w, n\right) \wedge \neg R\left(M_{2}, w, m\right)\right) \vee\left(R\left(M_{2}, w, n\right) \wedge \neg R\left(M_{1}, w, m\right)\right)\right\}$

- $I N F_{T M}=\{\langle M\rangle \mid L(M)$ is infinite $\}$

Note: $\left.I N F_{T M}=\left\{\langle M\rangle\left|\forall_{m} \exists_{\langle w, n\rangle}\right\rangle|w| \geq m\right) \wedge R(M, w, n)\right\}$

- $\operatorname{REG}_{\text {TM }}=\{\langle M\rangle \mid L(M)$ is regular $\}$ Note: $\operatorname{REG}_{T M}=\left\{\langle M\rangle \mid \exists_{\left\langle M^{\prime}\right\rangle} \forall_{w} \exists_{n}\left(R^{\prime}\left(M^{\prime}, w\right) \Leftrightarrow R(M, w, n)\right)\right\}$, where M^{\prime} is a FA, and $R^{\prime}\left(M^{\prime}, w\right)$ is true if FA M^{\prime} accepts w.
- How about
$C F L_{T M}=\{\langle M\rangle \mid L(M)$ is coontxt-free $\}$?
$R E C_{T M}=\{\langle M\rangle \mid L(M)$ is recursive $\}$?

