## Supplementary Materials

## Finite Automata



Figure: A Finite Automaton accepting string abdf.

## Finite Transducers



Figure: A Finite Transducer generating string xywt on input abdf.

## Weighted Finite Automata



Figure: A Weighted Finite Automaton with weight $n_{0} \otimes n_{1} \otimes n_{2} \otimes n_{4} \otimes n_{6} \otimes n_{7}$ on input abdf.

## Weighted Finite Transducer



Figure: A Weighted Finite Transducer with output xywt and weight $n_{0} \otimes n_{1} \otimes n_{2} \otimes n_{4} \otimes n_{6} \otimes n_{7}$ on input abdf.

## Shortest Path



- Compute $10+6=16$ and $5+8=13$
- Output $\min \{16,13\}$.


## Maximum Reliability



- Compute $0.5 \times 0.6=0.3$ and $0.8 \times 0.7=0.56$
- Output max\{0.3, 0.56\}.


## Language Acceptor



- Compute $\{x\} \cdot\{y\}$ and $\{x\} \cdot\{z\}=x z$
- Output $\bigcup\{x y, x z\}$.


## Generic Problem Solving

The above three problems were different on the surface, but at the core, they are actually very much the same problem. Consider:

- $\min \{(10+6),(5+8)\}$
- $\max \{(0.5 \times 0.6),(0.8 \times 0.7)\}$
- $\bigcup\{\{x\} \cdot\{y\},\{x\} \cdot\{z\}\}$

Hence, it is interesting to see how to unify the above in a single framework - Semiring.

The above three are semirings with operators $(\min ,+),(\max , \times)$ and $(\bigcup, \cdot)$.

## Types of "Extended" Finite Automata

| Type | Input | Output | Weight | Mapping |
| :---: | :---: | :---: | :---: | :---: |
| Finite Automata (FA) | $\checkmark$ |  |  | $\Sigma^{*} \rightarrow$ accept, reject |
| Finite Transducer (FT) | $\checkmark$ | $\checkmark$ |  | $\Sigma^{*} \rightarrow 2^{\Gamma^{*}}$ |
| Weighted FA (WFA) | $\checkmark$ |  | $\checkmark$ | $\Sigma^{*} \rightarrow S$ |
| Weighted FT (WFT) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\Sigma^{*} \rightarrow 2^{\Gamma^{*}} \times S$ |

## Abstract Algebra - Field

A Field is a 5 -tuple $(S, \oplus, \otimes, \overline{0}, \overline{1})$, where $S$ is a set and $\oplus$ and $\otimes$ are two operators, such that

Addition $\oplus$

- Associativity:

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

- Commutativity: $a \oplus b=b \oplus a$
- Identity $\overline{0}: \overline{0} \oplus a=a \oplus \overline{0}=a$
- Inverse -a:

$$
-a \oplus a=a \oplus-a=\overline{0}
$$

## Multiplication $\otimes$

- Associativity:

$$
(a \otimes b) \otimes c=a \otimes(b \otimes c)
$$

- Commutativity: $a \otimes b=b \otimes a$
- Identity $\overline{1}: \overline{1} \otimes a=a \otimes \overline{1}=a$
- Inverse $a^{-1}$ :
$a^{-1} \otimes a=a \otimes a^{-1}=\overline{1}$

Distributivity of Multiplication over Addition

- $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$
- $(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)$


## Abstract Algebra - Ring

A Ring is a 5-tuple $(S, \oplus, \otimes, \overline{0}, \overline{1})$, where $S$ is a set and $\oplus$ and $\otimes$ are two operators, such that

## Addition $\oplus$

- Associativity:

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

- Commutativity: $a \oplus b=b \oplus a$
- Identity $\overline{0}: \overline{0} \oplus a=a \oplus \overline{0}=a$


## Multiplication ©

- Associativity:

$$
(a \otimes b) \otimes c=a \otimes(b \otimes c)
$$

- Identity $\overline{1}: \overline{1} \otimes a=a \otimes \overline{1}=a$
- Inverse -a:

$$
-a \oplus a=a \oplus-a=\overline{0}
$$

Distributivity of Multiplication over Addition

- $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$
- $(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)$

Example: Square Matrices

## Abstract Algebra - Semiring

A Semiring is a 5-tuple $(S, \oplus, \otimes, \overline{0}, \overline{1})$, where $S$ is a set and $\oplus$ and $\otimes$ are two operators, such that

## Addition $\oplus$

- Associativity:

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

- Commutativity: $a \oplus b=b \oplus a$
- Identity $\overline{0}: \overline{0} \oplus a=a \oplus \overline{0}=a$


## Multiplication \&

- Associativity:

$$
(a \otimes b) \otimes c=a \otimes(b \otimes c)
$$

- Identity $\overline{1}: \overline{1} \otimes a=a \otimes \overline{1}=a$

Distributivity of Multiplication over Addition

- $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$
- $(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)$

Example: Probability

## Examples of Semirings

- Probability: $([0,1],+, \times, 0,1)$
- Boolean: $(\{0,1\}, \vee, \wedge, 0,1)$
- Tropical: $(R$, min $,+, \infty, 0)$
- Log : $\left(R, \oplus_{\text {LOG }},+, \infty, 0\right)$, where

$$
x \oplus_{\text {LOG }} y=-\log \left(e^{-x}+e^{-y}\right)
$$

## An Algebraic View of DFA



Figure: A Finite Automaton $M_{1}$

Consider the following matrix representation:

- Initial state $I=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$; final state $F=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$;

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

## Algebraic View of DFA

The computation $q_{1} \xrightarrow{1} q_{2} \xrightarrow{0} q_{3} \xrightarrow{1} q_{2}$ is represented by
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)^{T} \cdot\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)=$
$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)^{T} \cdot\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)=$
$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)^{T} \cdot\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)^{T}$
As $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)^{T} \cdot F=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)^{T} \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=1$, the input " 101 " is accepted.

## Algebraic View of NFA



Figure: NFA $N_{4}$

$$
M_{a}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right) ; M_{b}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) ; M_{\epsilon}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

## Matrix Multiplication

## Question:

How to define matrix multiplication
$\left(\begin{array}{lll}a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3}\end{array}\right) \cdot\left(\begin{array}{lll}b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3}\end{array}\right)$ for the above examples"

- In $\left(a_{1,1} \cdot b_{1,1}+a_{1,2} \cdot b_{2,1}+a_{1,3} \cdot b_{3,1}\right)$, for instance, the operations "." and " + " stand for integer multiplication and addition, resp.
- Suppose " 1 " and " 0 " stand for Boolean "True" and "False", resp., the operations "." and " + " stand for Boolean operations $\wedge$ and $\vee$, resp.
- Hence, conventional FA are with respect to $(\vee, \wedge)$-Semiring.


## Probabilistic FA: $(+, \times)$-Semiring



$$
\begin{aligned}
& \text { PFA } A_{0}: q_{s}=q_{1}, q_{r}=q_{2}, q_{a}=q_{3} \\
& M_{0}=\left(\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{lll}
\frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

On input 011, we calculate

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)^{T} \cdot\left(\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=
$$

$$
\left(\begin{array}{c}
\frac{2}{9} \\
\frac{1}{3} \\
\frac{4}{9}
\end{array}\right)^{T} \cdot\left(\begin{array}{ccc}
\frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{27} \\
\frac{1}{3} \\
\frac{16}{27}
\end{array}\right)^{T} \text {, where } \frac{16}{27} \text { corresponds to }
$$

- $q_{s} \xrightarrow{0 \left\lvert\, \frac{2}{3}\right.} a_{s} \xrightarrow{1 \left\lvert\, \frac{1}{3}\right.} q_{s} \xrightarrow{1 \left\lvert\, \frac{2}{3}\right.} q_{a} \Rightarrow$ prob. $=\frac{4}{27}$
- $q_{s} \xrightarrow{0 \left\lvert\, \frac{2}{3}\right.} a_{s} \xrightarrow{1 \left\lvert\, \frac{2}{3}\right.} q_{a} \xrightarrow{1 \mid 1} q_{a} \Rightarrow$ prob. $=\frac{4}{9}$


## Probabilistic Finite Automaton - Formal Definition

A probabilistic finite automaton (PFA) $A$ is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- $Q$ is a finite set of states;
- $\Sigma$ is a finite alphabet;
- $\delta: Q \times \Sigma \times Q \rightarrow[0,1]$ is the transition function, such that $\forall q, \in Q, \forall a \in \Sigma, \sum_{q^{\prime} \in Q} \delta\left(q, a, q^{\prime}\right)=1$, where $\delta\left(q, a, q^{\prime}\right)$ is a rational number;
- $q_{0} \in Q$ is the start state; and
- $F \subseteq Q$ is the accept states.

The language $L_{\diamond x}(A)=\left\{u \in \Sigma^{*} \mid P_{A}(u) \diamond x\right\}$, where $P_{A}(u)$ is the probability of acceptance on $u, x \in[0,1]$, and $\diamond \in\{<, \leq,=, \geq,>\}$.

- In general, $L_{\diamond x}(A)$ may not be regular. For instance, $L_{>\frac{1}{2}}\left(A_{0}\right)$ and $L_{\geq \frac{1}{2}}\left(A_{0}\right)$ are not regular.
- $L_{\diamond x}(A)$ is regular, if $x \in\{0,1\}$.


## Why Tree Automata?

- Foundations of XML type languages (DTD, XML Schema, Relax NG...)
- Provide a general framework for XML type languages
- A tool to define regular tree languages with an operational semantics
- Provide algorithms for efficient validation
- Basic tool for static analysis (proofs, decision procedures in logic)
- ...
E.g. Binary trees with an even number of $a^{\prime}$ s



## Binary Trees \& Ranked Trees

- Binary trees with an even number of $a^{\prime}$ s
- How to write transitions?
- (even, odd) $\xrightarrow{a}$ even
- (even, even) $\xrightarrow{a}$ odd
- ...
- Ranked Tree:
- Alphabet:

$$
\left\{a^{(2)}, b^{(2)}, c^{(3)}, \#^{(0)}\right\}
$$

- $a^{(k)}: \operatorname{symbol} a$ with $\operatorname{arity}(a)=$ k



## Bottom-up (Ranked) Tree Automata

A ranked bottom-up tree automaton A consists of:

- Alphabet $(A)$ : finite alphabet of symbols
- States $(A)$ : finite set of states
- Rules $(A)$ : finite set of transition rules
- Final $(A)$ : finite set of final states $(\subseteq$ States $(A))$
where $\operatorname{Rules}(A)$ are of the form $\left(q_{1}, \ldots, q_{k}\right) \xrightarrow{a^{(k)}} q$;
if $k=0$, we write $\epsilon \xrightarrow{a^{(0)}} q$


## Bottom-up Tree Automata: An Example



Principle

- $\operatorname{Alphabet}(A)=\{\wedge, \vee, 0,1\}$
- States $(A)=\left\{q_{0}, q_{1}\right\}$
- 1 accepting state at the root: $\operatorname{Final}(A)=\left\{q_{1}\right\}$

Rules(A)

$$
\begin{array}{ll}
\epsilon \xrightarrow{\circ} q_{0} & \epsilon \xrightarrow{1} q_{1} \\
\left(q_{1}, q_{1}\right) \xrightarrow{\wedge} q_{1} & \left(q_{0}, q_{1}\right) \xrightarrow{\vee} q_{1} \\
\left(q_{0}, q_{1}\right) \xrightarrow{\wedge} q_{0} & \left(q_{1}, q_{0}\right) \xrightarrow{\bullet} q_{1} \\
\left(q_{1}, q_{0}\right) \xrightarrow[\rightarrow]{q_{0}} & \left(q_{1}, q_{1}\right) \xrightarrow{\rightarrow} q_{1} \\
\left(q_{0}, q_{0}\right) \xrightarrow[\rightarrow]{ } q_{0} & \left(q_{0}, q_{0}\right) \xrightarrow{\rightarrow} q_{0}
\end{array}
$$

## Top-down (Ranked) Tree Automata

A ranked top-down tree automaton A consists of:

- Alphabet $(A)$ : finite alphabet of symbols
- States $(A)$ : finite set of states
- Rules $(A)$ : finite set of transition rules
- Final $(A)$ : finite set of final states $(\subseteq \operatorname{States}(A))$
where $\operatorname{Rules}(A)$ are of the form $q \xrightarrow{a^{(k)}}\left(q_{1}, \ldots, q_{k}\right)$;
if $k=0$, we write $\epsilon \xrightarrow{a^{(0)}} q$

Top-down tree automata also recognize all regular tree languages

## Top-down Tree Automata: An Example



## Principle

- starting from the root, guess correct values
- check at leaves
- 3 states: $q_{0}, q_{1}$, acc
- initial state at the root: $q_{1}$
- accepting if all leaves labeled acc

$$
\begin{array}{ll}
\text { Transitions } & \\
q_{1} \xrightarrow{\rightarrow}\left(q_{1}, q_{1}\right) & q_{1} \xrightarrow{\bullet}\left(q_{0}, q_{1}\right) \\
q_{0} \xrightarrow{\rightarrow}\left(q_{0}, q_{1}\right) & q_{1} \xrightarrow{\bullet}\left(q_{1}, q_{0}\right) \\
q_{0} \xrightarrow{\rightarrow}\left(q_{1}, q_{0}\right) & q_{1} \xrightarrow{\longrightarrow}\left(q_{1}, q_{1}\right) \\
q_{0} \xrightarrow{\rightarrow}\left(q_{0}, q_{0}\right) & q_{0} \xrightarrow{\rightarrow}\left(q_{0}, q_{0}\right) \\
q_{1} \xrightarrow{\rightarrow} \text { acc } & q_{0} \xrightarrow{\text { acc }} \text { acc }
\end{array}
$$

## Expressive Power of Tree Automata

## Theorem 1

The following properties are equivalent for a tree language $L$ :
(a) L is recognized by a bottom-up non-deterministic tree automaton
(b) $L$ is recognized by a bottom-up deterministic tree automaton
(c) $L$ is recognized by a top-down non-deterministic tree automaton
(d) L is generated by a regular tree grammar

## Deterministic Top-down Tree Automata

Deterministic top-down tree automata do not recognize all regular tree languages

- Example:


$$
\begin{aligned}
& \text { Initial }(A)=q_{0} \\
& q_{0} \xrightarrow{a}(q, q) \\
& q \xrightarrow{b} \epsilon \\
& q \xrightarrow[\rightarrow]{ } \epsilon \\
& \text { also accepts... }
\end{aligned}
$$



## Unranked Trees



Ranked Tree


$\delta(\sigma, q)$ : specified by a regular expression (i.e., regular language).


## Quantum Entanglement

- An $n$-qubit system can exist in any superposition of the $2^{n}$ basis states.

$$
\alpha_{0}|000 \ldots . .000\rangle+\alpha_{1}|000 \ldots . .001\rangle+\cdots+\alpha_{2^{n}-1}|111 \ldots 111\rangle
$$

- Sometimes such a state can be decomposed into the states of individual bits

$$
\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)=|0\rangle \otimes \frac{1}{\sqrt{2}}((|0\rangle+|1\rangle))
$$

- But,

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

is not decomposible, which is called an entangled state.

## Unitary Evolution

- A quantum system that is not measured (i.e. does not interact with its environment) evolves in a unitary fashion.
- That is, it's evolution in a time step is given by a unitary linear operation.
- Such an operator is described by a matrix $U$ such that

$$
U U^{*}=I
$$

where $U^{*}$ is the conjugate transpose of $U$.

$$
\left(\begin{array}{cc}
3 & 3+i \\
2-i & 2
\end{array}\right)^{*}=\left(\begin{array}{cc}
3 & 2+i \\
3-i & 2
\end{array}\right)
$$

## Quantum Automata

- Quantum finite automata are obtained by letting the matrices $M_{\sigma}$ have complex entries. We also require each of the matrices to be unitary. E.g.

$$
M_{\sigma}=\left(\begin{array}{cc}
-1 & 0 \\
0 & i
\end{array}\right)
$$

- If all matrices only have 0 or 1 entries and the matrices are unitary, then the automaton is deterministic and reversible.


## Quantum Automata

Consider the automaton in a one letter alphabet as:


$$
M_{a}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

- The initial state $\left|\psi_{0}\right\rangle=1 \cdot|0\rangle+0 \cdot|1\rangle=(1,0)^{T}$
- $M_{a a}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Hence, upon reading $a a, M^{\prime}$ 's state is $|\psi\rangle=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \cdot\binom{1}{0}=\binom{0}{-1}=0 \cdot|0\rangle+-1 \cdot|1\rangle$
- There are two distinct paths labelled aa from $q_{1}$ back to itself, and each has non-zero probability, the net probability of ending up in $q_{1}$ is 0 .
- The automaton accepts a string of odd length with probability 0.5 and a string of even length with probability 1 if its length is not a multiple of 4 and probability 0 otherwise.


## Measure-once Quantum Automata

- The accept state of the automaton is given by an $N \times N$ projection matrix P, so that, given a N-dimensional quantum state $|\psi\rangle$, the probability of $|\psi\rangle$ being in the accept state is $\langle\psi| P|\psi\rangle=\| P|\psi\rangle \|^{2}$. In the previous example, $P=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
- The probability of the state machine accepting a given finite input string $\sigma=\left(\sigma_{0}, \sigma_{1}, \cdots, \sigma_{k}\right)$ is given by
$\operatorname{Pr}(\sigma)=\| P U_{\sigma_{k}} \cdots U_{\sigma_{1}} U_{\sigma_{0}}|\psi\rangle \|^{2}$. In the previous example, $\operatorname{Pr}(a a)=$ $\binom{0}{-1}^{T} \cdot\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \cdot\binom{0}{-1}=1$
- A regular language is accepted with probability $p$ by a quantum finite automaton, if, for all sentences $\sigma$ in the language, (and a given, fixed initial state $|\psi\rangle$ ), one has $p<\operatorname{Pr}(\sigma)$.


## Language Accepted

- Measure Many 1-way QFA: Measurement is performed after each input symbol is read.
- Measure-many model is more powerful than the measure-once model, where the power of a model refers to the acceptance capability of the corresponding automata.
- MM-1QFA can accept more languages than MO- 1QFA.
- Both of them accept proper subsets of regular languages.

