Probabilistic Computation

Definition 1

A probabilistic TM (PTM) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, F, \delta_1, \delta_2)$, where $Q, \Sigma, \Gamma, q_0, F$ are the same as those in classical Turing machines and δ_1, δ_2 are two deterministic transition functions, such that at each step, the TM applies either the transition function δ_1 with prob. $\frac{1}{2}$ or the transition function δ_2 with prob. $\frac{1}{2}$, resembling a <u>coin flip</u>.

- We may think of transitions as being selected randomly, with equal probability of 0.5, i.e., the PTM flips a fair coin in each step.
- PTMs therefore are very similar to NTMs with (at most) two options per step.

Probabilistic TM (Cont'd)

- Probability of acceptance = $\sum_{accepting \ path \ \sigma} Prob(\sigma)$
- Probability of rejection = $\sum_{rejecting \ path \ \sigma} Prob(\sigma)$
- Example:
 - Prob. Acceptance = $\frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \frac{1}{8} + \frac{1}{4} = \frac{13}{16}$
 - Prob. Rejection = $\frac{1}{16} + \frac{1}{8} = \frac{3}{16}$
- We consider TMs that halt (either accept or reject) on every branch - deciders.
- So the two probabilities total 1.

Definition 2

A PTM is a deterministic TM that receives two inputs *x* and *r*, where $x \in \Sigma^*$ is an input word, and $r \in \{0, 1\}^*$ is a sequence of random numbers placed on a *read-only random tape*. If (x, r) is accepted, we may call *r* a witness for *x*.

Note the similarity to the notion of polynomial verifiers used for NP.

A string $r \in \{0,1\}^n$ is associated with probability $\frac{1}{2^n}$.

(NTU EE)

How to Define Acceptance for PTMs?

Definition 3

 $Prob[M \text{ accepts } w] = \sum_{b \text{ is an accepting path}} prob(b)$ Prob[M rejects w] = 1 - Prob[M accepts w]

A natural way to define acceptance is based on the notion of "majority".

Definition 4

Given a PTM M and an input $w, w \in L(M)$ iff Prob[M accepts w] > $\frac{1}{2}$.

Definition 5

For $0 \le \epsilon < 1/2$, *M* accepts *w* with *error probability* ϵ (written as $e_M(w) = \epsilon$) if

• $w \in L(M)$ implies $Prob[M \text{ accepts } w] \ge (1 - \epsilon)$

In the above definition, ϵ depends on w. E.g., $e_M(w) = \frac{1}{2}(1 - \frac{1}{|w|})$.

イロト イポト イヨト イヨト

Bounded Error Probability

- The problem with the previous definition of acceptance is that $Prob[M \text{ accepts } w] \ (> \frac{1}{2})$ could be arbitrarily close to $\frac{1}{2}$, making the difference between Prob[M accepts w] and Prob[M rejects w] arbitrarily small.
- In some applications, we prefer a "gap" between the probabilities of acceptance and rejection, which leads to the notion of "bounded error probability".

Definition 6

A PTM *M* is with bounded error prob. if $\exists \epsilon < \frac{1}{2}$, for all *w*.

- $w \in L(M)$ implies $Prob[M \text{ accepts } w] \ge (1 \epsilon)$
- $w \notin L(M)$ implies $Prob[M \text{ rejects } w] \ge (1 \epsilon)$

Note that in the above, ϵ does not depend on w.

- We are mainly interested in PTMs that run in polynomial time. There is still an issue: polynomial in what sense (Worst-case vs. Average-case)?
- Recall that for an NTM *M*,
 - w ∈ L(M): ∃ a computation leading to acceptance, while the rest of the computations may lead to rejection.
 - 2 $w \notin L(\overline{M})$: all computations lead to rejection.
- Acceptance for classical NTMs allows *one-sided error*. See (1) above. It does not make much sense for NTMs to have two-sided error. Why?
- For PTMs, we consider both *one-sided* and *two-sided errors*.

Theorem 7

Every r.e. set is accepted (under Def. 4) by some PTM with finite average running time.

Proof.

Let *W* be an r.e. set and let *M* be a DTM accepting *W*. Construct the following PTM M'

- repeat
- 2 simulate one step of M(x)
- if M(x) accepted at last step then accept
- until cointoss()="heads"
- if cointoss()="heads" the accept else reject

Clearly if $x \notin W$, M' terminates only at line 5. In this case, the prob= $\frac{1}{2}$, so $x \notin L(M')$. If $x \in W$, prob = Prob(exits line3) + $\frac{1}{2} > \frac{1}{2}$. What is the average running time? (Hint: Consider $\sum_{n=1}^{\infty} (n \times 2^{-n})$)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

One-Sided Error: The classes RP and coRP

We write M(x) = 1 (resp., =0) for *M* accepts (resp., rejects) *x*.

Definition 8

A language $L \in \text{RP}$ (Randomized Polynomial Time), iff a probabilistic Polynomial-time TM *M* exists, such that

•
$$x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) \ge \frac{1}{2}$$

•
$$x \notin L \Rightarrow \operatorname{Prob}(M(x) = 0) = 1$$
 (or equivalently $\operatorname{Prob}(M(x) = 1) = 0$)

Definition 9

A language $L \in \text{co-RP}$, iff a probabilistic Polynomial-time TM *M* exists, such that

•
$$x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) = 1$$

•
$$x \notin L \Rightarrow \operatorname{Prob}(M(x) = 0) \ge \frac{1}{2}$$

These two classes complement each other, i.e., $coRP = \{\overline{L} \mid L \in RP\}$.

Comparing RP with NP

- Let *R*_{*L*} be the relation defining the witness/guess for *L* for a certain TM.
- NP:
 - $x \in L \Rightarrow \exists y, (x, y) \in R_L$ • $x \notin L \Rightarrow \forall y, (x, y) \notin R_L$
- RP:
 - $x \in L \Rightarrow Prob((x, r) \in R_L) \ge \frac{1}{2}$
 - $x \notin L \Rightarrow \forall r, (x, r) \notin R_L$
- RP corresponds to the so-called "Monte-Carlo Algorithm"

Theorem 10

$$P \subseteq RP \subseteq NP$$
 and $P \subseteq co-RP \subseteq co-NP$

A Primality Testing Algorithm in co-RP

• Recall *Fermat's Little Theorem*: For prime p, $\forall a$

$$a^{p-1} \equiv 1 \mod p.$$

Hence, if $\exists 2 \le a \le p - 1$ such that $a^{p-1} \ne 1 \mod p$, *p* is definitely **composite**.

- However, there exists composite integer *n* such that $b^{n-1} \equiv 1 \mod n$ for all *b* with gcd(n,b) = 1. Such numbers are called *Carmichael Numbers*.
- Hence, if Fermat test returns "composite", the number is composite; it could return "prime" (i.e., passing the test) even if the number if composite.
- Fermat test is a co-RP algorithm for primality testing.
- A more sophisticated primality testing (co-RP) algorithm is the Miller-Rabin primality test.

Theorem 11 (Agrawal-Kayal-Saxena, 2002)

Primality testing is in P.

Definition 12 (PIT)

Determine if two multi-variable polynomial functions *f* and *g* are equal, i.e., have the same results on all inputs

- Challenge: The polynomials are not given in their normal form (as a sum of monomials $(2x^2y^3z)$. E.g., $(x_1 + y_1)(x_2 + y_2)...(x_n + y_n)$ has 2^n monomials.
- PIT is equivalent to testing "*Zero Polynomial*" ($Z_{ERO}P$) (i.e., =0 on all inputs) by considering f g.

Polynomial Identity Testing

Lemma 13

(Schwartz-Zippel Lemma): Consider a <u>non-zero</u> multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq d$, and a finite set S of integers. If $a_1, ..., a_m$ are chosen randomly (with replacement) from S, then

Prob
$$[p(a_1, ..., a_m) = 0] \le \frac{d}{|S|}.$$

Consider the following algorithm: For polynomial $P(x_1, ..., x_m)$,

- **(**) Randomly select $a_1, ..., a_m \in \{1, ..., 3 \times 2^n\}$. Note: $1 \frac{2^n}{3 \times 2^n} = \frac{2}{3}$.
- 2 Evaluate the polynomial to compute $p(a_1, ..., a_m)$
- 3 Accept if $p(a_1, ..., a_m) = 0$ and reject otherwise.
- If $p \in Z_{ERO}P$, the algorithm will always accept. Otherwise, if $p \notin Z_{ERO}P$, it will reject with probability $\geq \frac{2}{3}$.
- (Problem?) if the degree of the polynomial is as high as 2ⁿ, then the output can be as high as (3 × 2ⁿ)^{2ⁿ}, requiring O(2ⁿ) bits to store!
- (Fix) Use modulo arithmetic.

- The constant $\frac{1}{2}$ in the definition of RP is arbitrary.
- If we have a probabilistic TM *M* that accepts $x \in L$ with probability $p < \frac{1}{2}$, we can run this TM several times to "amplify" the probability.
- 1 Run *M* on *x*
 - if a run leads to acceptance (with prob. *p*), accept.
 - if a run leads to rejection (with prob. 1 p), Repeat (1).
 - Exit if (1) is repeated n times.
- If $x \notin L$, all runs will return 0.
- If $x \in L$, and we run it *n* times than the probability of acceptance is $\operatorname{Prob}(M_n(x) = 1) = 1\operatorname{Prob}(M_n(x) \neq 1) = 1\operatorname{Prob}(M(x) \neq 1)^n = 1\operatorname{-}(1\operatorname{Prob}(M(x) = 1))^n = 1 (1 p)^n$

▶ < 프 ▶ < 프 ▶</p>

< 口 > < 🗇

Spring 2024 15 / 40

Э

イロト イポト イヨト イヨト

Robustness of RP

Definition 14

 $L \in RP_1$ iff \exists probabilistic Poly-time TM *M* and a polynomial p(.), s.t.

•
$$x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) \ge \frac{1}{p(|x|)}$$

•
$$x \notin L \Rightarrow \operatorname{Prob}(M(x) = 1) = 0$$

Definition 15

 $L \in RP_2$ iff \exists probabilistic Poly-time TM *M* and a polynomial p(.), s.t.

•
$$x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) \ge 1 - 2^{-p(|x|)}$$

•
$$x \notin L \Rightarrow \operatorname{Prob}(M(x) = 1) = 0$$

Def. 14 has a high error prob. (i.e., $1 - \frac{1}{p(|x|)}$), while the error prob. under Def. 15 is small (i.e., $2^{-p(|x|)}$).

イロト イポト イヨト イヨト 二日

Theorem 16

 $RP = RP_1 = RP_2$ and $co-RP = co-RP_1 = co-RP_2$

Proof.

 $\begin{aligned} RP_2 &\subseteq RP \subseteq RP_1 \text{ follows from the definitions.} \\ \text{To show } RP_1 \subseteq RP_2, \text{ given an } x \text{ repeat } M \text{ (for } RP_1) p(|x|)^2 \text{ times and} \\ \text{accept if at least one of the runs accepts. For } x \in L(M), \\ Prob(M(x) = 0) &\leq (1 - \frac{1}{p(|x|)})^{p(|x|)^2} = ((1 - \frac{1}{p(|x|)})^{p(|x|)})^{p(|x|)} \leq \frac{1}{e^{p(|x|)}} \\ &\leq \frac{1}{2^{p(|x|)}}. \text{ Hence, } Prob(M(x) = 1) \geq 1 - 2^{-p(|x|)}. \end{aligned}$

Note: $(1 - \frac{1}{t})^t \le \frac{1}{e}$.

▶ くぼり くぼり …

Zero-Sided Error: The class ZPP

Let $\chi_L(x)=1$ if $x \in L$; = 0 if $x \notin L$.

Definition 17

 $L \in ZPP$ (Zero-Error Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that $\forall x \in L$: $M(x) = \{0, 1, \bot\},$

•
$$Prob(M(x) = \bot) < \frac{1}{2}$$
, and

•
$$\operatorname{Prob}(M(x) = \chi_L(x) \lor M(x) = \bot) = 1$$

•
$$\operatorname{Prob}(M(x) = \chi_L(x)) > \frac{1}{2}$$

- The symbol \perp is "I don't know".
- The value $\frac{1}{2}$ is arbitrary and can be replaced by $2^{-p(|x|)}$ or $1 \frac{1}{p(|x|)}$.
- Also known as "Las-Vegas algorithm"

Definition 18

ZPP is the class of languages accepted by a PTM with *polynomial expected running time* such that $\forall x \in \Sigma^*$,

- $x \in L \Rightarrow Prob[M(x) = 1] = 1$
- $x \notin L \Rightarrow Prob[M(x) = 0] = 1$
- Note that it is possible for the running time to be unbounded, we do not analyze the worst-case running time, but instead the average running time.
- If we "trim" the height of a computation when exceeding a certain polynomial, and mark those trimmed configurations as ⊥, we get Def. 17.

$ZPP = RP \cap coRP$

Theorem 19 $ZPP \subseteq RP \cap coRP$

Proof.

- Let $L \in ZPP$, *M* be the PTM that recognizes *L*.
- Define M'(x) =
 - let b = M(x)
 - ▶ $b = \bot$ then return 0, else return *b*
- If $x \notin L$, M'(x) will never return 1.
- If $x \in L$, $\operatorname{Prob}(M'(x) = 1) > \frac{1}{2}$, as required.
- $ZPP \subseteq RP$
- The same way, $ZPP \subseteq coRP$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$ZPP = RP \cap coRP$

Theorem 20

 $RP \cap coRP \subseteq ZPP$

Proof.

- Let *L* ∈ *RP* ∩ *coRP*, *M*_{*RP*} and *M*_{*coRP*} be the PTMs that recognize *L* according to *RP* and *coRP*.
- Define: M'(x) =
 - if $M_{RP} = YES$, return 1
 - if $M_{coRP} = NO$, then return 0, else return \perp
- $M_{RP}(x)$ never returns YES if $x \notin L$, and $M_{coRP}(x)$ never returns NO if $x \in L$. Therefore, M'(x) never returns the opposite of $\chi_L(x)$.
- The probability that M_{RP} and M_{coRP} are both wrong $<\frac{1}{2} \Rightarrow$ Prob $(M'(x) = \bot) < \frac{1}{2}$.
- $RP \cap coRP \subseteq ZPP$

$\text{ZPP} = \text{RP} \cap \text{coRP}$

- In the above, **black**: accept; red: reject; blue: \perp .
- if $x \in RP$, $M_{RP}(x)$ has both black and red.
- if $x \in coRP$, $M_{coRP}(x)$ has all black. Black turns into blue.
- if $x \notin RP$, $M_{RP}(x)$ has all red.
- if $x \notin coRP$, $M_{coRP}(x)$ has both black and red. Black turns into blue.

Definition 21

 $L \in PP$ (Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that $\forall x \in L$:

• if
$$x \in L$$
, $Prob(M(x) = 1) > \frac{1}{2}$, and

• if
$$x \notin L$$
, $\operatorname{Prob}(M(x) = 1) \leq \frac{1}{2}$.

Two-Sided Error: The class BPP

Definition 22

 $L \in BPP$ (Bounded-Error Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that $\forall x \in L$: $Prob(M(x) = \chi_L(x)) \ge \frac{2}{3}$, where

• $\chi_L(x) = 1$ if $x \in L$, and

•
$$\chi_L(x) = 0$$
 if $x \notin L$.

Theorem 23

If $L \in BPP$, then for every d, there exists a probabilistic polynomial TM M', s.t. $\forall x, Prob(M'(x) \neq \chi_L(x)) < 2^{-|x|^d}$

- Even a weak bound on the error is enough to obtain almost arbitrary certainty in polynomial time!
- *BPP* might be better than *P* for describing what is "tractable in practice"!

Relationship among Probabilistic Classes

- Probabilistic classes with one-sided error RP and coRP are common.
- ZPP defines random computations with zero-sided error, but probabilistic runtime.
- Many BPP algorithms have been de-randomised successfully
- Many experts believe that (Conjecture)

$$P = ZPP = RP = RP = BPP \subset PP$$

• BPP = P is equivalent to the existence of strong pseudo-random number generators, which many experts consider likely

- From the complexity viewpoint: meaningless unless can be efficiently verified.
- Given language *L*, our goal is to prove $x \in L$
- A Proof System for *L* is a verification algorithm *V*
 - ▶ (completeness): $x \in L \Rightarrow \exists proof, V \text{ accepts } (x, proof)$

"true assertions have proofs"

► (soundness): $x \notin L \Rightarrow \forall proof^*$, V rejects $(x, proof^*)$

"false assertions have no proofs"

• (efficiency): $\forall x, proof$: V(x, proof) runs in polynomial time in |x|

• Recall the class *NP*:

 $L \in NP$ iff expressible as $L = \{x \mid \exists y, |y| \le |x|^k, (x, y) \in R\}$, where k is a constant, and $R \in P$.

• *NP* is the set of languages with classical proof systems (*R* is the verifier, and *y* is the "proof")

Definition 24

 $L \subseteq \{0,1\}^*$ is in *NP* if \exists a polynomial *p* and a ptime DTM *M* such that $\forall x \in \{0,1\}^*$

- (Completeness) $x \in L \Rightarrow \exists y \in \{0,1\}^{p(|x|)}$, M(x,y) = 1
- (Soundness) $x \notin L \Rightarrow \forall y \in \{0,1\}^{p(|x|)}, M(x,y) = 0$

Interactive Proofs

- Two new ingredients:
 - Randomness: verifier uses randomness (e.g., tosses coins), allowing errors with some small probability
 - Interaction: rather than only "reading" a proof, verifier interacts with computationally unlimited prover
- Interaction and randomness possibly add power
 - ▶ *NP*: prover sends proof, verifier does not use randomness
 - BPP: randomness alone, no interaction

Prover]	Verifier
Has unlimited computational power		Can perform polynomial time computations
Wants to convince Verifier in something		Accepts or rejects after performing some computation

They can exchange massages

Interactive Proofs

- An interactive proof system for language *L* is an interactive protocol (*P*, *V*)
 - completeness: $x \in L \Rightarrow Pr[V \text{ accepts in } (P, V)(x)] \ge \frac{2}{3}$
 - ▶ soundness: $x \notin L \Rightarrow \forall P^*$, $Pr[V \text{ accepts in } (P^*, V)(x)] \leq \frac{1}{3}$
 - efficiency: V is p.p.t. machine

• *IP*[*k*]: languages that have *k*-round interactive proofs

(NTU EE)

Graphs $G_0 = (V, E_0)$ and $G_1 = (V, E_1)$ are isomorphic ($G_0 \approx G_1$) if exists a permutation $\Pi : V \to V$ for which

 $(x,y) \in E_0 \Leftrightarrow (\Pi(x),\Pi(y)) \in E_1$

(N)	ΓU	E.	Е

- GI = {(G₀, G₁) : G0 ≈ G1} in NP not known to be in P, or NP-complete. Best algorithm takes 2^{O((log n)³)} time (2017).
- $GNI = \{(G_0, G_1) : G0 \not\approx G1\}$ not known to be in *NP*

Theorem 25

 $GNI \in IP.$

indication IP may be more powerful than NP

- Completeness: If $G_0 \not\approx G_1$ then *H* is isomorphic to exactly one of (G_0, G_1) (honest) Prover will choose correct *r*. *V* accepts with prob=1.
- Soundness: If $G_0 \approx G_1$ then prover has no way of knowing whether *H* is the permutation of G_0 or G_1 . Any prover P^* can "succeed" (by tricking verifier to accept wrongly) with probability at most $\frac{1}{2}$.
- Repeat the above twice can lower the error prob to $\frac{1}{4}$.

Interactive Proof for GI

- As GI is in NP, a simple IP is for *P* to send the isomorphism to *V*. The solution, however, is not zero knowledge.
- Consider the following solution. Note that if $G_0 \approx G_1$ Prover *P* can find two random permutations γ_0 and γ_1 such that

 $\gamma_0(G_0) = H = \gamma_1(G_1)$, for some *H*. Thus, letting $\sigma = \gamma_1^{-1} \gamma_0$,

 $\sigma(G_0) = G_1$. Also note that $\gamma_0 \sigma^{-1}(G_1) = H$.

Repeat the following *k* times.

Prover P

(1) Let *H* be
$$\gamma_0(G_0)$$
; Send *H* to Verifier *V*.

(3) If
$$b = 0$$
, send $\gamma = \gamma_0$ to V ;

• If
$$b = 1$$
, send $\gamma = \gamma_0 \sigma^{-1}$ to V

Verifier V

(2) Choose $b \in \{0, 1\}$ randomly; Send *b* to Prover *P*

4) Check
$$\gamma(G_b) = H$$
. If yes,

accept; otherwise, reject.

- If $G_0 \approx G_1 \Rightarrow$ accept with prob. = 1
- If $G_0 \not\approx G_1 \Rightarrow$ prob. of catching a mistake = 1 $(1/2)^k$.
- Zero knowledge

Interactive Proof for GI

- If $G_0 \approx G_1$, *H* can be obtained using either $\gamma_0(G_0)$ or $\gamma_1(G_1)$.
- If $G_0 \not\approx G_1$, *H* can only be obtained using $\gamma_0(G_0)$.
- Chosen randomly, the $b \in \{0, 1\}$ Verifier sends to Prover is to "challenge" Prover to send the correct permutation using which H can be obtained from G_b .
- If $G_0 \approx G_1$, Prover can always send the correct permutation (γ_0 if b = 0, or $\gamma_0 \sigma^{-1}$ if b = 1) to Verifier.
- If $G_0 \not\approx G_1$, Prover can send the correct permutation (i.e., γ_0) only if b = 0, as that is what H is obtained originally. If b = 1, Verifier will reject as whatever γ Prover sends, Verifier will not be able to obtain H from G_1 . As a result, with prob. = 1/2 Verifier will catch a mistake.
- By repeating the interaction *k* times, if $G_0 \not\approx G_1$ the prob. of catching a mistake will be $1 (1/2)^k$.

Theorem 26 IP = PSPACE.

∢ ≣⇒

▶ < Ξ >

- A Zero Knowledge interactive proof system for language *L* is an interactive protocol (*P*, *V*)
 - Completeness: $x \in L \Rightarrow Pr[V \text{ accepts in } (P, V)(x)] \ge \frac{2}{3}$
 - ▶ Soundness: $x \notin L \Rightarrow \forall P^*$, $Pr[V \text{ accepts } in (P^*, V)(x)] \leq \frac{1}{3}$
 - Efficiency: *V* is p.p.t. machine
 - ► Zero Knowledge: no efficient V* learns anything more than validity of x ∈ L?.

How to Define Zero Knowledge?

- After the interaction, *V* knows:
 - The theorem is true; and
 - ► A view of the interaction (= transcript + coins of *V*)
- *P* gives zero knowledge to *V*:
 - When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P.
- (*P*, *V*) is zero-knowledge if *V* can "simulate" (or "generate") his **VIEW** of the interaction all by himself in probabilistic ptime.

Recall the Interactive proof for Graph Isomorphism.

- View of $V = \{(H, \text{coin}, \text{random isomorphism of } G_b \text{ to } H\}$, i.e.,
 - $\blacktriangleright P \xrightarrow[h]{H} V$
 - $\blacktriangleright V \xrightarrow{b}{\gamma} P$
 - $\blacktriangleright P \xrightarrow{\gamma} V$
- Simulator M: Toss coin
 - If coin=head, choose random γ_0 set $H = \gamma_0(G_0)$
 - If coin=tail, choose random γ_1 set $H = \gamma_1(G_1)$

Theorem 27

Every language in NP has a zero-knowledge interactive proof.

(NT	Π	EE
(1.4.1	0	