
Probabilistic Computation

(NTU EE) Probabilistic Computation Spring 2024 1 / 40

Probabilistic TM

Definition 1
A probabilistic TM (PTM) is a 7-tuple M = (Q,Σ,Γ, q0,F, δ1, δ2), where
Q,Σ,Γ, q0,F are the same as those in classical Turing machines and
δ1, δ2 are two deterministic transition functions, such that at each step,
the TM applies either the transition function δ1 with prob. 1

2 or the
transition function δ2 with prob. 1

2 , resembling a coin flip.

We may think of transitions as being selected randomly, with
equal probability of 0.5, i.e., the PTM flips a fair coin in each step.
PTMs therefore are very similar to NTMs with (at most) two
options per step.

(NTU EE) Probabilistic Computation Spring 2024 2 / 40

Probabilistic TM (Cont’d)

Probability of acceptance =∑
accepting path σ Prob(σ)

Probability of rejection =∑
rejecting path σ Prob(σ)

Example:
I Prob. Acceptance =

1
16 + 1

8 + 1
4 + 1

8 + 1
4 = 13

16
I Prob. Rejection = 1

16 + 1
8 = 3

16

We consider TMs that halt
(either accept or reject) on
every branch - deciders.
So the two probabilities total 1.

(NTU EE) Probabilistic Computation Spring 2024 3 / 40

Alternative Definition of PTMs

Definition 2
A PTM is a deterministic TM that receives two inputs x and r, where
x ∈ Σ∗ is an input word, and r ∈ {0, 1}∗ is a sequence of random
numbers placed on a read-only random tape. If (x, r) is accepted, we may
call r a witness for x.

Note the similarity to the notion of polynomial verifiers used for NP.

A string r ∈ {0, 1}n is associated with probability 1
2n .

(NTU EE) Probabilistic Computation Spring 2024 4 / 40

How to Define Acceptance for PTMs?

Definition 3

Prob[M accepts w] =
∑

b is an accepting path

prob(b)

Prob[M rejects w] = 1− Prob[M accepts w]

A natural way to define acceptance is based on the notion of ”majority”.

Definition 4

Given a PTM M and an input w, w ∈ L(M) iff Prob[M accepts w] > 1
2 .

Definition 5
For 0 ≤ ε < 1/2, M accepts w with error probability ε (written as eM(w) = ε) if

w ∈ L(M) implies Prob[M accepts w] ≥ (1− ε)

In the above definition, ε depends on w. E.g., eM(w) = 1
2 (1−

1
|w|).

(NTU EE) Probabilistic Computation Spring 2024 5 / 40

Bounded Error Probability

The problem with the previous definition of acceptance is that
Prob[M accepts w] (> 1

2) could be arbitrarily close to 1
2 , making the

difference between Prob[M accepts w] and Prob[M rejects w]
arbitrarily small.
In some applications, we prefer a ”gap” between the probabilities
of acceptance and rejection, which leads to the notion of
”bounded error probability”.

Definition 6
A PTM M is with bounded error prob. if ∃ε < 1

2 , for all w.

w ∈ L(M) implies Prob[M accepts w] ≥ (1− ε)
w 6∈ L(M) implies Prob[M rejects w] ≥ (1− ε)

Note that in the above, ε does not depend on w.

(NTU EE) Probabilistic Computation Spring 2024 6 / 40

Polynomial-Time PTMs

We are mainly interested in PTMs that run in polynomial time.
There is still an issue: polynomial in what sense (Worst-case vs.
Average-case)?
Recall that for an NTM M,

1 w ∈ L(M): ∃ a computation leading to acceptance, while the rest of
the computations may lead to rejection.

2 w 6∈ L(M): all computations lead to rejection.

Acceptance for classical NTMs allows one-sided error. See (1)
above. It does not make much sense for NTMs to have two-sided
error. Why?
For PTMs, we consider both one-sided and two-sided errors.

(NTU EE) Probabilistic Computation Spring 2024 7 / 40

Probabilistic TMs Accepting r.e. Sets

Theorem 7
Every r.e. set is accepted (under Def. 4) by some PTM with finite average
running time.

Proof.
Let W be an r.e. set and let M be a DTM accepting W. Construct the following PTM M′

1 repeat
2 simulate one step of M(x)
3 if M(x) accepted at last step then accept

4 until cointoss()=”heads”
5 if cointoss()=”heads” the accept else reject

Clearly if x 6∈ W, M′ terminates only at line 5. In this case, the prob= 1
2 , so x 6∈ L(M′). If

x ∈ W, prob = Prob(exits line3) + 1
2 >

1
2 .

What is the average running time? (Hint: Consider
∑∞

n=1(n× 2−n))

(NTU EE) Probabilistic Computation Spring 2024 8 / 40

One-Sided Error: The classes RP and coRP

We write M(x) = 1 (resp., =0) for M accepts (resp., rejects) x.

Definition 8
A language L ∈ RP (Randomized Polynomial Time), iff a probabilistic
Polynomial-time TM M exists, such that

x ∈ L⇒ Prob(M(x) = 1) ≥ 1
2

x 6∈ L⇒ Prob(M(x) = 0) = 1 (or equivalently Prob(M(x) = 1) = 0)

Definition 9
A language L ∈ co-RP, iff a probabilistic Polynomial-time TM M exists,
such that

x ∈ L⇒ Prob(M(x) = 1) = 1
x 6∈ L⇒ Prob(M(x) = 0) ≥ 1

2

These two classes complement each other, i.e., coRP = {L̄ | L ∈ RP}.

(NTU EE) Probabilistic Computation Spring 2024 9 / 40

Comparing RP with NP

Let RL be the relation defining the witness/guess for L for a
certain TM.
NP:

I x ∈ L⇒ ∃y, (x, y) ∈ RL
I x 6∈ L⇒ ∀y, (x, y) 6∈ RL

RP:
I x ∈ L⇒ Prob((x, r) ∈ RL) ≥ 1

2
I x 6∈ L⇒ ∀r, (x, r) 6∈ RL

RP corresponds to the so-called ”Monte-Carlo Algorithm”

Theorem 10
P ⊆ RP ⊆ NP and P ⊆ co-RP ⊆ co-NP

(NTU EE) Probabilistic Computation Spring 2024 10 / 40

A Primality Testing Algorithm in co-RP

Recall Fermat’s Little Theorem: For prime p, ∀a

ap−1 ≡ 1 mod p.

Hence, if ∃ 2 ≤ a ≤ p− 1 such that ap−1 6≡ 1 mod p, p is definitely composite.

However, there exists composite integer n such that bn−1 ≡ 1 mod n for all b with
gcd(n, b) = 1. Such numbers are called Carmichael Numbers.

Hence, if Fermat test returns ”composite”, the number is composite; it could
return ”prime” (i.e., passing the test) even if the number if composite.

Fermat test is a co-RP algorithm for primality testing.

A more sophisticated primality testing (co-RP) algorithm is the Miller-Rabin
primality test.

Theorem 11 (Agrawal-Kayal-Saxena, 2002)
Primality testing is in P.

(NTU EE) Probabilistic Computation Spring 2024 11 / 40

Polynomial Identity Testing

Definition 12 (PIT)
Determine if two multi-variable polynomial functions f and g are
equal, i.e., have the same results on all inputs

Challenge: The polynomials are not given in their normal form (as
a sum of monomials (2x2y3z). E.g., (x1 + y1)(x2 + y2)...(xn + yn) has
2n monomials.
PIT is equivalent to testing ”Zero Polynomial” (ZEROP) (i.e., =0 on
all inputs) by considering f − g.

(NTU EE) Probabilistic Computation Spring 2024 12 / 40

Polynomial Identity Testing

Lemma 13
(Schwartz-Zippel Lemma): Consider a non-zero multivariate polynomial
p(x1, ..., xm) of total degree ≤ d, and a finite set S of integers. If a1, ..., am are
chosen randomly (with replacement) from S, then

Prob [p(a1, ..., am) = 0] ≤ d
|S|
.

Consider the following algorithm: For polynomial P(x1, ..., xm),
1 Randomly select a1, ..., am ∈ {1, ..., 3× 2n}. Note: 1− 2n

3×2n = 2
3 .

2 Evaluate the polynomial to compute p(a1, ..., am)

3 Accept if p(a1, ..., am) = 0 and reject otherwise.

If p ∈ ZEROP, the algorithm will always accept. Otherwise, if p 6∈ ZEROP, it will
reject with probability ≥ 2

3 .
(Problem?) if the degree of the polynomial is as high as 2n, then the output can
be as high as (3× 2n)2n

, requiring O(2n) bits to store!
(Fix) Use modulo arithmetic.

(NTU EE) Probabilistic Computation Spring 2024 13 / 40

Amplification

The constant 1
2 in the definition of RP is arbitrary.

If we have a probabilistic TM M that accepts x ∈ L with
probability p < 1

2 , we can run this TM several times to ”amplify”
the probability.

1 Run M on x
2 if a run leads to acceptance (with prob. p), accept.
3 if a run leads to rejection (with prob. 1− p), Repeat (1).
4 Exit if (1) is repeated n times.

If x 6∈ L, all runs will return 0.
If x ∈ L, and we run it n times than the probability of acceptance is
Prob(Mn(x) = 1) = 1-Prob(Mn(x) 6= 1) = 1-Prob(M(x) 6= 1)n =
1-(1-Prob(M(x) = 1))n = 1− (1− p)n

(NTU EE) Probabilistic Computation Spring 2024 14 / 40

Amplification

(NTU EE) Probabilistic Computation Spring 2024 15 / 40

Robustness of RP

Definition 14

L ∈ RP1 iff ∃ probabilistic Poly-time TM M and a polynomial p(.), s.t.

x ∈ L⇒ Prob(M(x) = 1) ≥ 1
p(|x|)

x 6∈ L⇒ Prob(M(x) = 1) = 0

Definition 15

L ∈ RP2 iff ∃ probabilistic Poly-time TM M and a polynomial p(.), s.t.

x ∈ L⇒ Prob(M(x) = 1) ≥ 1− 2−p(|x|)

x 6∈ L⇒ Prob(M(x) = 1) = 0

Def. 14 has a high error prob. (i.e., 1− 1
p(|x|)), while the error prob.

under Def. 15 is small (i.e., 2−p(|x|)).

(NTU EE) Probabilistic Computation Spring 2024 16 / 40

Robustness of RP

Theorem 16
RP = RP1 = RP2 and co-RP = co-RP1 = co-RP2

Proof.
RP2 ⊆ RP ⊆ RP1 follows from the definitions.
To show RP1 ⊆ RP2, given an x repeat M (for RP1) p(|x|)2 times and
accept if at least one of the runs accepts. For x ∈ L(M),
Prob(M(x) = 0) ≤ (1− 1

p(|x|))
p(|x|)2

= ((1− 1
p(|x|))

p(|x|))p(|x|) ≤ 1
ep(|x|)

≤ 1
2p(|x|) . Hence, Prob(M(x) = 1) ≥ 1− 2−p(|x|).

Note: (1− 1
t)t ≤ 1

e .

(NTU EE) Probabilistic Computation Spring 2024 17 / 40

Zero-Sided Error: The class ZPP

Let χL(x)=1 if x ∈ L; = 0 if x 6∈ L.

Definition 17

L ∈ ZPP (Zero-Error Polynomial Probabilistic Time) iff there exists a
polynomial-time probabilistic TM M, such that ∀x ∈ L:
M(x) = {0, 1,⊥},

Prob(M(x) = ⊥) < 1
2 , and

Prob(M(x) = χL(x) ∨M(x) = ⊥) = 1

Prob(M(x) = χL(x)) > 1
2

The symbol ⊥ is ”I don’t know”.

The value 1
2 is arbitrary and can be replaced by 2−p(|x|) or 1− 1

p(|x|) .

Also known as ”Las-Vegas algorithm”

(NTU EE) Probabilistic Computation Spring 2024 18 / 40

Alternative Definition of ZPP

Definition 18
ZPP is the class of languages accepted by a PTM with polynomial
expected running time such that ∀x ∈ Σ∗,

x ∈ L⇒ Prob[M(x) = 1] = 1
x 6∈ L⇒ Prob[M(x) = 0] = 1

Note that it is possible for the running time to be unbounded, we
do not analyze the worst-case running time, but instead the
average running time.
If we ”trim” the height of a computation when exceeding a certain
polynomial, and mark those trimmed configurations as ⊥, we get
Def. 17.

(NTU EE) Probabilistic Computation Spring 2024 19 / 40

ZPP = RP ∩ coRP

Theorem 19
ZPP ⊆ RP ∩ coRP

Proof.
Let L ∈ ZPP, M be the PTM that recognizes L.
Define M′(x) =

I let b = M(x)
I b = ⊥ then return 0, else return b

If x 6∈ L, M′(x) will never return 1.
If x ∈ L, Prob(M′(x) = 1) > 1

2 , as required.
ZPP ⊆ RP
The same way, ZPP ⊆ coRP.

(NTU EE) Probabilistic Computation Spring 2024 20 / 40

ZPP = RP ∩ coRP

Theorem 20
RP ∩ coRP ⊆ ZPP

Proof.
Let L ∈ RP ∩ coRP, MRP and McoRP be the PTMs that recognize L
according to RP and coRP.
Define: M′(x) =

I if MRP = YES, return 1
I if McoRP = NO, then return 0, else return ⊥

MRP(x) never returns YES if x 6∈ L, and McoRP(x) never returns NO
if x ∈ L. Therefore, M′(x) never returns the opposite of χL(x).

The probability that MRP and McoRP are both wrong < 1
2 ⇒

Prob(M′(x) = ⊥) < 1
2 .

RP ∩ coRP ⊆ ZPP

(NTU EE) Probabilistic Computation Spring 2024 21 / 40

ZPP = RP ∩ coRP

In the above, black: accept; red: reject; blue: ⊥.
if x ∈ RP, MRP(x) has both black and red.
if x ∈ coRP, McoRP(x) has all black. Black turns into blue.
if x 6∈ RP, MRP(x) has all red.
if x 6∈ coRP, McoRP(x) has both black and red. Black turns into blue.

(NTU EE) Probabilistic Computation Spring 2024 22 / 40

Two-Sided Error: The class PP

Definition 21
L ∈ PP (Polynomial Probabilistic Time) iff there exists a
polynomial-time probabilistic TM M, such that ∀x ∈ L:

if x ∈ L, Prob(M(x) = 1) > 1
2 , and

if x 6∈ L, Prob(M(x) = 1) ≤ 1
2 .

(NTU EE) Probabilistic Computation Spring 2024 23 / 40

Two-Sided Error: The class BPP

Definition 22
L ∈ BPP (Bounded-Error Polynomial Probabilistic Time) iff there exists
a polynomial-time probabilistic TM M, such that ∀x ∈ L:
Prob(M(x) = χL(x)) ≥ 2

3 , where
χL(x) = 1 if x ∈ L, and
χL(x) = 0 if x 6∈ L.

Theorem 23
If L ∈ BPP, then for every d, there exists a probabilistic polynomial TM M′,
s.t. ∀x, Prob(M′(x) 6= χL(x)) < 2−|x|

d

Even a weak bound on the error is enough to obtain almost
arbitrary certainty in polynomial time!
BPP might be better than P for describing what is ”tractable in
practice”!

(NTU EE) Probabilistic Computation Spring 2024 24 / 40

Relationship among Probabilistic Classes

(NTU EE) Probabilistic Computation Spring 2024 25 / 40

Some Notes

Probabilistic classes with one-sided error - RP and coRP - are
common.
ZPP defines random computations with zero-sided error, but
probabilistic runtime.
Many BPP algorithms have been de-randomised successfully
Many experts believe that (Conjecture)

P = ZPP = RP = RP = BPP ⊂ PP

BPP = P is equivalent to the existence of strong pseudo-random
number generators, which many experts consider likely

(NTU EE) Probabilistic Computation Spring 2024 26 / 40

What is a ”Proof”?

From the complexity viewpoint: meaningless unless can be
efficiently verified.
Given language L, our goal is to prove x ∈ L

A Proof System for L is a verification algorithm V
I (completeness): x ∈ L⇒ ∃ proof , V accepts (x, proof)

”true assertions have proofs”

I (soundness): x 6∈ L⇒ ∀ proof ∗, V rejects (x, proof ∗)

”false assertions have no proofs”

I (efficiency): ∀x, proof : V(x, proof) runs in polynomial time in |x|

(NTU EE) Probabilistic Computation Spring 2024 27 / 40

Classical Proofs

Recall the class NP:
L ∈ NP iff expressible as L = {x | ∃y, |y| ≤ |x|k, (x, y) ∈ R} , where

k is a constant, and R ∈ P.

NP is the set of languages with classical proof systems (R is the
verifier, and y is the ”proof”)

Definition 24
L ⊆ {0, 1}∗ is in NP if ∃ a polynomial p and a ptime DTM M such that
∀x ∈ {0, 1}∗

(Completeness) x ∈ L⇒ ∃y ∈ {0, 1}p(|x|), M(x, y) = 1

(Soundness) x 6∈ L⇒ ∀y ∈ {0, 1}p(|x|), M(x, y) = 0

(NTU EE) Probabilistic Computation Spring 2024 28 / 40

Interactive Proofs

Two new ingredients:
I Randomness: verifier uses randomness (e.g., tosses coins), allowing

errors with some small probability
I Interaction: rather than only ”reading” a proof, verifier interacts

with computationally unlimited prover

Interaction and randomness possibly add power
I NP: prover sends proof, verifier does not use randomness
I BPP: randomness alone, no interaction

(NTU EE) Probabilistic Computation Spring 2024 29 / 40

Interactive Proofs

An interactive proof system for language L is an interactive
protocol (P,V)

I completeness: x ∈ L⇒ Pr[V accepts in (P,V)(x)] ≥ 2
3

I soundness: x 6∈ L⇒ ∀P∗, Pr[V accepts in (P∗,V)(x)] ≤ 1
3

I efficiency: V is p.p.t. machine

IP[k]: languages that have k-round interactive proofs

(NTU EE) Probabilistic Computation Spring 2024 30 / 40

Graph Isomorphism

Graphs G0 = (V,E0) and G1 = (V,E1) are isomorphic (G0 ≈ G1) if
exists a permutation Π : V → V for which

(x, y) ∈ E0 ⇔ (Π(x),Π(y)) ∈ E1

(NTU EE) Probabilistic Computation Spring 2024 31 / 40

Graph (Non)isomorphism

GI = {(G0,G1) : G0 ≈ G1} in NP not known to be in P, or
NP-complete. Best algorithm takes 2O((log n)3) time (2017).
GNI = {(G0,G1) : G0 6≈ G1} not known to be in NP

Theorem 25
GNI ∈ IP.

indication IP may be more powerful than NP

(NTU EE) Probabilistic Computation Spring 2024 32 / 40

GNI ∈ IP

(NTU EE) Probabilistic Computation Spring 2024 33 / 40

GNI ∈ IP

Completeness: If G0 6≈ G1 then H is isomorphic to exactly one of
(G0,G1) (honest) Prover will choose correct r. V accepts with
prob=1.
Soundness: If G0 ≈ G1 then prover has no way of knowing
whether H is the permutation of G0 or G1. Any prover P∗ can
”succeed” (by tricking verifier to accept wrongly) with probability
at most 1

2 .

Repeat the above twice can lower the error prob to 1
4 .

(NTU EE) Probabilistic Computation Spring 2024 34 / 40

Interactive Proof for GI

As GI is in NP, a simple IP is for P to send the isomorphism to V.
The solution, however, is not zero knowledge.
Consider the following solution. Note that if G0 ≈ G1 Prover P can
find two random permutations γ0 and γ1 such that
γ0(G0) = H = γ1(G1), for some H. Thus, letting σ = γ−1

1 γ0,
σ(G0) = G1. Also note that γ0σ

−1(G1) = H.
Repeat the following k times.

Prover P
(1) Let H be γ0(G0); Send H to

Verifier V.
(3) I If b = 0, send γ = γ0 to V;

I If b = 1, send γ = γ0σ
−1 to V

Verifier V
(2) Choose b ∈ {0, 1} randomly;

Send b to Prover P
(4) Check γ(Gb) = H. If yes,

accept; otherwise, reject.
If G0 ≈ G1⇒ accept with prob. = 1
If G0 6≈ G1⇒ prob. of catching a mistake = 1 - (1/2)k.
Zero knowledge

(NTU EE) Probabilistic Computation Spring 2024 35 / 40

Interactive Proof for GI

If G0 ≈ G1, H can be obtained using either γ0(G0) or γ1(G1).
If G0 6≈ G1, H can only be obtained using γ0(G0).
Chosen randomly, the b ∈ {0, 1} Verifier sends to Prover is to
”challenge” Prover to send the correct permutation using which H
can be obtained from Gb.
If G0 ≈ G1, Prover can always send the correct permutation (γ0 if
b = 0, or γ0σ

−1 if b = 1) to Verifier.
If G0 6≈ G1, Prover can send the correct permutation (i.e., γ0) only
if b = 0, as that is what H is obtained originally. If b = 1, Verifier
will reject as whatever γ Prover sends, Verifier will not be able to
obtain H from G1. As a result, with prob. = 1/2 Verifier will catch
a mistake.
By repeating the interaction k times, if G0 6≈ G1 the prob. of
catching a mistake will be 1− (1/2)k.

(NTU EE) Probabilistic Computation Spring 2024 36 / 40

The Power of IP

Theorem 26
IP = PSPACE.

(NTU EE) Probabilistic Computation Spring 2024 37 / 40

Zero Knowledge Interactive Proofs

A Zero Knowledge interactive proof system for language L is an
interactive protocol (P,V)

I Completeness: x ∈ L⇒ Pr[V accepts in (P,V)(x)] ≥ 2
3

I Soundness: x 6∈ L⇒ ∀P∗, Pr[V accepts in (P∗,V)(x)] ≤ 1
3

I Efficiency: V is p.p.t. machine
I Zero Knowledge: no efficient V∗ learns anything more than

validity of x ∈ L?.

(NTU EE) Probabilistic Computation Spring 2024 38 / 40

How to Define Zero Knowledge?

After the interaction, V knows:
I The theorem is true; and
I A view of the interaction (= transcript + coins of V)

P gives zero knowledge to V:
I When the theorem is true, the view gives V nothing that he

couldn’t have obtained on his own without interacting with P.
(P,V) is zero-knowledge if V can ”simulate” (or ”generate”) his
VIEW of the interaction all by himself in probabilistic ptime.

(NTU EE) Probabilistic Computation Spring 2024 39 / 40

Zero Knowledge Interactive Proof

Recall the Interactive proof for Graph Isomorphism.
View of V= {(H, coin, random isomorphism of Gb to H }, i.e.,

I P H→ V
I V b→ P
I P γ→ V

Simulator M: Toss coin
I If coin=head, choose random γ0 set H = γ0(G0)
I If coin=tail, choose random γ1 set H = γ1(G1)

Theorem 27
Every language in NP has a zero-knowledge interactive proof.

(NTU EE) Probabilistic Computation Spring 2024 40 / 40

	Proof Systems

