Probabilistic Computation

4.0.3.4

つへへ

Definition 1

A probabilistic TM (PTM) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, F, \delta_1, \delta_2)$, where *Q*, Σ, Γ, *q*0, *F* are the same as those in classical Turing machines and δ_1 , δ_2 are two deterministic transition functions, such that at each step, the TM applies either the transition function δ_1 with prob. $\frac{1}{2}$ or the transition function δ_2 with prob. $\frac{1}{2}$, resembling a <u>coin flip</u>.

- We may think of transitions as being selected randomly, with equal probability of 0.5, i.e., the PTM flips a fair coin in each step.
- PTMs therefore are very similar to NTMs with (at most) two options per step.

つへへ

Probabilistic TM (Cont'd)

- Probability of acceptance = \sum accepting path $_\sigma$ $Prob(\sigma)$
- Probability of rejection = $\sum_{\text{rejecting path } \sigma} \text{Prob}(\sigma)$
- Example:
	- \blacktriangleright Prob. Acceptance = $\frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \frac{1}{8} + \frac{1}{4} = \frac{13}{16}$
	- Prob. Rejection = $\frac{1}{16} + \frac{1}{8} = \frac{3}{16}$
- We consider TMs that halt (either accept or reject) on every branch - deciders.
- So the two probabilities total 1.

Definition 2

A PTM is a deterministic TM that receives two inputs *x* and *r*, where $x \in \Sigma^*$ is an input word, and $r \in \{0,1\}^*$ is a sequence of random numbers placed on a *read-only random tape*. If (*x*,*r*) is accepted, we may call *r* a witness for *x*.

Note the similarity to the notion of polynomial verifiers used for NP.

A string $r \in \{0,1\}^n$ is associated with probabil[ity](#page-2-0) $\frac{1}{\sqrt{n}}$ [.](#page-2-0)

How to Define Acceptance for PTMs?

Definition 3

Prob[*M* accepts w] = \sum *b* is an accepting path *prob*(*b*) *Prob*[*M* rejects w] = 1 − *Prob*[*M* accepts w]

A natural way to define acceptance is based on the notion of "**majority**".

Definition 4

Given a PTM M and an input $w, w \in L(M)$ iff Prob[M accepts w] $> \frac{1}{2}$.

Definition 5

For $0 \leq \epsilon \leq 1/2$, M accepts *w* with *error probability* ϵ (written as $e_M(w) = \epsilon$) if

• $w \in L(M)$ implies *Prob*[*M* accepts w] > $(1 - \epsilon)$

In the above definition, ϵ depends on *w*. E.g., $e_M(w) = \frac{1}{2}(1 - \frac{1}{|w|}).$

 QQQ

イロト (個) イヨト (ヨ)

Bounded Error Probability

- The problem with the previous definition of acceptance is that *Prob*[M accepts w] ($> \frac{1}{2}$) could be arbitrarily close to $\frac{1}{2}$, making the difference between *Prob*[*M* accepts *w*] and *Prob*[*M* rejects *w*] arbitrarily small.
- \bullet In some applications, we prefer a "gap" between the probabilities of acceptance and rejection, which leads to the notion of "bounded error probability".

Definition 6

A PTM *M* is with bounded error prob. if $\exists \epsilon < \frac{1}{2}$, for all *w*.

- $w \in L(M)$ implies *Prob*[*M* accepts $w \geq (1 \epsilon)$
- *w* $\notin L(M)$ implies *Prob*[*M* rejects *w*] > (1 − ϵ)

Note that in the above, ϵ does not depend on w .

つへへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

- We are mainly interested in PTMs that run in polynomial time. There is still an issue: polynomial in what sense (Worst-case vs. Average-case)?
- Recall that for an NTM *M*,
	- ¹ *w* ∈ *L*(*M*): ∃ a computation leading to acceptance, while the rest of the computations may lead to rejection.
	- 2 *w* $\notin L(M)$: all computations lead to rejection.
- Acceptance for classical NTMs allows *one-sided error*. See (1) above. It does not make much sense for NTMs to have two-sided error. Why?
- For PTMs, we consider both *one-sided* and *two-sided errors*.

つへへ

トメ ヨトメ ヨト

Theorem 7

Every r.e. set is accepted (under Def. [4\)](#page-4-1) by some PTM with finite average running time.

Proof.

Let *W* be an r.e. set and let *M* be a DTM accepting *W*. Construct the following PTM *M'*

- **1** repeat
- 2 simulate one step of $M(x)$
- ³ if *M*(*x*) accepted at last step then accept
- ⁴ until cointoss()="heads"
- ⁵ if cointoss()="heads" the accept else reject

Clearly if $x \notin W$, *M'* terminates only at line 5. In this case, the prob= $\frac{1}{2}$, so $x \notin L(M')$. If $x \in W$, prob = Prob(exits line3) + $\frac{1}{2} > \frac{1}{2}$. What is the average running time? (Hint: Consider $\sum_{n=1}^{\infty} (n \times 2^{-n})$) □

 $2Q$

イロト イ押ト イヨト イヨト

One-Sided Error: The classes RP and coRP

We write $M(x) = 1$ (resp., =0) for *M* accepts (resp., rejects) *x*.

Definition 8

A language $L \in \mathbb{RP}$ (Randomized Polynomial Time), iff a probabilistic Polynomial-time TM *M* exists, such that

$$
\bullet \ \ x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) \ge \frac{1}{2}
$$

•
$$
x \notin L \Rightarrow Prob(M(x) = 0) = 1
$$
 (or equivalently $Prob(M(x) = 1) = 0$)

Definition 9

A language $L \in \text{co-RP}$, iff a probabilistic Polynomial-time TM *M* exists, such that

$$
\bullet \ x \in L \Rightarrow \text{Prob}(M(x) = 1) = 1
$$

$$
\bullet \ x \notin L \Rightarrow \text{Prob}(M(x) = 0) \ge \frac{1}{2}
$$

These two classes [co](#page-7-0)mplement each other, i[.](#page-39-0)e., $\text{coRP} = {\{\overline{L} \mid L \in \text{RP}\}}$ $\text{coRP} = {\{\overline{L} \mid L \in \text{RP}\}}$.

 $2Q$

Comparing RP with NP

- Let *R^L* be the relation defining the witness/guess for *L* for a certain TM.
- NP:
	- \triangleright *x* ∈ *L* \Rightarrow ∃*y*, (x, y) ∈ R_L \triangleright *x* ∉ *L* \Rightarrow ∀*y*, $(x, y) \notin R_L$
- RP:
	- \blacktriangleright *x* ∈ *L* \Rightarrow *Prob*($(x, r) \in R_L$) ≥ $\frac{1}{2}$
	- \triangleright *x* ∉ *L* \Rightarrow $\forall r$, $(x, r) \notin R_L$
- *RP* corresponds to the so-called "Monte-Carlo Algorithm"

Theorem 10

$$
P \subseteq RP \subseteq NP
$$
 and $P \subseteq co-RP \subseteq co-NP$

 Ω

トイラトイラト

A Primality Testing Algorithm in co-RP

Recall *Fermat's Little Theorem*: For prime *p*, ∀*a*

$$
a^{p-1} \equiv 1 \bmod p.
$$

Hence, if \exists 2 \leq $a \leq p-1$ such that $a^{p-1} \not\equiv 1$ *mod p, p* is definitely **composite**.

- However, there exists composite integer n such that $b^{n-1}\equiv 1$ $\textit{mod}~n$ for all b with *gcd*(*n*, *b*) = 1. Such numbers are called *Carmichael Numbers*.
- Hence, if Fermat test returns "composite", the number is composite; it could return "prime" (i.e., passing the test) even if the number if composite.
- **•** Fermat test is a co-RP algorithm for primality testing.
- A more sophisticated primality testing (co-RP) algorithm is the Miller-Rabin primality test.

Theorem 11 (Agrawal-Kayal-Saxena, 2002)

Primality testing is in P.

 QQQ

Definition 12 (PIT)

Determine if two multi-variable polynomial functions *f* and *g* are equal, i.e., have the same results on all inputs

- Challenge: The polynomials are not given in their normal form (as a sum of monomials $(2x^2y^3z)$. E.g., $(x_1 + y_1)(x_2 + y_2)...(x_n + y_n)$ has 2 *ⁿ* monomials.
- PIT is equivalent to testing "*Zero Polynomial*" (*ZEROP*) (i.e., =0 on all inputs) by considering $f - g$.

つへへ

Polynomial Identity Testing

Lemma 13

(Schwartz-Zippel Lemma): Consider a non-zero multivariate polynomial $p(x_1, ..., x_m)$ *of total degree* $\leq d$, *and a finite set S of integers. If* $a_1, ..., a_m$ *are chosen randomly (with replacement) from S, then*

$$
Prob[p(a_1,...,a_m)=0]\leq \frac{d}{|S|}.
$$

Consider the following algorithm: For polynomial $P(x_1, ..., x_m)$,

- **1** Randomly select $a_1, ..., a_m \in \{1, ..., 3 \times 2^n\}$. Note: $1 \frac{2^n}{3 \times 2^n}$ $\frac{2^n}{3 \times 2^n} = \frac{2}{3}.$
- 2 Evaluate the polynomial to compute $p(a_1, ..., a_m)$
- \bullet Accept if $p(a_1, ..., a_m) = 0$ and reject otherwise.
- **■** If $p \text{ ∈ } Z_{FRO}P$, the algorithm will always accept. Otherwise, if $p \text{ ∉ } Z_{FRO}P$, it will reject with probability $\geq \frac{2}{3}$.
- (Problem?) if the degree of the polynomial is as high as $2ⁿ$, then the output can be as high as $(3 \times 2^n)^{2^n}$, requiring $O(2^n)$ bits to store!
- (Fix) Use modulo arithmetic.

 QQQ

イロト イ部 トイヨ トイヨ トーヨ

- The constant $\frac{1}{2}$ in the definition of RP is arbitrary.
- **•** If we have a probabilistic TM *M* that accepts $x \in L$ with probability $p < \frac{1}{2}$ $\frac{1}{2}$, we can run this TM several times to "amplify" the probability.
- \bullet **1** Run *M* on *x*
	- ² if a run leads to acceptance (with prob. *p*), accept.
	- ³ if a run leads to rejection (with prob. 1 − *p*), Repeat (1).
	- ⁴ Exit if (1) is repeated *n* times.
- If $x \notin L$, all runs will return 0.
- If *x* ∈ *L*, and we run it *n* times than the probability of acceptance is $Prob(M_n(x) = 1) = 1 - Prob(M_n(x) \neq 1) = 1 - Prob(M(x) \neq 1)^n$ $1-(1-\text{Prob}(M(x) = 1))^n = 1 - (1 - p)^n$

 Ω

イロト (御) イヨン (ヨ) (

G (NTU EE) [Probabilistic Computation](#page-0-0) Spring 2024 15 / 40

イロト (個) イヨト (ヨ)

 299

Robustness of RP

Definition 14

L ∈ *RP*¹ iff ∃ probabilistic Poly-time TM *M* and a polynomial *p*(.), s.t.

$$
\bullet \ \ x \in L \Rightarrow \operatorname{Prob}(M(x) = 1) \ge \frac{1}{p(|x|)}
$$

$$
\bullet \ x \notin L \Rightarrow \operatorname{Prob}(M(x) = 1) = 0
$$

Definition 15

L ∈ *RP*² iff ∃ probabilistic Poly-time TM *M* and a polynomial *p*(.), s.t.

$$
\bullet \ \ x \in L \Rightarrow \text{Prob}(M(x) = 1) \ge 1 - 2^{-p(|x|)}
$$

$$
\bullet \ x \notin L \Rightarrow \text{Prob}(M(x) = 1) = 0
$$

Def. [14](#page-15-0) has a high error prob. (i.e., $1 - \frac{1}{p(|x|)}$), while the error prob. under Def. [15](#page-15-1) is small (i.e., 2−*p*(|*x*|)).

 QQQ

イロトス 御下ス ヨトス ヨトッ ヨ

Theorem 16

 $RP = RP_1 = RP_2$ and $co-RP = co-RP_1 = co-RP_2$

Proof.

 $RP_2 \subset RP \subset RP_1$ follows from the definitions. To show $RP_1 \subseteq RP_2$, given an x repeat M (for RP_1) $p(|x|)^2$ times and accept if at least one of the runs accepts. For $x \in L(M)$, $Prob(M(x) = 0) \leq (1 - \frac{1}{p(|x|)})^{p(|x|)^2} = ((1 - \frac{1}{p(|x|)})^{p(|x|)})^{p(|x|)} \leq \frac{1}{e^{p(|x|)}}$ $e^{p(|x|)}$ $\leq \frac{1}{2v(1)}$ $\frac{1}{2^{p(|x|)}}$. Hence, $Prob(M(x) = 1) \ge 1 - 2^{-p(|x|)}$.

Note: $(1 - \frac{1}{t})^t \leq \frac{1}{e}$.

つくへ

∢ ロ ▶ (伊) 《 ヨ) 〈 ヨ) │ ヨ

Zero-Sided Error: The class ZPP

Let $\chi_L(x)=1$ if $x \in L$; = 0 if $x \notin L$.

Definition 17

L ∈ *ZPP* (Zero-Error Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that ∀*x* ∈ *L*: $M(x) = \{0, 1, \perp\},\$

•
$$
Prob(M(x) = \bot) < \frac{1}{2}
$$
, and

•
$$
Prob(M(x) = \chi_L(x) \lor M(x) = \bot) = 1
$$

•
$$
Prob(M(x) = \chi_L(x)) > \frac{1}{2}
$$

- The symbol \perp is "I don't know".
- The value $\frac{1}{2}$ is arbitrary and can be replaced by 2^{-*p*(|*x*|)} or $1-\frac{1}{p(|x|)}$.
- Also known as "Las-Vegas algorithm"

 Ω

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Definition 18

ZPP is the class of languages accepted by a PTM with *polynomial expected running time such that* $\forall x \in \Sigma^*$ *,*

- $\bullet x \in L \Rightarrow Prob[M(x) = 1] = 1$
- $x \notin L \Rightarrow Prob[M(x) = 0] = 1$
- Note that it is possible for the running time to be unbounded, we do not analyze the worst-case running time, but instead the average running time.
- If we "trim" the height of a computation when exceeding a certain polynomial, and mark those trimmed configurations as \perp , we get Def. [17.](#page-17-0)

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 走 ▶ ∢ 走 ▶

$ZPP = RP \cap coRP$

Theorem 19 *ZPP* ⊆ *RP* ∩ *coRP*

Proof.

- Let *L* ∈ *ZPP*, *M* be the PTM that recognizes *L*.
- Define $M'(x) =$
	- let $b = M(x)$
	- **= ⊥ then return 0, else return** *b*
- If $x \notin L$, $M'(x)$ will never return 1.
- If $x \in L$, Prob $(M'(x) = 1) > \frac{1}{2}$ $\frac{1}{2}$, as required.
- ZPP ⊆ RP
- The same way, $\text{ZPP} \subseteq \text{coRP}$.

 QQQ

イロト (個) イヨト (ヨ)

$ZPP = RP \cap coRP$

Theorem 20

RP ∩ *coRP* ⊆ *ZPP*

Proof.

- Let *L* ∈ *RP* ∩ *coRP*, *MRP* and *McoRP* be the PTMs that recognize *L* according to *RP* and *coRP*.
- Define: $M'(x) =$
	- If $M_{RP} = YES$, return 1
	- \blacksquare if M_{coRP} = *NO*, then return 0, else return ⊥
- $M_{RP}(x)$ never returns YES if $x \notin L$, and $M_{coRP}(x)$ never returns NO if $x \in L$. Therefore, $M'(x)$ never returns the opposite of $\chi_L(x)$.
- The probability that M_{RP} and M_{coRP} are both wrong $\langle \frac{1}{2} \Rightarrow$ $Prob(M'(x) = \bot) < \frac{1}{2}$ $\frac{1}{2}$.
- \bullet RP \cap coRP \subseteq ZPP

$ZPP = RP \cap coRP$

- In the above, **black**: accept; red: reject; blue: ⊥.
- if $x \in RP$, $M_{RP}(x)$ has both black and red.
- if $x \in \text{coRP}$, $M_{\text{coRP}}(x)$ has all black. Black turns into blue.
- if $x \notin RP$, $M_{RP}(x)$ has all red.
- **•** if *x* ∉ *c[o](#page-0-0)RP*, $M_{coRP}(x)$ has both black and r[ed](#page-20-0). [B](#page-22-0)[l](#page-20-0)[ac](#page-21-0)[k](#page-22-0) [tu](#page-0-0)[r](#page-25-0)[n](#page-26-0)[s](#page-0-0) [in](#page-25-0)[t](#page-26-0)o [blu](#page-39-0)e.

Definition 21

 $L \in PP$ (Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that $\forall x \in L$:

if *x* ∈ *L*, Prob(*M*(*x*) = 1) > $\frac{1}{2}$ $\frac{1}{2}$, and

• if
$$
x \notin L
$$
, Prob $(M(x) = 1) \le \frac{1}{2}$.

つへへ

Two-Sided Error: The class BPP

Definition 22

L ∈ *BPP* (Bounded-Error Polynomial Probabilistic Time) iff there exists a polynomial-time probabilistic TM *M*, such that ∀*x* ∈ *L*: $Prob(M(x) = \chi_L(x)) \geq \frac{2}{3}$ $\frac{2}{3}$, where

 \bullet $\chi_L(x) = 1$ if $x \in L$, and

$$
\bullet \ \chi_L(x) = 0 \text{ if } x \notin L.
$$

Theorem 23

 $\text{If } L \in \text{BPP}$, then for every d , there exists a probabilistic polynomial TM M', $s.t. \ \forall x, Prob(M'(x) \neq \chi_L(x)) < 2^{-|x|^d}$

- Even a weak bound on the error is enough to obtain almost arbitrary certainty in polynomial time!
- *BPP* might be better than *P* for describing what is "tractable in practice"! イロト イ押 トイモ トイモト

 $2Q$

Relationship among Probabilistic Classes

- Probabilistic classes with one-sided error RP and coRP are common.
- ZPP defines random computations with zero-sided error, but probabilistic runtime.
- Many BPP algorithms have been de-randomised successfully
- Many experts believe that (Conjecture)

$$
P = ZPP = RP = RP = BPP \subset PP
$$

 \bullet BPP = P is equivalent to the existence of strong pseudo-random number generators, which many experts consider likely

- From the complexity viewpoint: meaningless unless can be efficiently verified.
- Given language *L*, our goal is to prove $x \in L$
- A Proof System for *L* is a verification algorithm *V*
	- \triangleright (**completeness**): *x* ∈ *L* \Rightarrow ∃ *proof*, *V* accepts (*x*, *proof*)

"true assertions have proofs"

► (soundness): $x \notin L \Rightarrow \forall \text{ proof}^*, V \text{ rejects } (x, \text{proof}^*)$

"false assertions have no proofs"

 \triangleright (efficiency): ∀*x*, *proof*: *V*(*x*, *proof*) runs in polynomial time in |*x*|

Recall the class *NP*:

L ∈ *NP* iff expressible as *L* = { x | ∃*y*, $|y|$ ≤ $|x|$ ^k, (x, y) ∈ *R*} , where *k* is a constant, and $R \in P$.

NP is the set of languages with classical proof systems (*R* is the verifier, and *y* is the "proof")

Definition 24

L ⊆ {0, 1} ∗ is in *NP* if ∃ a polynomial *p* and a ptime DTM *M* such that $\forall x \in \{0, 1\}^*$

- $(\text{Completeness}) \ x \in L \Rightarrow \exists y \in \{0, 1\}^{p(|x|)}, M(x, y) = 1$
- $\pmb{\quad \text{(Soundness)}} \, x \not\in L \Rightarrow \forall y \in \{0,1\}^{p(|x|)}, M(x,y) = 0$

 $2Q$

Interactive Proofs

- Two new ingredients:
	- \blacktriangleright Randomness: verifier uses randomness (e.g., tosses coins), allowing errors with some small probability
	- \blacktriangleright Interaction: rather than only "reading" a proof, verifier interacts with computationally unlimited prover
- Interaction and randomness possibly add power
	- ▶ *NP*: prover sends proof, verifier does not use randomness
	- ▶ *BPP*: randomness alone, no interaction

They can exchange massages

Interactive Proofs

- An interactive proof system for language *L* is an interactive protocol (*P*, *V*)
	- ► completeness: $x \in L \Rightarrow Pr[V \text{ accepts in } (P, V)(x)] \geq \frac{2}{3}$
	- ► soundness: $x \notin L \Rightarrow \forall P^*, \ Pr[V \text{ accepts in } (P^*, V)(x)] \leq \frac{1}{3}$
	- \blacktriangleright efficiency: *V* is p.p.t. machine

IP[*k*]: languages that have *k*-round interac[tiv](#page-28-0)[e](#page-30-0) [p](#page-28-0)[ro](#page-29-0)[o](#page-30-0)[f](#page-25-0)[s](#page-26-0)

Graph Isomorphism

Graphs $G_0 = (V, E_0)$ and $G_1 = (V, E_1)$ are isomorphic $(G_0 \approx G_1)$ if exists a permutation $\Pi: V \to V$ for which

 $(x, y) \in E_0 \Leftrightarrow (\Pi(x), \Pi(y)) \in E_1$

4 0 8

 $2Q$

- $GI = \{(G_0, G_1) : G_0 \approx G_1\}$ in *NP* not known to be in *P*, or NP -complete. Best algorithm takes $2^{O((\log n)^3)}$ time (2017).
- $GNI = \{(G_0, G_1) : G_0 \not\approx G_1\}$ not known to be in *NP*

Theorem 25

 $GNI \in IP$.

indication *IP* may be more powerful than *NP*

4 0 8 4

 QQQ

- Completeness: If $G_0 \not\approx G_1$ then *H* is isomorphic to exactly one of (G_0, G_1) (honest) Prover will choose correct *r*. *V* accepts with prob=1.
- Soundness: If $G_0 \approx G_1$ then prover has no way of knowing whether *H* is the permutation of G_0 or G_1 . Any prover P^* can "succeed" (by tricking verifier to accept wrongly) with probability at most $\frac{1}{2}$.
- Repeat the above twice can lower the error prob to $\frac{1}{4}$.

Interactive Proof for GI

- As GI is in NP, a simple IP is for *P* to send the isomorphism to *V*. The solution, however, is not zero knowledge.
- Consider the following solution. Note that if $G_0 \approx G_1$ Prover P can find two random permutations γ_0 and γ_1 such that

 $\gamma_0(G_0) = H = \gamma_1(G_1)$, for some *H*. Thus, letting $\sigma = \gamma_1^{-1}$ \int_{1}^{-1} γ_0 ,

 $\sigma(G_0) = G_1$. Also note that $\gamma_0 \sigma^{-1}(G_1) = H$.

Repeat the following *k* times.

Prover *P*

(1) Let *H* be
$$
\gamma_0(G_0)
$$
; Send *H* to
Verifier *V*.

(3) If
$$
b = 0
$$
, send $\gamma = \gamma_0$ to V;

If $b = 1$, send $\gamma = \gamma_0 \sigma^{-1}$ to *V*

Verifier *V*

(2) Choose $b \in \{0, 1\}$ randomly; Send *b* to Prover *P*

(4) Check
$$
\gamma(G_b) = H
$$
. If yes,

accept; otherwise, reject.

イロト イ押 トイモ トイモト

- If $G_0 \approx G_1 \Rightarrow$ accept with prob. = 1
- If $G_0 \not\approx G_1 \Rightarrow$ prob. of catching a mistake = 1 $(1/2)^k$.
- Zero knowledge

 QQQ

Interactive Proof for GI

- If $G_0 \approx G_1$, *H* can be obtained using either $\gamma_0(G_0)$ or $\gamma_1(G_1)$.
- **•** If $G_0 \not\approx G_1$, *H* can only be obtained using $\gamma_0(G_0)$.
- Chosen randomly, the $b \in \{0,1\}$ Verifier sends to Prover is to "challenge" Prover to send the correct permutation using which *H* can be obtained from *G^b* .
- **If** $G_0 \approx G_1$, Prover can always send the correct permutation (γ_0 if $b = 0$, or $\gamma_0 \sigma^{-1}$ if $b = 1$) to Verifier.
- **•** If $G_0 \not\approx G_1$, Prover can send the correct permutation (i.e., γ_0) only if $b = 0$, as that is what *H* is obtained originally. If $b = 1$, Verifier will reject as whatever γ Prover sends, Verifier will not be able to obtain *H* from G_1 . As a result, with prob. $= 1/2$ Verifier will catch a mistake.
- By repeating the interaction *k* times, if $G_0 \not\approx G_1$ the prob. of catching a mistake will be 1 − (1/2) *k* .

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Theorem 26 $IP = PSPACE$.

4.0.3.4

A. メイヨメ ×. ヨト 299

- A Zero Knowledge interactive proof system for language *L* is an interactive protocol (*P*, *V*)
	- ▶ Completeness: $x \in L \Rightarrow Pr[V \text{ accepts in } (P, V)(x)] \geq \frac{2}{3}$
	- ► Soundness: $x \notin L \Rightarrow \forall P^*, \ Pr[V \text{ accepts } in (P^*, V)(x)] \leq \frac{1}{3}$
	- \blacktriangleright Efficiency: *V* is p.p.t. machine
	- ► Zero Knowledge: no efficient V^{*} learns anything more than validity of $x \in L$?.

How to Define Zero Knowledge?

- After the interaction, *V* knows:
	- \blacktriangleright The theorem is true; and
	- A view of the interaction $($ = transcript + coins of *V* $)$
- *P* gives zero knowledge to *V*:
	- \blacktriangleright When the theorem is true, the view gives *V* nothing that he couldn't have obtained on his own without interacting with *P*.
- (*P*, *V*) is zero-knowledge if *V* can "simulate" (or "generate") his **VIEW** of the interaction all by himself in probabilistic ptime.

Recall the Interactive proof for Graph Isomorphism.

- View of $V = \{ (H, \text{coin}, \text{ random isomorphism of } G_b \text{ to } H \}$, i.e.,
	- \blacktriangleright $P \stackrel{H}{\rightarrow} V$
	- $\blacktriangleright \forall \stackrel{b}{\to} P$
	- \blacktriangleright *P* $\stackrel{\gamma}{\rightarrow}$ *V*
- Simulator *M*: Toss coin
	- If coin=head, choose random γ_0 set $H = \gamma_0(G_0)$
	- If coin=tail, choose random γ_1 set $H = \gamma_1(G_1)$

Theorem 27

Every language in NP has a zero-knowledge interactive proof.

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶