Theory of Computation

Spring 2021, Midterm Exam (Solutions)

1. (12 pts) We showed in class that the DFA-acceptable languages were closed under intersection. The construction that established this is called the $\ldots .$. product automata construction..... . It works liked this. Given a DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and a DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, we construct a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for $\left.L\left(M_{1}\right) \cap L_{(} M_{2}\right)$. For the state set of M, we select $Q=$ $Q_{1} \times Q_{2}$. (Thus if M_{1} has 10 states and M_{2} has 20 states, then M will have 200 states.) For the start state of M we set $q_{0}=\left(q_{1}, q_{2}\right)$. The final states of M are set $F=F_{1} \times F_{2}$. The transition function δ is $\delta(q, a)=\left(\delta_{1}(q, a), \delta_{2}(q, a)\right)$. Fill in blanks (1)-(6).
2. (8 pts) Give a CFG for the language $L=\left\{x x^{R} y y^{R} \mid x, y \in\{a, b\}^{*}\right\}$. Your CFG must be as simple as possible. Here x^{R} stands for the reversal of string x, e.g., $(a b c)^{R}=c b a$.

Solution:

$S \rightarrow S_{1} S_{2}$
$S_{1} \rightarrow a S_{1} a\left|b S_{1} b\right| \epsilon$
$S_{2} \rightarrow a S_{2} a\left|b S_{2} b\right| \epsilon$
3. (12 pts) Let $\Sigma=\{a, b, c, d\}$, and $L_{1}, L_{2} \subseteq \Sigma^{*}$ with
$L_{1}=\left\{w \mid w\right.$ contains equal number of $a^{\prime} s$ and $\left.b^{\prime} s\right\}$
$L_{2}=\left\{w \mid w\right.$ contains equal number of $c^{\prime} s$ and $\left.d^{\prime} s\right\}$
Let $L=L_{1} \cap L_{2}$. Answer the following questions along with brief explanations.
(a) Are L_{1} and L_{2} context-free?

Solution: YES. Here is the PDA that recognizes L_{1} (one for L2 is similar): the PDA ignores the symbols c and d. It pushes every a (resp. b) to the stack unless the top symbol of the stack is b (resp. a), in which case, it pops the top symbol. In the end, the PDA accepts if the stack is empty. Note that the PDA is deterministic.
(b) Are $\overline{L_{1}}$ and $\overline{L_{2}}$ context-free?

Solution: YES. The PDA for $\overline{L_{1}}$ is the same as the PDA for L_{1} described above, except that the Accept/Reject decision is reversed (this makes sense because the PDA is deterministic).
(c) Is L context-free?

Solution: NO. Note that $\left(L_{1} \cap L_{2}\right) \cap a^{*} c^{*} b^{*} d^{*}=\left\{a^{n} c^{m} b^{n} d^{m} \mid m, n \geq 0\right\}$.
(d) Is \bar{L} context-free?

Solution: YES. $\bar{L}=\overline{L_{1}} \cup \overline{L_{2}}$
Recall that $\bar{L}=\Sigma^{*}-L$.
4. (8 pts) For $n \in N, F(n)$ is the n-th Fibonacci number defined as $F(1)=1 ; F(2)=1 ; \forall n>$ $2, F(n)=F(n-1)+F(n-2)$. For $\Sigma=\{a\}$, consider the language $L=\left\{a^{m} \mid m=F(n), n>0\right\}$. Is L regular? Justify your answer.
Solution: Not regular. Assume that L were regular. Let n be the pumping constant. We choose a p such that $F(p-1)>n$. Consider $a^{F(p)} \in L$. For every u, v, w with $a^{F(p)}=u v w$ and $|v| \leq n,\left|u v^{2} w\right|=F(p)+|v| \leq F(p)+n<F(p)+F(p-1)=F(p+1)$, hence, $w v^{2} w \notin L$.
5. (10 pts) Consider the DFA given below, in which q_{0} is the initial state and q_{3} is the final state. Find the equivalent minimum DFA. Show your work in sufficient detail.

	a	b	
$\rightarrow q_{0}$	q_{0}	q_{1}	
q_{1}	q_{2}	q_{3}	
q_{2}	q_{2}	q_{3}	
q_{3}	q_{2}	q_{4}	F
q_{4}	q_{0}	q_{1}	

Solution:

	a	b	
$\rightarrow\left\{q_{0}, q_{4}\right\}$	$\left\{q_{0}, q_{4}\right\}$	$\left\{q_{1}, q_{2}\right\}$	
$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{3}\right\}$	
$\left\{q_{3}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{4}\right\}$	F

6. (10 pts) Answer the following questions:
(a) For $L_{1}, L_{2} \subseteq\{a, b\}^{*}$, let $L_{1} \cdot \#(a) L_{2}=\left\{u v \mid u \in L_{1}, v \in L_{2}\right.$, $\left.\#{ }_{a}(u)=\#_{a}(v)\right\}$, where $\# a(u)$ denotes the number of a 's in u. For example, $\#_{a}(b a a b a)=3$. Given L_{1}, L_{2} regular, is $L_{1} \cdot \#(a) L_{2}$ always regular? Justify your answer.
Solution: No. Suppose $L_{1}=a^{*} c$ and $L_{2}=a^{*}$. $L_{1}{ }^{\#}{ }^{(a)} L_{2}=\left\{a^{n} c a^{n} \mid n \geq 0\right\}$ which is not regular.
(b) Given L_{1}, L_{2} context-free, is shuffle $\left(L_{1}, L_{2}\right)$ always context-free? Justify your answer.

Solution: No. Suppose $L_{1}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{c^{n} d^{n} \mid n \geq 0\right\}$. shuffle $\left(L_{1}, L_{2}\right) \cap$ $a^{*} c^{*} b^{*} d^{*}=\left\{a^{n} b^{m} c^{n} d^{m} \mid m, n \geq 0\right\}$, which is not context-free.
7. (10 pts) For any language A, define the set $A_{-*-}=\{y|\exists x, z,|x|=|y|=|z|, x y z \in A\}$. For example, if $A=\{\underline{\epsilon}, a, a b, b \underline{a} b, b b a b, a a \underline{b b} a b\}$, then $A_{-*-}=\{\epsilon, a, b b\}$.
(Question): Given a regular language L, is L_{-*-} always regular? Justify your answer.
To received full credit, if you think the answer is negative, give a counter-example and show the example to be non-regular. If your answer is positive, give a convincing argument (proof).
Solution: Always regular. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an FA accepting A. We construct the following FA $M^{\prime}=\left(Q^{\prime}, \Sigma, q_{0}^{\prime}, \delta ;, F^{\prime}\right)$ to accept A_{-*-}.

- $Q^{\prime}=(Q \times Q \times Q) \cup\left\{q_{0}^{\prime}\right\}$
- δ :
$-\left(q_{1}, q_{2}, q_{0}, q_{1}, q_{2}\right) \in \delta^{\prime}\left(q_{0}, \epsilon\right), \forall q_{1}, q_{2} \in Q$,
where q_{1} and q_{2} capture the states visited in the $\frac{1}{3}$ rd and $\frac{2}{3}$ rd positions, respectively, along an accepting computation.
$-\left(q_{1}, q_{2}, p^{\prime}, q^{\prime}, r^{\prime}\right) \in \delta^{\prime}\left(\left(q_{1}, q_{2}, p, q, r\right), a\right)$ if $p^{\prime} \in \delta(p, x), q^{\prime} \in \delta(q, a), r^{\prime} \in \delta(r, y)$, for some $x, y \in \Sigma$.
- $F^{\prime}=\left\{\left(q_{1}, q_{2}, q_{1}, q_{2}, q_{f}\right) \mid q_{f} \in F\right\}$.

8. (6 pts) A star-free regular expression is a regular expression built up from the atomic expression ϵ, \emptyset and $a \in \Sigma$ using only operations: "." (for concatenation), " + " (for union), " \cap " (for intersection), and " \sim (for complementation). Note that the $" * "$ operation is not allowed in star-free
regular expression. Given a star-free regular expression r, we write $L(r)$ to denote the language expressed by r. Note that $L(\sim r)=\Sigma^{*}-L(r)$. Suppose $\Sigma=\{a, b, c\}$. Answer the following questions:
(a) (3 pts) Show that $\{a, b, c\}^{*}$ is star-free.

Solution: $\sim \emptyset=\{a, b, c\}^{*}$.
(b) (3 pts) Show that $a^{+}=\{a, a a, a a a, \ldots$.$\} is star-free.$

Solution: $(\sim \epsilon) \cap\left(\sim\left(\Sigma^{*}(b+c) \Sigma^{*}\right)\right.$
9. (12 pts) Suppose L is a language over an alphabet Σ. Given a string $x \in \Sigma^{*}$, we define the suffix language $\operatorname{suf}_{L}(x)=\left\{y \in \Sigma^{*} \mid x y \in L\right\}$. For example, let $\Sigma=\{0,1\}$ and $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, then $\operatorname{suf}_{L}(0)=\{1,011,00111 \ldots\}$ and $s u f_{L}(00)=\{0111,001111, \ldots\}$.
(Question): Suppose $\Sigma=\{a, b\}$ and $L=\left\{x \in \Sigma^{*} \mid x\right.$ contains $a b$ as a substring $\}$. For example, aaabaaa $\in L, b b b a a a \notin L$.
(a) (4 pts) It is not hard to see that $s u f_{L}(\epsilon)=L$. What are the sets $s u f_{L}(a), s u f_{L}(b)$, $s u f_{L}(a a), s u f_{L}(a b), s u f_{L}(b a), s u f_{L}(b b)$?
Solution: $s u f_{L}(a)=b \Sigma^{*} \cup L ; s u f_{L}(b)=L ; s u f_{L}(a a)=b \Sigma^{*} \cup L, s u f_{L}(a b)=\Sigma^{*}$, $s u f_{L}(b a)=b \Sigma^{*} \cup L, s u f_{L}(b b)=L$
(b) (4 pts) What is the size of the set $\left\{\operatorname{su} f_{L}(x) \mid x \in \Sigma^{*}\right\}$? That is, what is the number of different $\operatorname{suf}_{L}(x), \forall x \in \Sigma^{*}$? Briefly explain why.
Solution: 3, corresponding to Σ^{*}, L, and $b \Sigma^{*} \cup L$. For $s u f_{L}(x)$, we have the following cases:

- $x=y a, y \in \Sigma^{*}, s u f_{L}(x)=b \Sigma^{*} \cup L$,
- $x=y a b, y \in \Sigma^{*}, \operatorname{suf}_{L}(x)=\Sigma^{*}$
- otherwise, $\operatorname{suf}_{L}(x)=L$.
(c) (4 pts) Suppose we want to construct a DFA M to accept L in such a way that each state of M corresponds to a set $s u f_{L}(x)$, where $x \in \Sigma^{*}$. In M, what is $\delta\left(s u f_{L}(x), a\right)$? That is, what is the state resulting from reading a in state $s u f_{L}(x)$? Why?
Solution: $\delta\left(s u f_{L}(x), a\right)=s u f_{L}(x a)$

10. (12 pts) Given languages L_{1}, L_{2}, recall that $L_{1} L_{2}=\left\{u v \mid u \in L_{1}, v \in L_{2}\right\}$. We also define $L_{1}^{-1} L_{2}=\left\{v \mid \exists u \in L_{1}, u v \in L_{2}\right\}$. Decide whether each of the following equations is true or false. Justify your answers.
(a) $\{a\}^{-1}(\{a\} L)=L$

Solution: True: $x \in\{a\}^{-1}(\{a\} L) \Leftrightarrow a x \in a L \Leftrightarrow x \in L$
(b) $\{a\}\left(\{a\}^{-1} L\right)=L$

Solution: False: if $L=\{\epsilon\}$, then $\{a\}^{-1} L=\emptyset$
(c) $L_{1}^{-1}\left(L_{1} L_{2}\right)=L_{2}$

Solution: False: Take $L_{1}=\{a, a b\}, L_{2}=\{b a\}$, then $L_{1} L_{2}=\{a b a, a b b a\}$ and $L_{1}^{-1}\left(L_{1} L_{2}\right)=$ $\{b a, b b a, a\}$
(d) $L^{-1} L=\{\epsilon\}$

Solution: False $L=\{a, a a\}$, then $L^{-1} L=\{\epsilon, a\}$

