Theory of Computation Spring 2021, Midterm Exam (Solutions)

- 1. (12 pts) We showed in class that the DFA-acceptable languages were closed under intersection. The construction that established this is called theproduct automata construction......). It works liked this. Given a DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and a DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, we construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ for $L(M_1) \cap L(M_2)$. For the state set of M, we select $Q = Q_1 \times Q_2$. (Thus if M_1 has 10 states and M_2 has 20 states, then M will have 200 states.) For the start state of M we set $q_0 = (q_1, q_2)$. The final states of M are set $F = F_1 \times F_2$. The transition function δ is $\delta(q, a) = (\delta_1(q, a), \delta_2(q, a))$. Fill in blanks (1) - (6).
- 2. (8 pts) Give a CFG for the language $L = \{xx^Ryy^R \mid x, y \in \{a, b\}^*\}$. Your CFG must be as simple as possible. Here x^R stands for the reversal of string x, e.g., $(abc)^R = cba$. Solution:
 - $\begin{array}{l} S \rightarrow S_1 S_2 \\ S_1 \rightarrow a S_1 a \mid b S_1 b \mid \epsilon \\ S_2 \rightarrow a S_2 a \mid b S_2 b \mid \epsilon \end{array}$
- 3. (12 pts) Let $\Sigma = \{a, b, c, d\}$, and $L_1, L_2 \subseteq \Sigma^*$ with

 $L_1 = \{w \mid w \text{ contains equal number of } a's \text{ and } b's\}$ $L_2 = \{w \mid w \text{ contains equal number of } c's \text{ and } d's\}$

Let $L = L_1 \cap L_2$. Answer the following questions along with brief explanations.

(a) Are L_1 and L_2 context-free?

Solution: YES. Here is the PDA that recognizes L_1 (one for L2 is similar): the PDA ignores the symbols c and d. It pushes every a (resp. b) to the stack unless the top symbol of the stack is b (resp. a), in which case, it pops the top symbol. In the end, the PDA accepts if the stack is empty. Note that the PDA is deterministic.

- (b) Are $\overline{L_1}$ and $\overline{L_2}$ context-free? Solution: YES. The PDA for $\overline{L_1}$ is the same as the PDA for L_1 described above, except that the Accept/Reject decision is reversed (this makes sense because the PDA is deterministic).
- (c) Is L context-free? Solution: NO. Note that $(L_1 \cap L_2) \cap a^*c^*b^*d^* = \{a^nc^mb^nd^m \mid m, n \ge 0\}.$
- (d) Is \overline{L} context-free? Solution: YES. $\overline{L} = \overline{L_1} \cup \overline{L_2}$

Recall that $\overline{L} = \Sigma^* - L$.

4. (8 pts) For $n \in N$, F(n) is the *n*-th Fibonacci number defined as F(1) = 1; F(2) = 1; $\forall n > 2$, F(n) = F(n-1) + F(n-2). For $\Sigma = \{a\}$, consider the language $L = \{a^m \mid m = F(n), n > 0\}$. Is L regular? Justify your answer.

Solution: Not regular. Assume that L were regular. Let n be the pumping constant. We choose a p such that F(p-1) > n. Consider $a^{F(p)} \in L$. For every u, v, w with $a^{F(p)} = uvw$ and $|v| \le n$, $|uv^2w| = F(p) + |v| \le F(p) + n < F(p) + F(p-1) = F(p+1)$, hence, $wv^2w \notin L$.

5. (10 pts) Consider the DFA given below, in which q_0 is the initial state and q_3 is the final state. Find the equivalent minimum DFA. Show your work in sufficient detail.

	a	b	
$\rightarrow q_0$	q_0	q_1	
q_1	q_2	q_3	
q_2	q_2	q_3	
q_3	q_2	q_4	F
q_4	q_0	q_1	

Solution:

		a	b	
\rightarrow	$\{q_0, q_4\}$	$\{q_0, q_4\}$	$\{q_1, q_2\}$	
	$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_3\}$	
	$\{q_3\}$	$\{q_1, q_2\}$	$\{q_0, q_4\}$	F

- 6. (10 pts) Answer the following questions:
 - (a) For L₁, L₂ ⊆ {a,b}*, let L₁ · #(a) L₂ = {uv | u ∈ L₁, v ∈ L₂, #a(u) = #a(v)}, where #a(u) denotes the number of a's in u. For example, #a(baaba) = 3. Given L₁, L₂ regular, is L₁ · #(a) L₂ always regular? Justify your answer.
 Solution: No. Suppose L₁ = a*c and L₂ = a*. L₁ · #(a) L₂ = {aⁿcaⁿ | n ≥ 0} which is not regular.
 - (b) Given L_1, L_2 context-free, is shuffle (L_1, L_2) always context-free? Justify your answer. **Solution:** No. Suppose $L_1 = \{a^n b^n \mid n \ge 0\}$ and $L_2 = \{c^n d^n \mid n \ge 0\}$. shuffle $(L_1, L_2) \cap a^* c^* b^* d^* = \{a^n b^m c^n d^m \mid m, n \ge 0\}$, which is not context-free.
- 7. (10 pts) For any language A, define the set $A_{-*-} = \{y \mid \exists x, z, |x| = |y| = |z|, xyz \in A\}$. For example, if $A = \{\underline{\epsilon}, a, ab, \underline{bab}, bbab, aa\underline{bb}ab\}$, then $A_{-*-} = \{\epsilon, a, bb\}$.

(Question): Given a regular language L, is L_{-*-} always regular? Justify your answer.

To received full credit, if you think the answer is negative, give a counter-example and show the example to be non-regular. If your answer is positive, give a convincing argument (proof). **Solution:** Always regular. Let $M = (Q, \Sigma, \delta, q_0, F)$ be an FA accepting A. We construct the following FA $M' = (Q', \Sigma, q'_0, \delta; F')$ to accept A_{-*-} .

- $Q' = (Q \times Q \times Q) \cup \{q'_0\}$
- δ :
 - $(q_1, q_2, q_0, q_1, q_2) \in \delta'(q_0, \epsilon), \forall q_1, q_2 \in Q,$

where q_1 and q_2 capture the states visited in the $\frac{1}{3}$ rd and $\frac{2}{3}$ rd positions, respectively, along an accepting computation.

- $-(q_1, q_2, p', q', r') \in \delta'((q_1, q_2, p, q, r), a) \text{ if } p' \in \delta(p, x), q' \in \delta(q, a), r' \in \delta(r, y), \text{ for some } x, y \in \Sigma.$
- $F' = \{(q_1, q_2, q_1, q_2, q_f) \mid q_f \in F\}.$
- 8. (6 pts) A star-free regular expression is a regular expression built up from the atomic expression ϵ, \emptyset and $a \in \Sigma$ using only operations: " \cdot " (for concatenation), "+" (for union), " \cap " (for intersection), and " \sim " (for complementation). Note that the "*" operation is not allowed in star-free

regular expression. Given a star-free regular expression r, we write L(r) to denote the language expressed by r. Note that $L(\sim r) = \Sigma^* - L(r)$. Suppose $\Sigma = \{a, b, c\}$. Answer the following questions:

- (a) (3 pts) Show that $\{a, b, c\}^*$ is star-free. Solution: $\sim \emptyset = \{a, b, c\}^*$.
- (b) (3 pts) Show that $a^+ = \{a, aa, aaa,\}$ is star-free. Solution: $(\sim \epsilon) \cap (\sim (\Sigma^*(b+c)\Sigma^*)$
- 9. (12 pts) Suppose L is a language over an alphabet Σ . Given a string $x \in \Sigma^*$, we define the suffix language $suf_L(x) = \{y \in \Sigma^* \mid xy \in L\}$. For example, let $\Sigma = \{0,1\}$ and $L = \{0^n 1^n \mid n \ge 0\}$, then $suf_L(0) = \{1,011,00111...\}$ and $suf_L(0) = \{0111,001111,...\}$.
 - (Question): Suppose $\Sigma = \{a, b\}$ and $L = \{x \in \Sigma^* \mid x \text{ contains } ab \text{ as a substring}\}$. For example, $aaabaaa \in L$, $bbbaaa \notin L$.
 - (a) (4 pts) It is not hard to see that suf_L(ε) = L. What are the sets suf_L(a), suf_L(b), suf_L(aa), suf_L(ab), suf_L(ba), suf_L(bb)?
 Solution: suf_L(a) = bΣ* ∪ L; suf_L(b) = L; suf_L(aa) = bΣ* ∪ L, suf_L(ab) = Σ*, suf_L(ba) = bΣ* ∪ L, suf_L(bb) = L
 - (b) (4 pts) What is the size of the set $\{suf_L(x) \mid x \in \Sigma^*\}$? That is, what is the number of different $suf_L(x), \forall x \in \Sigma^*$? Briefly explain why.

Solution: 3, corresponding to Σ^* , L, and $b\Sigma^* \cup L$. For $suf_L(x)$, we have the following cases:

- $x = ya, y \in \Sigma^*, suf_L(x) = b\Sigma^* \cup L,$
- $x = yab, y \in \Sigma^*, suf_L(x) = \Sigma^*$
- otherwise, $suf_L(x) = L$.
- (c) (4 pts) Suppose we want to construct a DFA M to accept L in such a way that each state of M corresponds to a set $suf_L(x)$, where $x \in \Sigma^*$. In M, what is $\delta(suf_L(x), a)$? That is, what is the state resulting from reading a in state $suf_L(x)$? Why? Solution: $\delta(suf_L(x), a) = suf_L(xa)$
- 10. (12 pts) Given languages L_1, L_2 , recall that $L_1L_2 = \{uv \mid u \in L_1, v \in L_2\}$. We also define $L_1^{-1}L_2 = \{v \mid \exists u \in L_1, uv \in L_2\}$. Decide whether each of the following equations is true or false. Justify your answers.
 - (a) $\{a\}^{-1}(\{a\}L) = L$ Solution: True: $x \in \{a\}^{-1}(\{a\}L) \Leftrightarrow ax \in aL \Leftrightarrow x \in L$
 - (b) $\{a\}(\{a\}^{-1}L) = L$ Solution: False: if $L = \{\epsilon\}$, then $\{a\}^{-1}L = \emptyset$
 - (c) $L_1^{-1}(L_1L_2) = L_2$ **Solution:** False: Take $L_1 = \{a, ab\}, L_2 = \{ba\}$, then $L_1L_2 = \{aba, abba\}$ and $L_1^{-1}(L_1L_2) = \{ba, bba, a\}$
 - (d) $L^{-1}L = \{\epsilon\}$ Solution: False $L = \{a, aa\}$, then $L^{-1}L = \{\epsilon, a\}$