Theory of Computation

Spring 2020, Midterm Exam (Solutions)
Due: April 21, 2020

1. (10 pts) True or False? Prove your answer.
(a) If $A \cap B, B \cap C$, and $A \cap C$ are regular languages, then $A \cup B \cup C$ is regular as well.
(b) If $L \cdot L$ is a nonregular language, then L^{*} is nonregular as well.

Solution

(a) False. Let A be any nonregular language, and let $B=C=\emptyset$.
(b) False. Consider the language $L=\{0,1\} \cup\left\{0^{n} 1^{n}: n>0\right\}$. Then $L^{*}=\{0,1\}^{*}$
2. (20 pts) For each of the following languages L_{1}, \ldots, L_{10}, determine whether it is regular or not. No explanations are needed, however, Score $=\max \left\{0\right.$, right $-\frac{1}{2}$ wrong $\}$.
(a) Let L be a given regular language. Let L_{1} be the set of strings w such that $w^{R} w \in L$, where w^{R} is the reversal of w, e.g., $0010^{R}=0100$. Is L_{1} always regular?
Solution: Regular. Pick a state q; Simulate $q \xrightarrow{w} q_{f}$ (in a forward direction) and $q \xrightarrow{w} q_{0}$
(in a backward direction, i.e., to check $q_{0} \xrightarrow{w^{R}} q$) in parallel, where q_{0} and q_{f} are the initial state and the final state, respectively.
(b) L_{2} is the set of strings of the form $u v$, where $u, v \in\{0,1\}^{*}$ are palindromes. Note that a palindrome is a string x such that $x=x^{R}$, e.g., 001100 is a palindrome.
Solution: Not Regular. $0^{i} 110^{i} 1=\left(0^{i} 110^{i}\right) 1 \in L_{2}$ but $0^{j} 110^{i} 1 \notin L_{2}$, for $i \neq j$. Hence, $0,0^{2}, 0^{3}, 0^{4}$.. are in different equivalence classes.
(c) L_{3} is the set of binary strings in which the number of 0 s and the number of 1 s differ by an integer multiple of 17 .
Solution: Regular. Use states to keep track of the difference of 0 s and 1 s modulo 17.
(d) $L_{4}=\left\{x \# y \mid x, y \in\{0,1\}^{*}\right.$, when viewed as binary numbers, $\left.x+y=3 y\right\}$. For instance, $1000 \# 100 \in L$, as $1000=8,100=4,8+4=3^{*} 4$.
Solution: Not regular, which we show using the Pumping lemma. We must start by choosing a string that is in fact in L_{4}. Let $w=100^{k} \# 10^{k}$.
(e) $L_{5}=\left\{w \mid w=x y z y, x, y, z \in\{0,1\}^{*}\right\}$.

Solution: Regular. The key to why this is so is to observe that y can be ϵ.
(f) We define \max-string $(L)=\left\{w \mid w \in L, \forall z \in \Sigma^{*}(z \neq \epsilon \Rightarrow x z \notin L)\right\}$. Suppose L is regular, is $L_{6}=$ max-string (L) always regular?
Solution: Regular. For each final state q_{f} of the original FA, if another final state q_{f}^{\prime} is reachable from q_{f}, then remove q_{f} from the list of final states.
(g) $L_{7}=\left\{w \in\{a, b\}^{*} \mid\right.$ the first, middle, and last characters of w are identical $\}$. For example, $\mathbf{a} b b \mathbf{a} a b \mathbf{a} \in L_{7}$.
Solution: Not regular, consider $L \cap a b^{*} a b^{*} a=\left\{a b^{n} a b^{n} a \mid n \geq 0\right\}$
(h) L_{8} is the set of strings that contain a substring of the form $w u w$ where $u, w \in\{0,1\}^{*}$. Note that x is a substring of y if there exist $s, t \in \Sigma^{*}$ such that $y=s x t$.
Solution: Regular. w can be ϵ.
(i) L_{9} is the set of odd-length strings with middle symbol 0 (over alphabet $\{0,1\}$).

Solution: Not regular. Intersect the language with $1^{*} 01^{*}=\left\{1^{n} 01^{n}\right\}$
(j) $L_{10}=\left\{1^{k} y \mid y \in\{0,1\}^{*}, y\right.$ contains at most $\left.k 1 \mathrm{~s}, k \geq 1\right\}$. For instance, 11101 is in the language, as choosing $y=01$ meets the requirement.
Solution: Not regular. $L_{10} \cap 1^{*} 01^{*}=\left\{1^{n} 01^{m} \mid m \leq n\right\}$.
3. (10 pts) Use the pumping lemma to show that the following language is not regular. Show your steps in detail.

$$
\left\{(b a)^{n} b^{n} \in\{a, b\}^{*} \mid n \geq 0\right\}
$$

Solution:

Assume to the contrary that A is regular. Therefore it has a pumping length $p \geq 1$. Consider $s=(b a)^{p} b^{p}$, we observe that $s \in A$. Since $|s| \geq p$, every proper break down of it must be "pumpable". Let $s=x y z$ be a proper break down of string x according to pumping lemma, that is $|x y| \leq p$ and $y \neq \epsilon$. Since $\left|(b a)^{p}\right|=2 p$, the string $x y$ is just a prefix of $(b a)^{p}$. Since $y \neq \epsilon$, when we pump down y, we will remove at least one a or one b from the ($b a)^{p}$ prefix of s while s will have still p trailing b 's; this means that $x z \notin A$, which contradicts the pumping lemma. Thus A can not be regular.
4. (10 pts) Convert the following DFA into a regular expression that describes the same language. We eliminate states in the order q_{3}, q_{1}, q_{2}. We do not need to add dummy initial and final states here, since they don't play a role in this example (there is just one final state in the DFA). Show your work in sufficient detail.

Solution:

So our regular expression is $\left(00 \cup(1 \cup 01(0 \cup 1))(0 \cup 11(0 \cup 1))^{*} 10\right)^{*}$.
5. (15 pts) (Myhill-Nerode Theorem)
(a) (7 pts) Given a language L, consider the equivalence relation \equiv_{L} on $\Sigma^{*}\left(\equiv_{L} \subseteq \Sigma^{*} \times \Sigma^{*}\right.$) defined by: $x \equiv_{L} y$ if and only if for all $z \in \Sigma^{*}, x z \in L$ iff $y z \in L$. Write down the equivalence classes of \equiv_{L} for the language $L=\left\{0^{n} 1^{n} \mid n>0\right\}$ over the binary alphabet $\{0,1\}$.

Solution

- $\left\{0^{i}\right\}$ for $i=0,1,2, \ldots$;
- $\left\{0^{n+i} 1^{n} \mid n \geq 1\right\}$ for $i=0,1,2, \ldots$;
- $\{0,1\}^{*}-\left\{0^{n} 1^{m} \mid n \geq m\right\}$

Any two classes in the first group can be distinguished from one another by a string of all 1s; likewise for the second group. Any class in the first group can be distinguished from any class in the second group by a string of the form $011 \ldots 1$. Finally, the strings in $\{0,1\}^{*}-\left\{0^{n} 1^{m} \mid n \geq m\right\}$ form a separate class because they are precisely those strings that cannot be made into a string of L by appending any suffix.
(b) (8 pts) Suppose the equivalence classes induced by \equiv_{L} for a language L (over $\Sigma=\{0,1\}$) accepted a DFA M has the following five equivalence classes. Furthermore, $001101 \in L$, and M has only one final state.

- $C_{1}=\{\epsilon\}$
- $C_{2}=\{0,1\}$
- $C_{3}=\{01,11,010,011, \ldots\}$
- $C_{4}=\{00,000,0010,1010, \ldots\}$
- $C_{5}=\{000001,0011,10011 \ldots\}$

Draw the DFA M.

Solution

6. (5 pts) Consider the following right-linear grammar over alphabet $\{a, b\}$:

$$
\begin{gathered}
S \rightarrow a T|b T| \epsilon \\
T \rightarrow a S \mid b S
\end{gathered}
$$

Draw a finite automaton to accept the language generated by the above grammar.

Solution:

7. (10 pts) A set of pairs of strings $F=\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \ldots, n\right\}$ is called a fooling set for a language L if for each i, j in $\{1,2, \ldots, n\}$,
(a) $x_{i} y_{i} \in L$, and
(b) if $i \neq j$, then $x_{i} y_{j} \notin L$ or $x_{j} y_{i} \notin L$

There is a theorem saying that if F is a fooling set for a regular language L, then every NFA for L has at least $|F|$ states. Consider the following language: $L=n c(m+a)^{*}$, where $\Sigma=\{a, c, m, n\}$.
(a) (5 pts) Give (draw) an NFA with the minimum number of states to accept L.

Solution:

(b) (5 pts) Find a fooling set to show that the NFA you design is minimum.

Solution: $F=\{(\epsilon, n c m a),(n, c m a),(n c, m a)\}$
8. (12 pts) Consider the context-free grammar $G: S \rightarrow S S|a S| b$ (over alphabet $\Sigma=\{a, b\}$).
(a) (4 pts) Prove that this grammar is ambiguous.
(b) (4 pts) The language $L(G)$ is in fact regular. Write a regular expression as simple as possible to express $L(G)$.
(c) (4 pts) Give an equivalent unambiguous grammar.

Solution:

(a)
(b) $(a+b)^{*} b$
(c) $S \rightarrow a S|b S| b$
9. (8 pts) We define $L_{1} / L_{2}=\left\{u \in \Sigma^{*} \mid u v \in L_{1}, \exists v \in L_{2}\right\}$, and $L_{1} \backslash L_{2}=\left\{u \in \Sigma^{*} \mid v u \in L_{1}, \exists v \in\right.$ $\left.L_{2}\right\}$. Suppose $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and $L_{2}=\{b, c\}^{*}$. Answer the following questions:
(a) $L_{1} / L_{2}=$?

Solution: $\left\{a^{m} b^{m} c^{n} \mid m \geq n \geq 0\right\} \cup\left\{a^{m} b^{n} \mid m \geq n \geq 0\right\}$
(b) $L_{2} / L_{1}=$?

Solution: L_{2}, as $\epsilon \in L_{1}$ and $L_{2} \cdot\{\epsilon\}=L_{2}$.
(c) $L_{1} \backslash L_{2}=$?

Solution: L_{1}, as $\epsilon \in L_{2}$ and $\{\epsilon\} \cdot L_{1}=L_{1}$.
(d) $L_{2} \backslash L_{1}=$?

Solution: L_{2}, as $\epsilon \in L_{1}$ and $\{\epsilon\} \cdot L_{2}=L_{2} .$.

