Due: April 21, 2020

- 1. (10 pts) True or False? Prove your answer.
 - (a) If $A \cap B$, $B \cap C$, and $A \cap C$ are regular languages, then $A \cup B \cup C$ is regular as well.
 - (b) If $L \cdot L$ is a nonregular language, then L^* is nonregular as well.

Solution

- (a) <u>False</u>. Let A be any nonregular language, and let $B = C = \emptyset$.
- (b) <u>False</u>. Consider the language $L = \{0, 1\} \cup \{0^n 1^n : n > 0\}$. Then $L^* = \{0, 1\}^*$
- 2. (20 pts) For each of the following languages $L_1, ..., L_{10}$, determine whether it is regular or not. No explanations are needed, however, $Score = \max \{0, \text{ right}-\frac{1}{2} \text{ wrong}\}.$
 - (a) Let L be a given regular language. Let L_1 be the set of strings w such that $w^R w \in L$, where w^R is the reversal of w, e.g., $0010^R = 0100$. Is L_1 always regular? **Solution:** Regular. Pick a state q; Simulate $q \xrightarrow{w} q_f$ (in a forward direction) and $q \xrightarrow{w} q_0$ (in a backward direction, i.e., to check $q_0 \xrightarrow{w^R} q$) in parallel, where q_0 and q_f are the initial state and the final state, respectively.
 - (b) L_2 is the set of strings of the form uv, where $u, v \in \{0, 1\}^*$ are palindromes. Note that a palindrome is a string x such that $x = x^R$, e.g., 001100 is a palindrome. **Solution:** Not Regular. $0^i 110^i 1 = (0^i 110^i) 1 \in L_2$ but $0^j 110^i 1 \notin L_2$, for $i \neq j$. Hence, $0, 0^2, 0^3, 0^4$. are in different equivalence classes.
 - (c) L₃ is the set of binary strings in which the number of 0s and the number of 1s differ by an integer multiple of 17.
 Solution: Decreter Lee states to keep track of the difference of 0s and 1s module 17.

Solution: Regular. Use states to keep track of the difference of 0s and 1s modulo 17.

- (d) $L_4 = \{x \# y \mid x, y \in \{0, 1\}^*$, when viewed as binary numbers, $x + y = 3y\}$. For instance, $1000 \# 100 \in L$, as 1000=8, 100=4, $8+4=3^*4$. Solution: Not regular, which we show using the Pumping lemma. We must start by choosing a string that is in fact in L_4 . Let $w = 100^k \# 10^k$.
- (e) $L_5 = \{w \mid w = xyzy, x, y, z \in \{0, 1\}^*\}$. Solution: <u>Regular</u>. The key to why this is so is to observe that y can be ϵ .
- (f) We define max-string $(L) = \{w \mid w \in L, \forall z \in \Sigma^* (z \neq \epsilon \Rightarrow xz \notin L)\}$. Suppose L is regular, is $L_6 = max$ -string(L) always regular? Solution: Regular. For each final state q_f of the original FA, if another final state q'_f is reachable from q_f , then remove q_f from the list of final states.
- (g) $L_7 = \{w \in \{a, b\}^* \mid \text{ the first, middle, and last characters of } w \text{ are identical }\}.$ For example, $abbaaba \in L_7$. Solution: Not regular, consider $L \cap ab^*ab^*a = \{ab^nab^na \mid n > 0\}$
- (h) L_8 is the set of strings that contain a substring of the form wuw where $u, w \in \{0, 1\}^*$. Note that x is a substring of y if there exist $s, t \in \Sigma^*$ such that y = sxt. Solution: Regular. w can be ϵ .
- (i) L_9 is the set of odd-length strings with middle symbol 0 (over alphabet $\{0, 1\}$). Solution: Not regular. Intersect the language with $1^*01^* = \{1^n01^n\}$
- (j) $L_{10} = \{1^k y \mid y \in \{0, 1\}^*, y \text{ contains at most } k \ 1s, k \ge 1\}$. For instance, 11101 is in the language, as choosing y = 01 meets the requirement. Solution: Not regular. $L_{10} \cap 1^* 01^* = \{1^n 01^m \mid m \le n\}$.

3. (10 pts) Use the pumping lemma to show that the following language is not regular. Show your steps in detail.

 $\{(ba)^n b^n \in \{a, b\}^* \mid n \ge 0\}$

Solution:

Assume to the contrary that A is regular. Therefore it has a pumping length $p \ge 1$. Consider $s = (ba)^p b^p$, we observe that $s \in A$. Since $|s| \ge p$, every proper break down of it must be "pumpable". Let s = xyz be a proper break down of string x according to pumping lemma, that is $|xy| \le p$ and $y \ne \epsilon$. Since $|(ba)^p| = 2p$, the string xy is just a prefix of $(ba)^p$. Since $y \ne \epsilon$, when we pump down y, we will remove at least one a or one b from the $(ba)^p$ prefix of s while s will have still p trailing b's; this means that $xz \notin A$, which contradicts the pumping lemma. Thus A can not be regular.

4. (10 pts) Convert the following DFA into a regular expression that describes the same language. We eliminate states in the order q_3, q_1, q_2 . We do not need to add dummy initial and final states here, since they don't play a role in this example (there is just one final state in the DFA). Show your work in sufficient detail.

Solution:

- 5. (15 pts) (Myhill-Nerode Theorem)
 - (a) (7 pts) Given a language L, consider the equivalence relation \equiv_L on Σ^* ($\equiv_L \subseteq \Sigma^* \times \Sigma^*$) defined by: $x \equiv_L y$ if and only if for all $z \in \Sigma^*, xz \in L$ iff $yz \in L$. Write down the equivalence classes of \equiv_L for the language $L = \{0^n 1^n \mid n > 0\}$ over the binary alphabet $\{0, 1\}$.

Solution

- $\{0^i\}$ for i = 0, 1, 2, ...;
- $\{0^{n+i}1^n \mid n \ge 1\}$ for i = 0, 1, 2, ...;
- $\{0,1\}^* \{0^n 1^m \mid n \ge m\}$

Any two classes in the first group can be distinguished from one another by a string of all 1s; likewise for the second group. Any class in the first group can be distinguished from any class in the second group by a string of the form 011...1. Finally, the strings in $\{0,1\}^* - \{0^n 1^m \mid n \geq m\}$ form a separate class because they are precisely those strings that cannot be made into a string of L by appending any suffix.

- (b) (8 pts) Suppose the equivalence classes induced by \equiv_L for a language L (over $\Sigma = \{0, 1\}$) accepted a DFA M has the following five equivalence classes. Furthermore, $001101 \in L$, and M has only one final state.
 - $C_1 = \{\epsilon\}$
 - $C_2 = \{0, 1\}$
 - $C_3 = \{01, 11, 010, 011, ...\}$
 - $C_4 = \{00, 000, 0010, 1010, ...\}$
 - $C_5 = \{000001, 0011, 10011...\}$

Draw the DFA M. Solution

6. (5 pts) Consider the following right-linear grammar over alphabet $\{a, b\}$:

$$S \to aT \mid bT \mid \epsilon$$

$$T \rightarrow aS \mid bS$$

Draw a finite automaton to accept the language generated by the above grammar. Solution:

- 7. (10 pts) A set of pairs of strings $F = \{(x_i, y_i) \mid i = 1, 2, ..., n\}$ is called a *fooling set* for a language L if for each i, j in $\{1, 2, ..., n\}$,
 - (a) $x_i y_i \in L$, and
 - (b) if $i \neq j$, then $x_i y_j \notin L$ or $x_j y_i \notin L$

There is a theorem saying that if F is a fooling set for a regular language L, then every NFA for L has at least |F| states. Consider the following language: $L = nc(m+a)^*$, where $\Sigma = \{a, c, m, n\}$.

(a) (5 pts) Give (draw) an NFA with the minimum number of states to accept L. Solution:

$$\bullet$$
 1 \xrightarrow{n} 2 \xrightarrow{c} 3 \xrightarrow{a} a, m

- (b) (5 pts) Find a fooling set to show that the NFA you design is minimum. Solution: $F = \{(\epsilon, ncma), (n, cma), (nc, ma)\}$
- 8. (12 pts) Consider the context-free grammar $G: S \to SS \mid aS \mid b$ (over alphabet $\Sigma = \{a, b\}$).
 - (a) (4 pts) Prove that this grammar is ambiguous.
 - (b) (4 pts) The language L(G) is in fact regular. Write a regular expression as simple as possible to express L(G).
 - (c) (4 pts) Give an equivalent unambiguous grammar.

Solution:

(a)

(b) $(a+b)^*b$

(c)
$$S \to aS \mid bS \mid b$$

9. (8 pts) We define $L_1/L_2 = \{u \in \Sigma^* \mid uv \in L_1, \exists v \in L_2\}$, and $L_1 \setminus L_2 = \{u \in \Sigma^* \mid vu \in L_1, \exists v \in L_2\}$. Suppose $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ and $L_2 = \{b, c\}^*$. Answer the following questions:

- (a) $L_1/L_2 = ?$ Solution: $\{a^m b^m c^n \mid m \ge n \ge 0\} \cup \{a^m b^n \mid m \ge n \ge 0\}$
- (b) $L_2/L_1 = ?$ Solution: L_2 , as $\epsilon \in L_1$ and $L_2 \cdot \{\epsilon\} = L_2$.
- (c) $L_1 \setminus L_2 = ?$ Solution: L_1 , as $\epsilon \in L_2$ and $\{\epsilon\} \cdot L_1 = L_1$.
- (d) $L_2 \setminus L_1 = ?$ Solution: L_2 , as $\epsilon \in L_1$ and $\{\epsilon\} \cdot L_2 = L_2$..