Theory of Computation Fall 2018, Midterm Exam.

Nov. 13, 2018

- 1. (15 pts) True or False? Justify your answer in a brief yet convincing way. No penalty for wrong answers.
 - (1) Let $half(L) = \{x \mid \exists y \in \Sigma^*, \text{ with } |y| \in \{|x|, |x|+1\} \text{ and } xy \in L\}$. If half(L) is context-free, then L must be context-free. Sol. False. $\{a^n b^{2n} c^n \mid n > 0\}$
 - (2) Suppose L_1 is a regular language, then $L_2 = \{ww^R \mid w \in L_1\}$ is always a context-free language. Sol. True. Let M be an FA accepting L_1 . Design a PDA M' that simulates (nondeterministically) M on the first half w of the input while pushing w onto the stack. Then use the stack to compare with the rest (i.e., w^R) of the input.
 - (3) The language $a^*b^*c^* \{a^nb^nc^n \mid n \ge 0\}$ is context-free. Sol. True. Check (nondeterministically) $(\#a \neq \#b)$ or $(\#a \neq \#c)$ or $(\#b \neq \#c)$ using a stack.
 - (4) Let L be a language and h a homomorphism. If h(L) is regular, then L must be regular.
 Sol. False. h(a) = ε. h({a^{n²}}) = ε.
 - (5) Suppose $\Sigma = \{0,1\}$, and let sort(x) be the function that reorders the symbols in x in numerical order. Let $sort(L) = \{sort(x) \mid x \in L\}$. For example, if $L = \{0,1,01,10,101,0110\}$, then $sort(L) = \{0,1,01,011,0011\}$. Regular languages are closed under sort. Sol. False. Consider $L = \{(01)^n \mid n \ge 0\}$. Sort $(L) = \{0^n 1^n \mid n \ge 0\}$.
- 2. (10 pts) Recall that the R_L relation (over Σ^*) associated with language L is defined to be xR_Ly iff $\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L$. For language $L = \{x \in \{0,1\}^* \mid x = wcw^R, |c| > 0, |w| > 0\}$, does R_L have infinitely many or finitely many distinct equivalence classes? In the former case, you need not describe all equivalence classes of R_L , just show that there are infinitely many of them. In the latter case, enumerate all the classes. (Note: An equivalence class C is represented as [w], where w is the shortest word in C.) Sol. Since c can be an arbitrary string of length > 0, every $w \in L$ is of the form 0c0 or 1c1 for some |c| > 0. R_L includes $\{\epsilon\}; \{0\}; \{1\}; \{00, 01, 0c1 \mid c \in \Sigma^+\}; \{10, 11, 1c0 \mid c \in \Sigma^+\}; \{0c0 \mid c \in \Sigma^+\}; \{1c1 \mid c \in \Sigma^+\}$
- 3. (10 pts) Prove that the following language is not regular by applying the pumping lemma. $L = \{a^i b^j \mid i, j \ge 1, (i \ge j) \text{ or } (i < j \text{ and } j \text{ is a multiple of } i)\}$ Sol. Let $z = a^{3k}b^{3k}$. Suppose $a^{3k}b^{3k} = uvw$, such that $|uv| \le k$, |v| > 0. Since $|uv| \le k$, v contains only a's. Let $v = a^m, 1 \le m \le k$. $uv^0w = a^{3k-m}b^{3k}$ is not in the language as 3k is not a multiple of 3k - m.
- 4. (10 pts) Design an algorithm to decide, given a CFG $G = (V, \Sigma, P, S)$ in Chomsky Normal Form, whether exists an $x \in L(G)$ such that |x| is even.

Hint: create a set Δ (which is empty initially) and assign A_{ev} and A_{od} for each $A \in V$ to Δ iteratively such that for some w,

- $A_{ev} \in \Delta$ if $A \stackrel{*}{\Rightarrow} w$ and |w| is even; and
- $A_{od} \in \Delta$ if $A \stackrel{*}{\Rightarrow} w$ and |w| is odd.

Sol. Initially, $\Delta = \emptyset$

For each $A \Rightarrow a$, add A_{od} to Δ

For each $A \Rightarrow \epsilon$, add A_{ev} to Δ

Repeat the following until Δ does not grow

For each $A \to BC$

- $B_{ev}, C_{ev} \in \Delta$, add A_{ev} to Δ
- $B_{ev}, C_{oh} \in \Delta$, add A_{od} to Δ
- $-B_{od}, C_{ev} \in \Delta$, add A_{od} to Δ
- $B_{od}, C_{od} \in \Delta$, add A_{ev} to Δ

- 5. (5 pts) Consider the following language over the alphabet $\Sigma = \{a, b, c\}$. $L = \{a^n b^p (c+b)^{n-p} \mid 1 \le n, 1 \le p \le n\}$, where $(c+b)^{n-p}$ means a sequence of n-p symbols from the set $\{c, b\}$. Prove that L is not regular using the closure properties of regular languages. Do not use the pumping lemma. Sol. h(a) = a; h(b) = b; h(c) = b. $h(L) = \{a^n b^n \mid n \ge 1\}$
- 6. (6 pts) The quotient L_1/L_2 of two languages L_1 and L_2 is defined as $L_1/L_2 = \{x \mid \exists y \in L_2, xy \in L_1\}$. Let $L_1 = \{w \in \{0,1\}^* \mid w \text{ has an even number of } 0's\}, L_2 = \{0\}, L_3 = \{0,00\}$. Answer the following questions:
 - (a) What is L_1/L_2 ?
 - (b) What is L_1/L_3 ?

Sol. $L_1/L_2 = \{w \in \{0,1\}^* | w \text{ has an odd number of } 0's\}, L_1/L_3 = \{0,1\}^*.$

- 7. (10 pts) The following $\{0, 1, 2, 3\}$ -valued function F for regular expressions is defined recursively as follows:
 - $F(\emptyset) = 0, F(\epsilon) = 1;$
 - F(a) = 2, for each $a \in \Sigma$,
 - $F(\sigma \cup \tau) = max\{F(\sigma), F(\tau)\};$
 - If $F(\sigma) = 0$ or $F(\tau) = 0$ then $F(\sigma \cdot \tau) = 0$ else $F(\sigma \cdot \tau) = max\{F(\sigma), F(\tau)\};$
 - If $F(\sigma) \leq 1$ then $F(\sigma^*) = 1$ else $F(\sigma^*) = 3$.

Answer the following questions, and justify your answers:

- (a) What is $F(((00 \cup 11)^* \cdot \emptyset) \cup (11 \cup 22))$? Why? Sol. $F(((00 \cup 11)^* \cdot \emptyset) \cup (11 \cup 22)) = max\{F((00 \cup 11)^* \cdot \emptyset), F(11 \cup 22)\} = max\{0, 2\} = 2.$
- (b) What kind of regular expressions would make F(σ) = 3? Why? Sol. L(σ) is an infinite set.
- 8. (9 pts) Is the language $\{x \in \{a, b\}^* \mid |x| \text{ is even and the first half of } x \text{ has one more } "a" \text{ than does the second half} context-free? Justify your answer formally.}$

Sol. Not context-free. If L were context-free, then $L' = L \cap a^* b^* a^* b^*$ would also be context-free. But it is not, which we show using the Pumping Theorem. Consider $w = a^{k+1}b^k a^k b^{k+1}$, where k is the pumping constant. Suppose $w = a^{k+1}b^k a^k b^{k+1} = uvxyz$. Divide w into four regions (a's, then b's, then a's, then b's). Consider the following cases:

- If either v or y crosses a region boundary, pump in. The resulting string is not in L because the characters will be out of order.
- If |vy| is not even, pump in once. The resulting string will not be in L because it will have odd length.
- Now we consider all the cases in which neither v nor y crosses regions and |vy| is even. In what follows, case (a, b) denote that v in region a and y in region b.
- (1, 1) pump in once. The boundary between the first half and the second half shifts to the left. Hence, the first half has more *a*s.
- (2, 2) pump out. Since |vy| is even, we pump out at least 2 b's so at least one a migrates from the second half to the first.
- (3, 3) pump out. This decreases the number of a's in the second half. Only be migrate in from the first half.
- (4, 4) pump in once. The boundary between the first half and the second half shifts to the right, causing a's to flow from the second half into the first half.
 - ... the remaining cases can be argued similarly.
- 9. (10 pts) Let $Half(L) = \{x \mid \exists y \in \Sigma^*, |x| = |y|, xy \in L\}$. Consider $L = \{0^i 1^j 2^j 3^{3i} \mid i, j \ge 1\} (\subseteq \{0, 1, 2, 3\}^*)$. Answer the following questions:
 - (a) (3 pts) Is L context-free? Why? Sol. Yes.
 - (b) (3 pts) What is Half(L)? Sol. $\{0^i 1^j 2^i \mid j \ge i\} \cup \{0^i 1^j 2^j 3^{i-j} \mid j < i\}$

- (c) (4 pts) Is Half(L) a CFL? Why? Sol. $Half(L) \cap 0^*1^*2^* = \{0^n1^m2^n \mid m, n \ge 0, m \ge n\}$ – not context-free
- 10. (15 pts) Consider the binary operator \diamond on languages defined as follows: given two languages L_1 and L_2 over Σ , $L_1 \diamond L_2$ consists of words of the form uv such that $u \in L_1$, $v \in L_2$, and |u| = |v|.
 - (a) (10 pts) Prove that if L₁ and L₂ are regular languages, then L₁ ◊ L₂ is a CFL. To this end, Let M_i = (Q_i, Σ, δ_i, q_i, F_i) be an FA accepting L_i, i ∈ {1,2}. Construct a PDA M = (Q, Σ, Γ, δ, q₀, F) to accept L₁ ◊ L₂. Show your construction in detail.
 Sol. the set of states of M is Q₁ ∪ Q₂ ∪ {f}. The set of stack symbols is {Z, Z₀}. The initial state of M is q₁. For q ∈ Q₁ and a symbol a and a stack symbol X, M contains a transition (δ₁(q, a), ZX)) ∈ δ(q, a, X). For q ∈ F₁ and a stack symbol X, M contains a transition (q₂, X) ∈ δ(q, ε, X). For q ∈ Q₂ and a symbol a, M contains a transition (δ₂(q, a), ε) ∈ δ(q, a, X). For q ∈ F₂, M contains a transition (f, ε) ∈ δ(q, ε, Z₀).
 - (b) (5 pts) Give examples to show that if L_1 is a regular language and L_2 is a CFL then $L_1 \diamond L_2$ need NOT be a CFL.
 - **Sol.** $L_1 = a^*$; $L_2 = \{b^n c^n \mid n \ge 0\}$. Then $L_1 \diamond L_2 = \{a^{2n}b^n c^n \mid n \ge 0\}$ not context-free.