Theory of Computation

Fall 2018, Midterm Exam.

Nov. 13, 2018

1. (15 pts) True or False? Justify your answer in a brief yet convincing way. No penalty for wrong answers.
(1) Let half $(L)=\left\{x \mid \exists y \in \Sigma^{*}\right.$, with $|y| \in\{|x|,|x|+1\}$ and $\left.x y \in L\right\}$. If hal $f(L)$ is context-free, then L must be context-free.
Sol. False. $\left\{a^{n} b^{2 n} c^{n} \mid n \geq 0\right\}$
(2) Suppose L_{1} is a regular language, then $L_{2}=\left\{w w^{R} \mid w \in L_{1}\right\}$ is always a context-free language.

Sol. True. Let M be an FA accepting L_{1}. Design a PDA M^{\prime} that simulates (nondeterministically) M on the first half w of the input while pushing w onto the stack. Then use the stack to compare with the rest (i.e., w^{R}) of the input.
(3) The language $a^{*} b^{*} c^{*}-\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.

Sol. True. Check (nondeterministically) $(\# a \neq \# b)$ or $(\# a \neq \# c)$ or $(\# b \neq \# c)$ using a stack.
(4) Let L be a language and h a homomorphism. If $h(L)$ is regular, then L must be regular.

Sol. False. $h(a)=\epsilon . h\left(\left\{a^{n^{2}}\right\}\right)=\epsilon$.
(5) Suppose $\Sigma=\{0,1\}$, and let $\operatorname{sort}(x)$ be the function that reorders the symbols in x in numerical order. Let $\operatorname{sort}(L)=\{\operatorname{sort}(x) \mid x \in L\}$. For example, if $L=\{0,1,01,10,101,0110\}$, then $\operatorname{sort}(L)=$ $\{0,1,01,011,0011\}$. Regular languages are closed under sort.
Sol. False. Consider $L=\left\{(01)^{n} \mid n \geq 0\right\}$. $\operatorname{Sort}(L)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
2. (10 pts) Recall that the R_{L} relation (over Σ^{*}) associated with language L is defined to be $x R_{L} y$ iff $\forall z \in$ $\Sigma^{*}, x z \in L \Leftrightarrow y z \in L$. For language $L=\left\{x \in\{0,1\}^{*}\left|x=w c w^{R},|c|>0,|w|>0\right\}\right.$, does R_{L} have infinitely many or finitely many distinct equivalence classes? In the former case, you need not describe all equivalence classes of R_{L}, just show that there are infinitely many of them. In the latter case, enumerate all the classes. (Note: An equivalence class C is represented as $[w]$, where w is the shortest word in C.)
Sol. Since c can be an arbitrary string of length >0, every $w \in L$ is of the form $0 c 0$ or $1 c 1$ for some $|c|>0$. R_{L} includes $\{\epsilon\} ;\{0\} ;\{1\} ;\left\{00,01,0 c 1 \mid c \in \Sigma^{+}\right\} ;\left\{10,11,1 c 0 \mid c \in \Sigma^{+}\right\} ;\left\{0 c 0 \mid c \in \Sigma^{+}\right\} ;\left\{1 c 1 \mid c \in \Sigma^{+}\right\}$
3. (10 pts) Prove that the following language is not regular by applying the pumping lemma.
$L=\left\{a^{i} b^{j} \mid i, j \geq 1,(i \geq j)\right.$ or $(i<j$ and j is a multiple of $\left.i)\right\}$
Sol. Let $z=a^{\overline{3 k}} b^{3 k}$. Suppose $a^{3 k} b^{3 k}=u v w$, such that $|u v| \leq k,|v|>0$. Since $|u v| \leq k, v$ contains only a 's. Let $v=a^{m}, 1 \leq m \leq k . u v^{0} w=a^{3 k-m} b^{3 k}$ is not in the language as $3 k$ is not a multiple of $3 k-m$.
4. (10 pts) Design an algorithm to decide, given a CFG $G=(V, \Sigma, P, S)$ in Chomsky Normal Form, whether exists an $x \in L(G)$ such that $|x|$ is even.
Hint: create a set Δ (which is empty initially) and assign $A_{e v}$ and $A_{o d}$ for each $A \in V$ to Δ iteratively such that for some w,

- $A_{e v} \in \Delta$ if $A \stackrel{*}{\Rightarrow} w$ and $|w|$ is even; and
- $A_{o d} \in \Delta$ if $A \stackrel{*}{\Rightarrow} w$ and $|w|$ is odd.

Sol. Initially, $\Delta=\emptyset$
For each $A \Rightarrow a$, add $A_{o d}$ to Δ
For each $A \Rightarrow \epsilon$, add $A_{e v}$ to Δ
Repeat the following until Δ does not grow
For each $A \rightarrow B C$

- $B_{e v}, C_{e v} \in \Delta$, add $A_{e v}$ to Δ
- $B_{e v}, C_{o h} \in \Delta$, add $A_{o d}$ to Δ
- $B_{o d}, C_{e v} \in \Delta$, add $A_{o d}$ to Δ
- $B_{o d}, C_{o d} \in \Delta$, add $A_{e v}$ to Δ

5. (5 pts) Consider the following language over the alphabet $\Sigma=\{a, b, c\} . L=\left\{a^{n} b^{p}(c+b)^{n-p} \mid 1 \leq n, 1 \leq p \leq n\right\}$, where $(c+b)^{n-p}$ means a sequence of $n-p$ symbols from the set $\{c, b\}$. Prove that L is not regular using the closure properties of regular languages. Do not use the pumping lemma.
Sol. $h(a)=a ; h(b)=b ; h(c)=b . h(L)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
6. (6 pts) The quotient L_{1} / L_{2} of two languages L_{1} and L_{2} is defined as $L_{1} / L_{2}=\left\{x \mid \exists y \in L_{2}, x y \in L_{1}\right\}$. Let $L_{1}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an even number of $\left.0^{\prime} s\right\}, L_{2}=\{0\}, L_{3}=\{0,00\}$. Answer the following questions:
(a) What is L_{1} / L_{2} ?
(b) What is L_{1} / L_{3} ?

Sol. $L_{1} / L_{2}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an odd number of 0 's $\}, L_{1} / L_{3}=\{0,1\}^{*}$.
7. (10 pts) The following $\{0,1,2,3\}$-valued function F for regular expressions is defined recursively as follows:

- $F(\emptyset)=0, F(\epsilon)=1$;
- $F(a)=2$, for each $a \in \Sigma$,
- $F(\sigma \cup \tau)=\max \{F(\sigma), F(\tau)\}$;
- If $F(\sigma)=0$ or $F(\tau)=0$ then $F(\sigma \cdot \tau)=0$ else $F(\sigma \cdot \tau)=\max \{F(\sigma), F(\tau)\}$;
- If $F(\sigma) \leq 1$ then $F\left(\sigma^{*}\right)=1$ else $F\left(\sigma^{*}\right)=3$.

Answer the following questions, and justify your answers:
(a) What is $F\left(\left((00 \cup 11)^{*} \cdot \emptyset\right) \cup(11 \cup 22)\right)$? Why?

Sol. $F\left(\left((00 \cup 11)^{*} \cdot \emptyset\right) \cup(11 \cup 22)\right)=\max \left\{F\left((00 \cup 11)^{*} \cdot \emptyset\right), F(11 \cup 22)\right\}=\max \{0,2\}=2$.
(b) What kind of regular expressions would make $F(\sigma)=3$? Why?

Sol. $L(\sigma)$ is an infinite set.
8. (9 pts) Is the language $\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is even and the first half of x has one more " a " than does the second half\} context-free? Justify your answer formally.
Sol. Not context-free. If L were context-free, then $L^{\prime}=L \cap a^{*} b^{*} a^{*} b^{*}$ would also be context-free. But it is not, which we show using the Pumping Theorem. Consider $w=a^{k+1} b^{k} a^{k} b^{k+1}$, where k is the pumping constant. Suppose $w=a^{k+1} b^{k} a^{k} b^{k+1}=u v x y z$. Divide w into four regions (a 's, then b 's, then a 's, then b 's). Consider the following cases:

- If either v or y crosses a region boundary, pump in. The resulting string is not in L because the characters will be out of order.
- If $|v y|$ is not even, pump in once. The resulting string will not be in L because it will have odd length.
- Now we consider all the cases in which neither v nor y crosses regions and $|v y|$ is even. In what follows, case (a, b) denote that v in region a and y in region b.
$(1,1)$ pump in once. The boundary between the first half and the second half shifts to the left. Hence, the first half has more a.
$(2,2)$ pump out. Since $|v y|$ is even, we pump out at least $2 b$'s so at least one a migrates from the second half to the first.
$(3,3)$ pump out. This decreases the number of a 's in the second half. Only bs migrate in from the first half.
$(4,4)$ pump in once. The boundary between the first half and the second half shifts to the right, causing a 's to flow from the second half into the first half.
... the remaining cases can be argued similarly.

9. (10 pts) Let Half $(L)=\left\{x\left|\exists y \in \Sigma^{*},|x|=|y|, x y \in L\right\}\right.$. Consider $L=\left\{0^{i} 1^{j} 2^{j} 3^{3 i} \mid i, j \geq 1\right\}\left(\subseteq\{0,1,2,3\}^{*}\right)$. Answer the following questions:
(a) (3 pts) Is L context-free? Why?

Sol. Yes.
(b) (3 pts) What is $\operatorname{Half}(L)$?

Sol. $\left\{0^{i} 1^{j} 2^{i} \mid j \geq i\right\} \cup\left\{0^{i} 1^{j} 2^{j} 3^{i-j} \mid j<i\right\}$
(c) (4 pts) Is Half (L) a CFL? Why?

Sol. Half $(L) \cap 0^{*} 1^{*} 2^{*}=\left\{0^{n} 1^{m} 2^{n} \mid m, n \geq 0, m \geq n\right\}$ - not context-free
10. (15 pts) Consider the binary operator \diamond on languages defined as follows: given two languages L_{1} and L_{2} over $\Sigma, L_{1} \diamond L_{2}$ consists of words of the form $u v$ such that $u \in L_{1}, v \in L_{2}$, and $|u|=|v|$.
(a) (10 pts) Prove that if L_{1} and L_{2} are regular languages, then $L_{1} \diamond L_{2}$ is a CFL. To this end, Let $M_{i}=$ $\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ be an FA accepting $L_{i}, i \in\{1,2\}$. Construct a PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ to accept $L_{1} \diamond L_{2}$. Show your construction in detail.
Sol. the set of states of M is $Q_{1} \cup Q_{2} \cup\{f\}$. The set of stack symbols is $\left\{Z, Z_{0}\right\}$. The initial state of M is q_{1}. For $q \in Q_{1}$ and a symbol a and a stack symbol X, M contains a transition $\left.\left(\delta_{1}(q, a), Z X\right)\right) \in \delta(q, a, X)$. For $q \in F_{1}$ and a stack symbol X, M contains a transition $\left(q_{2}, X\right) \in \delta(q, \epsilon, X)$. For $q \in Q_{2}$ and a symbol a, M contains a transition $\left(\delta_{2}(q, a), \epsilon\right) \in \delta(q, a, X)$. For $q \in F_{2}, M$ contains a transition $(f, \epsilon) \in \delta\left(q, \epsilon, Z_{0}\right)$.
(b) $(5 \mathrm{pts})$ Give examples to show that if L_{1} is a regular language and L_{2} is a CFL then $L_{1} \diamond L_{2}$ need NOT be a CFL.
Sol. $L_{1}=a^{*} ; L_{2}=\left\{b^{n} c^{n} \mid n \geq 0\right\}$. Then $L_{1} \diamond L_{2}=\left\{a^{2 n} b^{n} c^{n} \mid n \geq 0\right\}-$ not context-free.

