Theory of Computation

Fall 2017, Midterm Exam. Solutions (Nov. 7, 2017)

1. (20 pts) Let $\Sigma=\{0,1\}$, answer the following questions (True or False) and prove your answer:
(a) the set of nonpalindromes (i.e., $\Sigma^{*}-\left\{w \mid w=w^{R}, w \in \Sigma^{*}\right\}$) is nonregular;

Solution: True. $L \cap 1^{*} 01^{*}=\left\{1^{n} 01^{n} \mid n \geq 0\right\}$ is nonregular.
(b) the set of odd-length strings with middle symbol 0 is regular;

Solution: False. $L \cap 1^{*} 01^{*}=\left\{1^{n} 01^{n} \mid n \geq 0\right\}$ is nonregular.
(c) the set of strings that contain a substring of the form $w u w$ where $u \in \Sigma^{*}, w \in \Sigma^{+}$is nonregular;

Solution: False. $L=\bigcup_{a \in \Sigma} \Sigma^{*} a \Sigma^{*} a \Sigma^{*}$
(d) the set of strings with the property that in every prefix, the number of 0 s and the number of 1 s differ by at most 2 is regular;
Solution: True. Use the state to keep the number of differences of 0 s and 1 s , which involves a finite number of cases.
(e) if L is nonregular and both of L^{\prime} and $L \cap L^{\prime}$ are regular, then $L \cup L^{\prime}$ is nonregular.

Solution: True. $L=\left(L \cup L^{\prime}\right)-\left(L^{\prime}-\left(L \cap L^{\prime}\right)\right)$. If $L \cup L^{\prime}$ is regular, so is L.
2. (16 pts) Let $A=\left\{x x \mid x \in\{a, b\}^{*}\right\}$, and $h:\{a, b\}^{*} \rightarrow\{a, b\}^{*}$ be a homomorphism with $h(a)=h(b)=a$.
(a) What is $h(A)$?

Solution: $\left\{a^{2 n} \mid n \geq 0\right\}$
(b) What is $h^{-1}(A)$?

Solution: $\{x \mid x$ is of even length $\}$
(c) What is $h^{-1}(h(A))$?

Solution: $\{x \mid x$ is of even length $\}$
(d) What is $h\left(h^{-1}(A)\right)$?

Solution: $\left\{a^{2 n} \mid n \geq 0\right\}$
3. (9 pts) Given $\Sigma=\{a, b\}$, we define $T w o(x)$ to be an operation doubling each symbol in $x \in \Sigma^{*}$. For instance, $T w o(a b a b)=a a b b a a b b, T w o(a a b)=a a a a b b$.
(a) Define $\operatorname{Two}(x)$ recursively.

Solution: $\operatorname{Two}(\epsilon)=\epsilon ; \operatorname{Two}(a w)=a a \operatorname{Two}(w), \forall a \in \Sigma, w \in \Sigma^{*}$.
(b) Given a language L, define $\operatorname{Two}(L)=\{x \mid \operatorname{Two}(x), x \in L\}$. Prove that if L is regular, so is $T w o(L)$.

Solution: Define a homomorphism $h(a)=a a, h(b)=b b$.
4. (5 pts) Consider the following operations:
prefix $(L)=\left\{u \mid u v \in L, \exists v \in \Sigma^{*}\right\} ; \quad$ suffix $(L)=\left\{v \mid u v \in L, \exists u \in \Sigma^{*}\right\} ;$ reverse $(L)=\left\{x \mid x^{R} \in L\right\}$.
Use the closure of regular languages under the reverse and prefix operations to prove that suffix (L) is regular whenever L is regular.
Solution: suffix $(L)=\operatorname{reverse}($ prefix $($ reverse $(L)))$
5. (5 pts) Use the Myhill-Nerode theorem to show that for any positive integer m, no DFA with less than m states recognizes $A_{m}=\left\{1^{k} \mid m\right.$ divides $\left.k\right\}\left(\subseteq\{1\}^{*}\right)$.
Solution: A DFA with m states which simply stores the number of 1 s seen so far, modulo m recognizes this language. Also, for any two strings $1^{k_{1}}$ and $1^{k_{2}}$ such that $k_{1} \neq k_{2} \bmod m$, the string $1^{m-\left(k_{1} \bmod m\right)}$ distinguishes the two. Hence, any two strings in which the number of 1 s is different modulo m must be in different equivalence classes, showing that no DFA with less than m states can recognize this language.
6. (10 pts) Let L be an infinite regular language. Prove that L can be partitioned into two disjoint infinite regular languages, i.e., $L=L_{1} \cup L_{2}, L_{1} \cap L_{2}=\emptyset$, and L_{1}, L_{2} are infinite regular languages. (Hint: Use the pumping lemma.)
Solution: By the pumping lemma, there is $p>0$ such that every string $w \in L$ of length at least p can be written as $w=x y z$, where y is nonempty and $x y^{i} z \in L$ for all $i \geq 0$, for all $i \geq 0$.
So, fix an arbitrary string $w \in L$ of length at least p (it exists because L is infinite). Let $w=x y z$ be a decomposition guaranteed by the pumping lemma. Partition $L=A \cup(L-A)$; where $A=\left\{x y^{i} z \mid i=\right.$ $0,2,4,8, \ldots\}$.

- DISJOINTNESS: Trivial
- INFINITENESS: Trivial
- REGULARITY: A is regular because it is given by a regular expression, $x(y y)^{*} z$, which makes $L-A$ regular as well by the closure properties.

7. (10 pts) Consider the following grammar G, where S, A are nonterminals, and a, b are terminals:
$S \rightarrow a S A|\epsilon \quad ; \quad A \rightarrow b A| \epsilon$
Answer the following questions:
(a) Is $L(G)$ regular? Why?

Solution: Yes. $L=a^{+} b^{*} \cup\{\epsilon\}$.
(b) Is G ambiguous? Explain your answer.

Solution: Yes the grammar is ambiguous.
$S \Rightarrow a S A \Rightarrow a a S A A \Rightarrow a a A A \Rightarrow a a b A A \Rightarrow a a b b A A \Rightarrow a a b b A \Rightarrow a a b b$, and
$S \Rightarrow a S A \Rightarrow a a S A A \Rightarrow a a A A \Rightarrow a a A \Rightarrow a a b A \Rightarrow a a b b A \Rightarrow a a b b ;$
their corresponding parse trees are easy to construct.
8. (10 pts) True or False? Score $=\max \left\{0\right.$, Right $-\frac{1}{2}$ Wrong $\}$. No explanations are needed.

Here are four regular expressions over the alphabet $\{a, b\}$:
$E_{1}=\left(a b+a^{*} b^{*} b^{*}\right)^{*} \quad E_{2}=\left((a b)^{*}\left(a^{*} b^{*} b^{*}\right)^{*}\right)^{*} \quad E_{3}=(a+b)^{*} \quad E_{4}=a(a+b)^{*}$
(1) $L\left(E_{2}\right)=L\left(E_{3}\right)$

Solution: True
(2) $L\left(E_{3}\right)=L\left(E_{4}\right)$

Solution: False
(3) $L\left(E_{1}\right)=L\left(E_{4}\right)$

Solution: False
(4) The minimal DFA for $L\left(E_{1}\right)$ has five states.

Solution: False
(5) The minimal DFA for $L\left(E_{4}\right)$ has two states.

Solution: False Note: ϵ, a, b are in different equivalence classes of $R_{L\left(E_{4}\right)}$.
9. (10 pts) Use the pumping lemma to prove that the following language is not regular: $L=\left\{0^{m} 1^{n} \mid m \leq 2 n+5, m, n \in N\right\}$.
Solution We will use the pumping lemma to prove that the language is not regular. Assume that L is regular and p is its pumping length. Take the word $w=0^{p} 1^{p}$. Since $p \leq 2 p+5$ then $w \in L$. Also it is clear that $|w|=2 p \geq p$. From pumping lemma we have that $w=x y z$ where x, y and z are such that for all $i \geq 0$ it holds $x y^{i} z \in L$. Also $|y|>0$ and $|x y| \leq p$. Since $|x y| \leq p$, both x and y consists of zeros only. Take $i=2 p+6$ and form the word $x y^{2 p+6} z$. According to the pumping lemma this word should belong to L. However, $\left|x y^{2 p+6}\right| \geq(2 p+6)|y| \geq 2 p+6$. It means that the inequality of numbers of zeros and ones defined in L does not hold any more: $2 p+6 \not \leq 2 p+5$, i.e. $x y^{2 p+6} z \notin L$. Contradiction. This means that original assumption was wrong and L is not regular.
10. (5 pts) We say that a DFA M for a language A is minimal if there does not exist another DFA M^{\prime} for A such that M^{\prime} has strictly fewer states than M. Suppose that $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a minimal DFA for A. Using M, we construct a DFA \bar{M} for the complement \bar{A} as $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$. Is \bar{M} is a minimal DFA for \bar{A} ? Why?
Solution: Yes. If otherwise, suppose \dot{M} is a minimal DFA for \bar{A} with fewer states, then \bar{M} is a minimum DFA for M, a contradiction.

