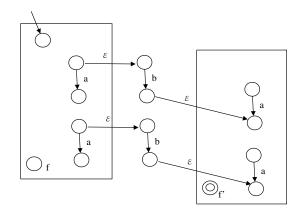
Theory of Computation Fall 2016, Midterm Exam.

Due: Nov. 14, 2016

- 1. (20 pts) True or False? (Score=max $\{0, Right \frac{1}{2}Wrong\}$.)
 - (1) If A, B and C are languages, then $A \cdot (B \cap C) = A \cdot B \cap A \cdot C$. Solution: × E.g. $\{1, 11\}(\{1\} \cap \{11\}) = \emptyset$ but $\{1, 11\}\{1\} \cap \{1, 11\}\{11\} = \{111\}$.
 - (2) The set $\{a^m b^n c^n d^m | m, n \ge 0\}$ is not context-free. Solution: \times
 - (3) If A is not context-free, then the complement of A is also not context-free. Solution: \times
 - (4) For any language A, $(A^*)^* = A^*$ Solution: \bigcirc
 - (5) If A is a language, then $A^2 \subseteq A$ implies $A = A^+$. Solution: \bigcirc
 - (6) $(a \cup b)^* = (a^*b^*)^*$. Solution: \bigcirc
 - (7) Not all finite languages are regular.Solution: ×
 - (8) If L is nonregular and both of L' and $L \cap L'$ are regular, then $L \cup L'$ is nonregular. Solution: \bigcirc because $((L \cup L') - L') \cup (L \cap L') = L$.
 - (9) Given a PDA A and an NFA B, there is an algorithm to decide whether $L(A) \cap L(B) = \emptyset$. Solution: \bigcirc
 - (10) There is a non-context-free language L such that L^* is regular. Solution: \bigcirc E.g. $L = \{0^p \mid p \text{ is prime }\}.$
- 2. (10 pts) Let Subst-One-Char $(w, a, b) = \{x \mid w \text{ can be written as } w = uav \text{ and } x = ubv\}$, where $u, v \in \Sigma^*$ and $a, b \in \Sigma$. This is the set of strings obtained by replacing an arbitrary one of the a's in w by a b. E.g. Subst-One-Char $(cacac, a, b) = \{cbcac, cacbc\}$. Let Subst-One-Char $(L, a, b) = \{x \mid x \in \text{Subst-One-Char}(w, a, b) \text{ for some } w \in L\}$. Prove that if L is regular, then so is Subst-One-Char(L, a, b).

Solution: Consider the following construction



3. (10 pts) Prove that at most $k^{2k+1}2^k$ languages over the binary alphabet $\{0,1\}$ can be recognized by a DFA with k states.

Solution: Simply count the number of distinct DFAs with k states. Name the states $1, 2, 3, \dots, k$. Then a DFA is a tuple $(\{1, 2, ..., k\}, \{0, 1\}, \delta, q_0, F)$ where $q_0 \in \{1, 2, ..., k\}, F \subseteq \{1, 2, ..., k\}, \delta : \{1, 2, ..., k\} \times \{0, 1\} \rightarrow \{1, 2, ..., k\}$. Thus, the number of distinct ways to choose (q_0, F, δ) is $k \times 2^k \times k^{2k}$.

4. (10 pts) Let L be a nonempty language in which the shortest string has length k. Prove that L cannot be recognized by a DFA with fewer than k + 1 states. Solution:

(**Proof 1):** Let $q_0 \xrightarrow{w_1} q_1 \xrightarrow{w_2} q_2 \cdots \xrightarrow{w_k} q_{k+1}$ be an accepting computation. Argue that all the $q_1, q_2, \cdots, q_{k+1}$ are distinct, for if $q_i = q_j, i \neq j$, then $w_1 w_2 \dots w_k$ is not the shortest string in the language.

(Proof 2): Take any string $w = w_1 w_2 \cdots w_k$ in L. We claim that the k + 1 strings ϵ , w_1 , $w_1 w_2$, $w_1 w_2 w_3$, \cdots , $w_1 w_2 w_3 \cdots w_k$ are each in a different equivalence class of \equiv_L . Indeed, for any i < j, $(w_1 w_2 \cdots w_k)(w_{j+1} \cdots w_k) \notin L$;

 $(w_1w_2\cdots w_j)(w_{j+1}\cdots w_k)\in L,$

where the first line holds because that string is shorter than k. Since \equiv_L has at least k + 1 equivalence classes, the Myhill-Nerode theorem implies that any DFA for L must have at least k + 1 states.

5. (10 pts) Let $L_1 \subseteq (a \cup b)^*$ be a set of strings. In each string in L_1 , delete every *b* immediately following an *a* to get the set L_2 . For instance, if $L_1 = \{aabba, aa\}$, then $L_2 = \{aaba, aa\}$. You are asked to define two homomorphisms $h_1, h_2 : \{a, b, \hat{b}\}^* \to \{a, b\}^*$), and write an expression for L_2 in terms of $h_1, h_2, h_1^{-1}, h_2^{-1}, R, L_1$, for some regular expression *R*. Explain why your answer is correct.

Solution: Let $h_1(a) = a, h_1(b) = b, h_1(\hat{b}) = b, h_2(a) = a, h_2(b) = b, h_2(\hat{b}) = \epsilon$. Then

$$L_2 = h_2(h_1^{-1}(L_1) \cap b^*(a \cup a\hat{b}b^*)^*)$$

6. (10 pts) Consider the language L defined by the regular expression $(a^* \cup ba)^*$. Describe the equivalence classes of $\{a, b\}^*$ w.r.t. the Myhill-Nerode relation \equiv_L defined by:

 $x_1 \equiv_L x_2 \Leftrightarrow \forall y \in \Sigma^*, (x_1 \cdot y \in L \Leftrightarrow x_2 \cdot y \in L)$

Present these equivalence classes through regular expressions. Use \equiv_L to construct a minimal automaton M_{\equiv_L} for the language L, and draw the graph of the automaton. (Hint: choose equivalence classes from the following a^* , b^* , $(a \cup b)^*$, $(ab)^*$, $(a \cup ba)^*$, $(ab \cup b)^*$, $(ab \cup b)^*$, $(ab \cup b)^*$, $(ab \cup ba)^*$, $(a \cup ba)^*a$, $(a \cup ba)^*bb(a \cup b)^*$, $(a \cup ba)^*aa(a \cup b)^*$, $(a \cup ba)^*bb(a \cup b)^*$.) Solution: The automaton is

• $Q = \{\{(a \cup ba)^*, (a \cup ba)^*b, (a \cup ba)^*bb(a \cup b)^*\}\}$

•
$$\delta((a \cup ba)^*, a) = (a \cup ba)^*$$

 $\delta((a \cup ba)^*, b) = (a \cup ba)^*b$
 $\delta((a \cup ba)^*b, a) = (a \cup ba)^*$
 $\delta((a \cup ba)^*b, b) = (a \cup ba)^*bb(a \cup b)^*$
 $\delta((a \cup ba)^*bb(a \cup b)^*, a) = (a \cup ba)^*bb(a \cup b)^*$
 $\delta((a \cup ba)^*bb(a \cup b)^*, b) = (a \cup ba)^*bb(a \cup b)^*$

•
$$q_0 = (a \cup ba)^*$$

Without using a rigorous method to construct the set of states, you may try the sequence of strings $\epsilon, a, b, aa, ab, ba, bb, ...$ to find out the equivalence classes. Also note that among a^* , b^* , $(a \cup b)^*$, $(ab)^*$, $(a \cup ba)^*$, $(ab \cup b)^*$, $(ab \cup ba)^*$, only one may appear in the final result as all of them contain ϵ . Also $(a \cup ba)^*a$ and $(a \cup ba)^*aa(a \cup b)^*$ both contain aa, and $(a \cup ba)^*b$ and $(a \cup ba)^*bab(a \cup b)^*$ both contain bab.

- 7. (10 pts) Give a right-linear grammar for the following regular language: $(00 \cup 1)^*$. Show your work in sufficient detail. Solution: Let $G = (\{S, X\}, \{0, 1\}, \{S \to 0X \mid 1S \mid \epsilon; X \to 0S\}, S)$
- 8. (10 pts) Is the language $\{a^{2^n} \mid n \ge 0\}$ context-free? Prove your answer. Solution: Let p be the pumping constant. According to the pumping lemma, $a^{2p} = uvxyz$ with $|vy| \le p$. Then $|uv^2xy^2z| > 2^p$ and $|uv^2xy^2z| \le 2^p + p < 2^p + 2^p = 2^{p+1}$. Hence, uv^2xy^2z has length strictly between 2^p and 2^{p+1} , and therefore, the string cannot be in L.
- 9. (10 pts) A context-free grammar is called a *linear context-free grammar* if its production is of the following form $X \to aY$, $X \to Zb$, $X \to c \mid \epsilon$ (where X, Y, Z are nonterminals and a, b, c are terminals), i.e., the right-hand side of a production contain at most one nonterminal. Give a pumping lemma for linear context-free languages. Show why your statement is correct. **Solution:** Pumping lemma for linear context-free languages.

Let L be a linear context-free language. Then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as w = uvxyz, such that

- $|uvyz| \leq m$,
- $|vy| \ge 1$,
- $uv^i xy^i z \in L$, for all $i \ge 0$

Proof: see the following figure.

