
Theory of Computation
Fall 2016, Midterm Exam.

Due: Nov. 14, 2016

1. (20 pts) True or False? (Score=max{0, Right− 1
2Wrong}.)

(1) If A,B and C are languages, then A · (B ∩ C) = A ·B ∩A · C.
Solution: × E.g. {1, 11}({1} ∩ {11}) = ∅ but {1, 11}{1} ∩ {1, 11}{11} = {111}.

(2) The set {ambncndm|m,n ≥ 0} is not context-free.
Solution: ×

(3) If A is not context-free, then the complement of A is also not context-free.
Solution: ×

(4) For any language A, (A∗)∗ = A∗

Solution: ©
(5) If A is a language, then A2 ⊆ A implies A = A+.

Solution: ©
(6) (a ∪ b)∗ = (a∗b∗)∗.

Solution: ©
(7) Not all finite languages are regular.

Solution: ×
(8) If L is nonregular and both of L′ and L ∩ L′ are regular, then L ∪ L′ is nonregular.

Solution: © because ((L ∪ L′)− L′) ∪ (L ∩ L′) = L.

(9) Given a PDA A and an NFA B, there is an algorithm to decide whether L(A) ∩ L(B) = ∅.
Solution: ©

(10) There is a non-context-free language L such that L∗ is regular.
Solution: © E.g. L = {0p | p is prime }.

2. (10 pts) Let Subst-One-Char(w, a, b) = {x | w can be written as w = uav and x = ubv}, where
u, v ∈ Σ∗ and a, b ∈ Σ. This is the set of strings obtained by replacing an arbitrary one of the
a’s in w by a b. E.g. Subst-One-Char(cacac, a, b) = {cbcac, cacbc}. Let Subst-One-Char(L, a, b)
= {x | x ∈ Subst-One-Char(w, a, b) for some w ∈ L}. Prove that if L is regular, then so is
Subst-One-Char(L, a, b).
Solution: Consider the following construction
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3. (10 pts) Prove that at most k2k+12k languages over the binary alphabet {0, 1} can be recognized
by a DFA with k states.
Solution: Simply count the number of distinct DFAs with k states. Name the states 1, 2, 3, · · · , k.
Then a DFA is a tuple ({1, 2, ..., k}, {0, 1}, δ, q0, F ) where q0 ∈ {1, 2, ..., k}, F ⊆ {1, 2, ..., k},
δ : {1, 2, ..., k} × {0, 1} → {1, 2, ..., k}. Thus, the number of distinct ways to choose (q0, F, δ) is
k × 2k × k2k.

4. (10 pts) Let L be a nonempty language in which the shortest string has length k. Prove that L
cannot be recognized by a DFA with fewer than k + 1 states.
Solution:
(Proof 1): Let q0

w1→ q1
w2→ q2 · · ·

wk→ qk+1 be an accepting computation. Argue that all the
q1, q2, · · · qk+1 are distinct, for if qi = qj , i 6= j, then w1w2...wk is not the shortest string in the
language.
(Proof 2): Take any string w = w1w2 · · ·wk in L. We claim that the k+ 1 strings ε, w1, w1w2,
w1w2w3, · · ·, w1w2w3 · · ·wk are each in a different equivalence class of ≡L. Indeed, for any i < j,
(w1w2 · · ·wi)(wj+1 · · ·wk) 6∈ L;
(w1w2 · · ·wj)(wj+1 · · ·wk) ∈ L,
where the first line holds because that string is shorter than k. Since ≡L has at least k + 1
equivalence classes, the Myhill-Nerode theorem implies that any DFA for L must have at least
k + 1 states.

5. (10 pts) Let L1 ⊆ (a ∪ b)∗ be a set of strings. In each string in L1, delete every b immediately
following an a to get the set L2. For instance, if L1 = {aabba, aa}, then L2 = {aaba, aa}. You

are asked to define two homomorphisms h1, h2 : {a, b, b̂}∗ → {a, b}∗), and write an expression for
L2 in terms of h1, h2, h

−1
1 , h−12 , R, L1, for some regular expression R. Explain why your answer

is correct.
Solution: Let h1(a) = a, h1(b) = b, h1(b̂) = b, h2(a) = a, h2(b) = b, h2(b̂) = ε. Then

L2 = h2(h−11 (L1) ∩ b∗(a ∪ ab̂b∗)∗)

.

6. (10 pts) Consider the language L defined by the regular expression (a∗ ∪ ba)∗. Describe the
equivalence classes of {a, b}∗ w.r.t. the Myhill-Nerode relation ≡L defined by:

x1 ≡L x2 ⇔ ∀y ∈ Σ∗, (x1 · y ∈ L⇔ x2 · y ∈ L)

Present these equivalence classes through regular expressions. Use ≡L to construct a minimal
automaton M≡L

for the language L, and draw the graph of the automaton. (Hint: choose
equivalence classes from the following a∗, b∗, (a ∪ b)∗, (ab)∗, (a ∪ ba)∗, (ab ∪ b)∗, (ab ∪ ba)∗,
(a ∪ ba)∗a, (a ∪ ba)∗b, (a ∪ ba)∗bb(a ∪ b)∗, (a ∪ ba)∗aa(a ∪ b)∗, (a ∪ ba)∗bab(a ∪ b)∗.)
Solution: The automaton is

• Q={{(a ∪ ba)∗, (a ∪ ba)∗b, (a ∪ ba)∗bb(a ∪ b)∗}}
• δ((a ∪ ba)∗, a) = (a ∪ ba)∗

δ((a ∪ ba)∗, b) = (a ∪ ba)∗b
δ((a ∪ ba)∗b, a) = (a ∪ ba)∗

δ((a ∪ ba)∗b, b) = (a ∪ ba)∗bb(a ∪ b)∗
δ((a ∪ ba)∗bb(a ∪ b)∗, a) = (a ∪ ba)∗bb(a ∪ b)∗
δ((a ∪ ba)∗bb(a ∪ b)∗, b) = (a ∪ ba)∗bb(a ∪ b)∗

• q0 = (a ∪ ba)∗

Without using a rigorous method to construct the set of states, you may try the sequence of
strings ε, a, b, aa, ab, ba, bb, ... to find out the equivalence classes. Also note that among a∗, b∗,
(a ∪ b)∗, (ab)∗, (a ∪ ba)∗, (ab ∪ b)∗, (ab ∪ ba)∗, only one may appear in the final result as all of
them contain ε. Also (a ∪ ba)∗a and (a ∪ ba)∗aa(a ∪ b)∗ both contain aa, and (a ∪ ba)∗b and
(a ∪ ba)∗bab(a ∪ b)∗ both contain bab.
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7. (10 pts) Give a right-linear grammar for the following regular language: (00 ∪ 1)∗. Show your
work in sufficient detail.
Solution: Let G = ({S,X}, {0, 1}, {S → 0X | 1S | ε; X → 0S}, S)

8. (10 pts) Is the language {a2n | n ≥ 0} context-free? Prove your answer.
Solution: Let p be the pumping constant. According to the pumping lemma, a2p = uvxyz
with |vy| ≤ p. Then |uv2xy2z| > 2p and |uv2xy2z| ≤ 2p + p < 2p + 2p = 2p+1. Hence, uv2xy2z
has length strictly between 2p and 2p+1, and therefore, the string cannot be in L.

9. (10 pts) A context-free grammar is called a linear context-free grammar if its production is of
the following form X → aY, X → Zb, X → c | ε (where X,Y, Z are nonterminals and a, b, c
are terminals), i.e., the right-hand side of a production contain at most one nonterminal. Give
a pumping lemma for linear context-free languages. Show why your statement is correct.
Solution: Pumping lemma for linear context-free languages.
Let L be a linear context-free language. Then there exists some positive integer m such that any
w ∈ L with |w| ≥ m can be decomposed as w = uvxyz, such that

• |uvyz| ≤ m,

• |vy| ≥ 1,

• uvixyiz ∈ L, for all i ≥ 0

Proof: see the following figure.
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