Theory of Computation

Fall 2015, Midterm Exam. Solutions

1. (20 pts) Regular or not? If regular, construct an automaton, regular expression or a grammar. If not regular, use pumping lemma for regular languages.
(a) Let A be the set of all strings of the form $\left\{0^{k} 1^{l} \mid k+l=8\right\}$ over alphabet $\{0,1\}$. Solution: Regular. A simple finite state machine with finite number of states which takes care of the order of symbols and counts the total number of characters.
(b) Let B be the set of all strings of the form $\left\{0^{k} 1^{l} \mid k-l=8\right\}$ over alphabet $\{0,1\}$.

Solution: Not regular. Language L consists of all strings of the form $0^{*} 1^{*}$ where the number of 0's is eight more than the number of 1's. We can show that L is not regular by applying pumping lemma. Let $\mathrm{w}=0^{m+8} 1^{m}$. Since $|x y| \leq m, y$ must equal 0^{k} for some $k>0$. We can pump y out once, which will generate the string $0^{m+8-k} 1^{m}$, which is not in L because the number of 0 's is less than 8 more than the number of 1 's.
(c) Let $C=\left\{\left(0^{m} 1^{n}\right)^{p} \mid m, n, p \geq 0\right\}$ over alphabet $\{0,1\}$.

Solution: Regular. $C=\left(0^{*} 1^{*}\right)^{*}$
(d) Let D be the set of strings over $\{0,1\}$ that can be written in the form $1^{k} 0 y$ where y contains at least $k 1$'s, for some $k \geq 1$.
Solution: Assume to the contrary that B is regular. Let p be the pumping length given by the pumping lemma. Consider the string $s=1^{p} 0^{p} 1^{p} \in B$. The pumping lemma guarantees that s can be split into 3 pieces $s=a b c$, where $|a b| \leq p$. Hence, $y=1^{i}$ for some $i \geq 1$. Then, by the pumping lemma, $a b^{2} c=1^{p+i} 0^{p} 1^{p} \in B$, but cannot be written in the form specified, a contradiction.
2. (10 pts) Minimize the following DFA. Show your derivation in detail.

Solution

Initially, we have classes $=\{[1,3],[2,4,5,6]\}$.
At step 1:
$((1, a),[2,4,5,6])((3, a),[2,4,5,6]) \quad$ No splitting required here.
$((1, b),[2,4,5,6]) \quad((3, b),[2,4,5,6])$
$((2, a),[1,3]) \quad((4, a),[2,4,5,6])((5, a),[2,4,5,6])((6, a),[2,4,5,6])$
$((2, b),[2,4,5,6])$
$((4, b),[1,3])$
$((5, b),[2,4,5,6])$
((6, b), $[1,3])$
These split into three groups: [2], [4, 6], and [5]. So classes is now $\{[1,3],[2],[4,6],[5]\}$.
At step 2, we must consider [4, 6]:

$((4$, a, , [5])	$((6, a),[5])$
$((4$, b), $[1])$	$((6$, b), [1])

No further splitting is required.
The minimal machine has the states: $\{[1,3],[2],[4,6],[5]\}$, with transitions as shown above.
3. (10 pts) Let $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{0 A}, F_{A}\right)$ and $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{0 B}, F_{B}\right)$ be two DFAs accepting languages A and B, respectively, where $A, B \subseteq \Sigma^{*}$. Construct an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to accept $A \| B=\{w \mid \exists u \in A, v \in B, w$ is a shuffle of u and $v\}$. For instance, $a 123 b c 4$ is a shuffle of the strings $a b c$ and 1234.

SOLUTION: Let $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{0 A}, F_{A}\right)$ and $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{0 B}, F_{B}\right)$ be two DFAs accepting the languages A and B respectively. Then we define an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for $S(A, B)$ as follows.
Let $Q=Q_{A} \times Q_{B}, q_{0}=\left(q_{0 A}, q_{0 B}\right)$ and $F=F_{A} \times F_{B}$. Define $\delta\left(\left(q_{A}, q_{B}\right), s\right)=\left\{\left(\delta_{A}\left(q_{A}, s\right), q_{B}\right)\right\} \cup$ $\left\{\left(q_{A}, \delta_{B}\left(q_{B}, s\right)\right)\right\}$, i.e., at each step, the machine changes q_{A} according to δ_{A} or q_{B} according to δ_{B}. It reaches a state in $F_{A} \times F_{B}$ if and only if the moves according to δ_{A} take it from $q_{0 A}$ to a state in F_{A}, and the ones according to δ_{B} take it from $q_{0 B}$ to a state in F_{B}. Hence M accepts exactly the language $S(A, B)$.
4. (10 pts) Define C to be all strings consisting of some positive number of 0 's, followed by some string twice, followed again by some positive number of 0 's. For example 1100 is not in C, since it does not start with at least one 0 . However 0001011010000000 is in C since it is three 0 's, followed by 101 twice, followed by seven 0's. Prove that C is not regular using the Myhill-Nerode Theorem. (Hint: Consider strings $01^{k} 0$ for each natural number k.)
Solution: We will show that there are infinitely many strings, any two of which are distinguishable with respect to C. This will mean there are infinitely many indistinguishability classes. By the Myhill-Nerode Theorem, we can then conclude that C is not regular. Our strings will be $01^{k} 0$ for each natural number k. Let k_{1} and k_{2} be distinct natural numbers. $01^{k_{1}} 01^{k_{1}} 00$ is in L. If $01^{k_{1}} 01^{k_{2}} 00$ were in L, then it must be $0 s s 0$ or $0 \operatorname{ss} 00$ for some string s. So s must contain at least one zero. Thus $01^{k_{1}} 01^{k_{2}} 00$ must be $0 \operatorname{ss} 0$. So s must end with a 0 , and that is the only 0 in s. But then s must be both $1^{k_{1}} 0$ and $1^{k_{2}} 0$. This is impossible since those strings have different lengths. So each $01^{k} 0$ is in a different indistinguishability class and C is not regular.
5. (10 pts) Consider the language $F=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$. Argue that F satisfies the pumping lemma for regular languages.
Solution: The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write $s=x y z$ with $|x y| \leq p$, such that $x y^{i} z$ is also in the language for every $i \geq 0$. For the given language, we can take $p=2$. Consider any string $a^{i} b^{j} c^{k}$ in the language.

- If $i=1$ or $i>2$, we take $x=\epsilon$ and $y=a$. If $i=1$, we must have $j=k$ and adding any number of a 's still preserves the membership in the language. For $i>2$, all strings obtained by pumping y as defined above, have two or more a 's and hence are always in the language.
- For $i=2$, we can take $x=\epsilon$ and $y=a a$. Since the strings obtained by pumping in this case always have an even number of a 's, they are all in the language.
- Finally, for the case $i=0$, we take $x=\epsilon$, and $y=b$ if $j>0$ and $y=c$ otherwise. Since strings of the form $b^{j} c^{k}$ are always in the language, we satisfy the conditions of the pumping lemma in this case as well.

6. (10 pts) A grammar is called right-linear if each of its productions is of the form $A \rightarrow a B$ or $A \rightarrow c$, where a is a terminal, A, B are nonterminals, and c is either a terminal or an ϵ. Find a right-linear grammar $G=(V, T, P, S)$ to generate the regular language represented by regular expression $(00 \cup 1)^{*}$. (Hint: Find an NFA for the regular expression, and then convert the NFA to a right-linear grammar.)

Solution:

- NFA $M=(\{A, B\},\{0,1\},\{\delta(A, 0)=B, \delta(A, 1)=A), \delta(B, 0)=A\}, A,\{A\})$.
- $A \rightarrow 1 A \quad A \rightarrow 0 B \quad B \rightarrow 0 A \quad A \rightarrow \epsilon$

7. (20 pts) Prove or disprove the following statements.
(a) If $A \subseteq B$ then $A^{*} \subseteq B^{*}$.

Solution: True. If $x_{1} x_{2} \ldots x_{k} \in A^{*}$ (where $x_{i} \in A$) then $x_{i} \in B, 1 \leq i \leq k$. Hence, $x_{1} x_{2} \ldots x_{k} \in B^{*}$.
(b) If $A \subseteq \Sigma^{*}$ is regular, $B \subseteq \Sigma^{*}$ is a finite language, then $A \backslash B=\{w \in A \mid w \notin B\}$ is regular.

Solution: True. Note that B is regular, so is \bar{B}. $A \backslash B=A \cap \bar{B}$, which is regular.
(c) There is a non-regular language L such that L^{*} is regular.

Solution: True. Consider $L=\left\{0^{n^{2}} \mid n \geq 0\right\}$ which is not regular. Note that $0 \in L$. $L^{*}=0^{+}$, which is regular.
(d) The following grammar is ambiguous : $S \rightarrow 0 S 1|01 S| \epsilon$

Solution: The string 01 may be generated in two ways:

- $S \rightarrow 0 S 1 \rightarrow 0(\epsilon) 1=01$
- $S \rightarrow 01 S \rightarrow 01(\epsilon)=01$

8. (10 pts) Given a morphism h and a language L, it is known that $h\left(h^{-1}(L)\right) \subseteq L \subseteq h^{-1}(h(L))$, prove that neither containment is necessarily an equality. That is, show that there is a language $A, h\left(h^{-1}(A)\right) \neq A$ and there is another language $B, B \neq h^{-1}(h(B))$.

Solution:

- $\left(h\left(h^{-1}(A)\right) \neq A\right)$

Let $\Sigma=\{0,1\}, \Gamma=\{a, b\}$. Consider $h(0)=h(1)=a$. Let $A=\{a, b\}$. Clearly $h^{-1}(A)=$ $\{0,1\}$. Hence, $h\left(h^{-1}(A)\right)=\{a\} \neq A$.

- $B \neq h^{-1}(h(B))$.

Let $\Sigma=\{0,1\}, \Gamma=\{a, b\}$. Consider $h(0)=h(1)=a$. Let $B=\{0\}$. Clearly $h(B)=\{a\}$. Hence, $h^{-1}(h(B))=\{0,1\} \neq B$.

