Theory of Computation
Fall 2014, Midterm Exam Solutions

Date: November 17, 2014

(1)

(10 pts) If X and Y are any two languages over the same alphabet, the symmetric difference X AY is defined
to be the set of strings that are in either X or Y, but not in both. Prove that if X and Y are regular, so is
XAY.

Solution: X AY = (XNY)U (Y NX). Since regular languages are closed under N, U and complementation,
the result follows.

(10 pts) Given a string = € {0,1}*, let T be the bit-wise complement of z (e.g., 01001 = 10110). We write
o to denote the reversal of (e.g., 010017 = 10010). Is the language L = {w | w = 7 - 2%, x € {0,1}*}
context-free? Justify your answer.

Solution: The language can be generated by the following CFG

G = (V,T,P,S), where P: S — 051 | 150 |

(10 pts) Let h be the homomorphism h(a) = 01, h(b) = 0. Find h=!(L), where L = (10 + 1)*. Explain why.
Solution: First, observe that ¢ € L and thus € € h~!(L) because by definition of a homomorphism, h(e) = e.
For non-empty w € L, observe that w must begin with a 1. Assume w = h(v). If the first symbol of v is an
a, then w would begin with 01; if the first symbol of v is a b, then w would begin with 0. In neither case does
w begin with 1, so the assumption w = h(v) cannot hold, so h=(w) = (. Therefore, h=1(L) = {¢}.

(10 pts) Prove that the language L = {0™|n = pg for two primes p, ¢} is not regular.

Solution: Assume L is regular. Then by the pumping lemma, there exists a constant ¢ such that, if w € L,
|w| > ¢, w can be written as uvx,r = |v| > 0, such that uv'z € L for all i > 0. Let p, q such that n = pg > c.
Then 0?7 € L and by the pumping lemma, 0?9+ € L for all i > 0. Specifically, for i = pg we obtain
ora(1+7) ¢ 1. But pq(1 + r) is not the product of two primes, a contradiction.

(15 pts) Let L C ¥*, and a string © € X*.

e The suffiz language of L with respect to x is defined as suffiz(L,z) = {y € ¥* | 2y € L}.
o The class of suffic languages of L is Cgyy(L) = {suffix(L,x) | v € £*}.
For example, if L = {0"1" | n > 0}, then suffiz(L,0)={0""11" | n > 1}.
Prove that for a language L C X*, if Cs,¢(L) is finite, then there exists a DFA M = (Q, X, 9, qo, F') accepting
L. To do so, construct M in sufficient detail, and argue that your construction is correct.
Solution: Define ML = (Q%, %, 6%, ¢&, FF) as follows.
o Q= suf (L)
qt = suffir(L,)
FL = { suffiz(L,z) | € € suffiz(L,z)}
S (suffi(L,z),a) = suffir(L, za)

It is not hard to see that §% is well defined. It can also be shown that

e For any string = € £*, d,z (¢b, 2) = suffiz(L, z). (By induction)
o v € Liff € € suffir(L, z) iff suffie(L,z) € F¥
e Hence, = € L iff M accepts .

(10 pts) Let L = a*b*. Prove formally that any DFA accepting L must have at least two final states.
Solution: Let M = (Q,{a,b},d,q0, F) be a DFA accepting L. Since ¢ € L, qop € F. Also since ab € L,

0(qo,ab) = p1 € F. We claim that p; # ¢o. Assume, otherwise, that p; = go. Consider the word ababd.
d(qo, abab) = 6(d(qo, ab), ab) = é(p1,ab) = 0(qo,ab) = p1 € F — a contradiction since abab ¢ L.

(15 pts) A context-free grammar G = (V, %, P, S) is called a linear grammar, if each production rule is of the
following form: A —a | aB| Bb | aBb | €, where a,b € ¥ and A,B € V. A PDA M is one-turn if its
stack can only change its direction (i.e., from increasing to decreasing) once. That is, once a one-turn PDA
pops a symbol from its stack, it will never push a symbol in the remainder of the computation. You may
assume that at each step, a PDA M always pushes or pops a symbol, and accepts a string upon reaching a

final state with an empty stack.

Prove that the language accepted by a one-turn PDA can be generated by a linear grammar. (Hint: Given a
one-turn PDA M, construct an equivalent linear grammar G.)

Solution: Without loss of generality, we consider a pushdown automaton that has a single accept state
Qaccept and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol
at any time. Let P = (Q, %, T, 4, qo, {qaccept})- Define a linear grammar G = (V, X, R, S) where

hd V = {qu -p,q € Q}7 S = Aq07QQccept; a'nd
e R has the following rules:

— For each p,q,r,s € Q, t € I', and a,b € X, if (r,t) € §(p,a,€) and (g,€) € d(s,b,t), then Ay, —
ad,sbeR.
— For each pe Q, A,, — € € R.

(10 pts) Is the following language context-free? Justify your answer.

{zy |2,y € {0,1}*, and [z = |y| but = #y}

Solution: It is not hard to see that the langauge can be expressed as { wy xviwey vy | |wy| = |we| =
~— M~~~
k I+k !

kyv1] = |ve| =1,z # y, w1, wa,v1,v2 € {0,1}*, 2,y € {0,1}}. We can design a PDA to do the following:

(a) read wy and push the length (i.e., the number k) into the stack
(b) (nondeterministically) read and keep the value in the finite state control

(¢) read vywy while popping the stack; once the stack becomes empty, push the length of the remaining
string into the stack (the stack now contains [symbols)

(d) (nondeterministically) read y and and compare it against x; if © = y, then reject,

(e) read vo and pop the stack

(f) after reading all the input symbols, ACCEPT if the stack is empty.
(10 pts) Consider the operation X/Y={w | Jy € Y,wy € X}. Prove that if X is regular, Y is an arbitrary
language, then X/Y is always regular. (Hint: Suppose FA M accepts X, construct an FA M’ to accept

X/Y))
Proof:

Let M = (Q,%,6,q0,F) be a DFA accepting X. We define F/ = {¢ € Q | 3y € Y,d(¢q,y) € F}. Then
M' = (Q,%,6,q, F') accepts exactly X/Y. Hence, X/Y is regular.

