Theory of Computation

Fall 2014, Midterm Exam Solutions
(1) (10 pts) If X and Y are any two languages over the same alphabet, the symmetric difference $X \triangle Y$ is defined to be the set of strings that are in either X or Y, but not in both. Prove that if X and Y are regular, so is $X \triangle Y$.
Solution: $X \triangle Y=(X \cap \bar{Y}) \cup(Y \cap \bar{X})$. Since regular languages are closed under \cap, \cup and complementation, the result follows.
(2) (10 pts) Given a string $x \in\{0,1\}^{*}$, let \bar{x} be the bit-wise complement of x (e.g., $\overline{01001}=10110$). We write x^{R} to denote the reversal of x (e.g., $01001^{R}=10010$). Is the language $L=\left\{w \mid w=\bar{x} \cdot x^{R}, x \in\{0,1\}^{*}\right\}$ context-free? Justify your answer.
Solution: The language can be generated by the following CFG
$G=(V, T, P, S)$, where $P: S \rightarrow 0 S 1|1 S 0| \epsilon$
(3) (10 pts) Let h be the homomorphism $h(a)=01, h(b)=0$. Find $h^{-1}(L)$, where $L=(10+1)^{*}$. Explain why.

Solution: First, observe that $\epsilon \in L$ and thus $\epsilon \in h^{-1}(L)$ because by definition of a homomorphism, $h(\epsilon)=\epsilon$. For non-empty $w \in L$, observe that w must begin with a 1 . Assume $w=h(v)$. If the first symbol of v is an a, then w would begin with 01 ; if the first symbol of v is a b, then w would begin with 0 . In neither case does w begin with 1 , so the assumption $w=h(v)$ cannot hold, so $h^{-1}(w)=\emptyset$. Therefore, $h^{-1}(L)=\{\epsilon\}$.
(4) (10 pts) Prove that the language $L=\left\{0^{n} \mid n=p q\right.$ for two primes $\left.p, q\right\}$ is not regular.

Solution: Assume L is regular. Then by the pumping lemma, there exists a constant c such that, if $w \in L$, $|w|>c, w$ can be written as $u v x, r=|v|>0$, such that $u v^{i} x \in L$ for all $i \geq 0$. Let p, q such that $n=p q>c$. Then $0^{p q} \in L$ and by the pumping lemma, $0^{p q+i r} \in L$ for all $i \geq 0$. Specifically, for $i=p q$ we obtain $0^{p q(1+r)} \in L$. But $p q(1+r)$ is not the product of two primes, a contradiction.
(5) (15 pts) Let $L \subseteq \Sigma^{*}$, and a string $x \in \Sigma^{*}$.

- The suffix language of L with respect to x is defined as suffix $(L, x)=\left\{y \in \Sigma^{*} \mid x y \in L\right\}$.
- The class of suffix languages of L is $C_{\text {suf }}(L)=\left\{\operatorname{suffix}(L, x) \mid x \in \Sigma^{*}\right\}$.

For example, if $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, then $\operatorname{suffix}(L, 0)=\left\{0^{n-1} 1^{n} \mid n \geq 1\right\}$.
Prove that for a language $L \subseteq \Sigma^{*}$, if $C_{s u f}(L)$ is finite, then there exists a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepting L. To do so, construct M in sufficient detail, and argue that your construction is correct.
Solution: Define $M^{L}=\left(Q^{L}, \Sigma, \delta^{L}, q_{0}^{L}, F^{L}\right)$ as follows.

- $Q^{L}=C_{s u f}(L)$
- $q_{0}^{L}=\operatorname{suffix}(L, \epsilon)$
- $F^{L}=\{\operatorname{suffix}(L, x) \mid \epsilon \in \operatorname{suffix}(L, x)\}$
- $\delta^{L}(\operatorname{suffix}(L, x), a)=\operatorname{suffix}(L, x a)$

It is not hard to see that δ^{L} is well defined. It can also be shown that

- For any string $x \in \Sigma^{*}, \hat{\delta}_{M^{L}}\left(q_{0}^{L}, x\right)=\operatorname{suffix}(L, x)$. (By induction)
- $x \in L$ iff $\epsilon \in \operatorname{suffix}(L, x)$ iff $\operatorname{suffix}(L, x) \in F^{L}$
- Hence, $x \in L$ iff M^{L} accepts x.
(6) (10 pts) Let $L=a^{*} b^{*}$. Prove formally that any DFA accepting L must have at least two final states.

Solution: Let $M=\left(Q,\{a, b\}, \delta, q_{0}, F\right)$ be a DFA accepting L. Since $\epsilon \in L, q_{0} \in F$. Also since $a b \in L$, $\hat{\delta}\left(q_{0}, a b\right)=p_{1} \in F$. We claim that $p_{1} \neq q_{0}$. Assume, otherwise, that $p_{1}=q_{0}$. Consider the word $a b a b$. $\hat{\delta}\left(q_{0}, a b a b\right)=\hat{\delta}\left(\hat{\delta}\left(q_{0}, a b\right), a b\right)=\hat{\delta}\left(p_{1}, a b\right)=\hat{\delta}\left(q_{0}, a b\right)=p_{1} \in F-$ a contradiction since $a b a b \notin L$.
(7) (15 pts) A context-free grammar $G=(V, \Sigma, P, S)$ is called a linear grammar, if each production rule is of the following form: $A \rightarrow a|a B| B b|a B b| \epsilon$, where $a, b \in \Sigma$ and $A, B \in V$. A PDA M is one-turn if its stack can only change its direction (i.e., from increasing to decreasing) once. That is, once a one-turn PDA pops a symbol from its stack, it will never push a symbol in the remainder of the computation. You may assume that at each step, a PDA M always pushes or pops a symbol, and accepts a string upon reaching a
final state with an empty stack.
Prove that the language accepted by a one-turn PDA can be generated by a linear grammar. (Hint: Given a one-turn PDA M, construct an equivalent linear grammar G.)
Solution: Without loss of generality, we consider a pushdown automaton that has a single accept state $q_{\text {accept }}$ and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol at any time. Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$. Define a linear grammar $G=(V, \Sigma, R, S)$ where

- $V=\left\{A_{p q}: p, q \in Q\right\}, S=A_{q_{0}, q_{\text {accept }}} ;$ and
- R has the following rules:
- For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$, then $A_{p q} \longrightarrow$ $a A_{r s} b \in R$.
- For each $p \in Q, A_{p p} \longrightarrow \epsilon \in R$.
(8) (10 pts) Is the following language context-free? Justify your answer.

$$
\left\{x y \mid x, y \in\{0,1\}^{*}, \text { and }|x|=|y| \text { but } x \neq y\right\}
$$

Solution: It is not hard to see that the langauge can be expressed as $\{\underbrace{w_{1}}_{k} x \underbrace{v_{1} w_{2}}_{l+k} y \underbrace{v_{2}}_{l}| | w_{1}\left|=\left|w_{2}\right|=\right.$ $\left.k,\left|v_{1}\right|=\left|v_{2}\right|=l, x \neq y, w_{1}, w_{2}, v_{1}, v_{2} \in\{0,1\}^{*}, x, y \in\{0,1\}\right\}$. We can design a PDA to do the following:
(a) read w_{1} and push the length (i.e., the number k) into the stack
(b) (nondeterministically) read x and keep the value in the finite state control
(c) read $v_{1} w_{2}$ while popping the stack; once the stack becomes empty, push the length of the remaining string into the stack (the stack now contains l symbols)
(d) (nondeterministically) read y and and compare it against x; if $x=y$, then reject,
(e) read v_{2} and pop the stack
(f) after reading all the input symbols, ACCEPT if the stack is empty.
(9) (10 pts) Consider the operation $X / Y=\{w \mid \exists y \in Y, w y \in X\}$. Prove that if X is regular, Y is an arbitrary language, then X / Y is always regular. (Hint: Suppose FA M accepts X, construct an FA M^{\prime} to accept X / Y.)

Proof:

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting X. We define $F^{\prime}=\{q \in Q \mid \exists y \in Y, \hat{\delta}(q, y) \in F\}$. Then $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ accepts exactly X / Y. Hence, X / Y is regular.

