- 1. (20 pts) True or False? Score = max{0, Right $\frac{1}{2}$ Wrong}. No explanations are needed.
 - (a) Let r_1 and r_2 be two regular expressions. Then $L((r_1 + r_2)^*) = L((r_1^* r_2^*)^*)$. Sol: True. Easy to show.
 - (b) Let $L_4 = L_1 \cdot L_2 \cdot L_3$. If L_1 and L_2 are regular and L_3 is not regular, it is possible that L_4 is regular. Sol: True. Consider the case when $L_1 = \emptyset$. Then $L_4 = \emptyset$
 - (c) $L_1 \subseteq L \subseteq L_2$ where L_1 and L_2 are regular, then L must be regular. Sol: False. $\emptyset \subseteq \{a^n b^n \mid n \ge 0\} \subseteq \{a, b\}^*$
 - (d) $\{w = xyzy \mid x, y, z \in \{0, 1\}^+\}$ is regular. Sol: True. The set is $\{x0z0 \mid x, z \in \{0, 1\}^+\} \cup \{x1z1 \mid x, z \in \{0, 1\}^+\}$ (i.e., pick y = 0 or 1)
 - (e) $(\emptyset^* \cdot \emptyset)^* \cdot \emptyset^* = \emptyset$ Sol: False. LHS= $\{\epsilon\}$
 - (f) $\{xyx^R \mid x, y \in \{a, b\}^+\}$ is regular. Sol: True. The language is $\{aya \mid y \in \{a, b\}^+\} \cup \{byb \mid y \in \{a, b\}^+\}$ (i.e., pick x = a or b).
 - (g) The language generated by the grammar $G = (\{S\}, \{a\}, S, \{S \to Saaa \mid aS \mid a\})$ is not regular. Sol: False. It is a context-free language over a single-letter alphabet $\{a\}$, which is always regular. Note that even though the grammar is not of the form of a regular grammar, the language could still be regular.
 - (h) Let $L_1, L_2, ..., L_n, ...$ be a countably infinite number of regular languages. $\bigcup_{i \ge 1} L_i = L_1 \cup L_2 \cup \cdots \cup L_n \cup \cdots$ is always regular.
 - Sol: False. Consider $\bigcup_{p \text{ is prime}} \{a^p\}$.
 - (i) Define $a \setminus L = \{w \mid aw \in L\}$. If $L = \{0, 001, 100\}$, then $0 \setminus L = \{\epsilon, 01\}$. Sol: True
 - (j) Let h be a (homo)morphism from Σ^* to Δ^* . Given an arbitrary language $A \subseteq \Delta^*$, $h(h^{-1}(A)) = A$. Sol: False. A may contain a word w such that $h^{-1}(w) = \emptyset$.
- 2. (10 pts) Let $A = \{xx \mid x \in \{a, b\}^*\}$. Consider (homo)morphism $h : \{a, b\}^* \to \{0, 1\}^*$ with $h(a) = 00; h(b) = \epsilon$.
 - (a) What is h(A)? Why? Sol. $\{0^{4n} | n \ge 0\}$
 - (b) What is $h^{-1}(h(A))$? Why? Sol. $\{w \in \{a, b\}^* \mid w \text{ contains an even number of } a's\}$
- 3. (10 pts) Find a Chomsky normal form for the language $\{0^m 1^m 0^n 1^n \mid m, n \ge 1\}$. $G = (\{S, M, O, I, O'\}, \{0, 1\}, S, P)$, with P = $S \to MM$ $M \to O'I; \quad O' \to OM; \quad O \to 0; \quad I \to 1$
- 4. (10 pts) Prove that $\{0^{n^3} \mid n \geq 0\}$ is not regular using Myhill-Nerode theorem. Sol.

Let $p = (k+1)^3 - k^3 = 3k^2 + 3k + 1$. Clearly $0^{k^3} \cdot 0^p = 0^{(k+1)^3} \in L$. However, $0^{(k+1)^3} \cdot 0^p \notin L$, because its length is $k^3 + 6k^2 + 6k + 2$, but $(k+2)^3 = k^3 + 6k^2 + 12k + 8$, i.e., $0^{(k+1)^3} \cdot 0^p$ falls between 0^{k^3} and $0^{(k+1)^3}$. Hence $0^{k^3} \notin L$ $0^{(k+1)^3}$, since there exists a z such that $0^{k^3}z \in L$ but $0^{(k+1)^3}z \notin L$. In view of the above, 0^{k^3} , $0^{(k+1)^3}$, $0^{(k+2)^3}$... are pairwise nonequivalent. By Myhill-Nerode theorem, L is not regular.

5. (10 pts) For a string $a_1a_2\cdots a_n$, define the operation shift as $shift(a_1a_2\cdots a_n) = a_2\cdots a_na_1$. For example, shift(abcde)=bcdea). Given a language L, $shift(L)=\{shift(w) \mid w \in L\}$. Question: Are regular languages closed under *shift*? That is, if L is regular, so is shift(L)? Give a formal proof. Sol. Yes.

Idea: (1) store the first symbol read in the "finite-state control" which can contain any symbol of Σ , and then go to a state $q_{firststep}$ that allows the automaton to consume the first symbol while storing it in the "finite-state control". (2) consume the input string while behaving like M, (3) if the DFA is in a final state, and the next symbol read is the same as the symbol in the "finite-state control", then guess that the next symbol being read is the last symbol of the input string and go to the final state of the NFA.

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ to accept L, we construct the NFA without ϵ -transitions which contains Q, new start state s^* , new final state f^* , and a new state $q_{firststep}$

$$((\Sigma \times Q) \cup \{s^*, f^*, q_{firststep}\}, \Sigma, \Delta, \{s^*\}, \{f^*\} \cup \{(a, q_{firststep}) \mid \delta(s, a) \in F\})$$

- $\Delta(s^*, a) = \{(a, q_{firststep})\}, \forall a \in \Sigma$
- $\Delta((a, q_{firststep}), b) = \{(a, \delta(\delta(s, a), b))\}, \forall a, b \in \Sigma$
- $\Delta((a,q),b) = \{(a,\delta(q,b))\}, \forall a,b \in \Sigma, \forall q \notin F$
- $\Delta((a,q),a) = \{(a,\delta(q,a)), f^*\}, \forall a \in \Sigma, \forall q \in F$
- $\Delta(f^*, a) = \emptyset, \forall a \in \Sigma$
- 6. (10 pts) Consider the following NFA M. Assuming that we designate A as state 1, B as state 2 and C as state 3. We associate regular expressions $R_{i,j}^k$ with M where $R_{i,j}^k$ is the set of strings formed by going from state i to state j without passing through states whose indices are higher than k. Find $R_{1,3}^3$. Show your derivation in detail.

Sol.

- $$\begin{split} \bullet \ R_{1,3}^3 &= R_{1,3}^2 \cup (R_{1,3}^2(R_{3,3}^2)^*R_{3,3}^2). \\ &- R_{3,3}^2 &= R_{3,3}^1 \cup (R_{3,2}^1(R_{2,2}^1)^*R_{2,3}^1). \\ &\quad * \ (\ R_{3,3}^1 &= 1, \ , \ R_{3,2}^1 &= 00^*1, \ R_{2,2}^1 &= (1+00^*1), \ R_{2,3}^1 &= 0 \) \Longrightarrow R_{3,3}^2 &= 1+00^*1(1+00^*1)^*0 \\ &- \ R_{1,3}^2 &= R_{1,3}^1 \cup (R_{1,2}^1(R_{2,2}^1)^*R_{2,3}^1) \\ &\quad * \ (\ R_{1,3}^1 &= \emptyset, \ R_{1,2}^1 &= 0^*1, \ R_{2,2}^1 &= (1+00^*1), \ R_{2,3}^1 &= 0 \) \Longrightarrow R_{1,3}^2 &= 0^*1(1+00^*1)^*0 \end{split}$$
- 7. (20 pts) Define $Max(L) = \{w \mid w \in L, \text{ if } wy \in L \text{ then } y = \epsilon\}$ and $Min(L) = \{w \mid w \in L, \text{ if } (xy = w, x \in L) \text{ then } y = \epsilon\}.$
 - (a) (10 pts) Prove that the class of regular languages is closed under Max. **Sol.** The proof is by construction. If L is regular, then it is accepted by some DFSA $M = (Q, A, \delta, s, F)$. We construct a new DFSM $M' = (Q', A, \delta', s', F')$, such that L(M') = Max(L). The idea is that M' will operate exactly as M would have except that F' will include only states that are accepting states in M and from which there exists no path of at least one character to any accepting state (back to itself or to any other).
 - (b) (6 pts) Consider a language $L = \{a^n b^m c^t \mid t = n \text{ or } t = m\}$. Find Max(L) and Min(L). **Sol.** $Max(L) = \{a^n b^m c^t \mid t = max\{m, n\}\};$ $Min(L) = \{a^n b^m c^t \mid t = min\{m, n\}\}, \text{ if } m, n > 0; = \{\epsilon\}, \text{ if } m, n \text{ are allowed to be zero (i.e., } \epsilon \in L).$
 - (c) (4 pts) If Max(L) is regular, must L also be regular? Prove your answer. Sol. No. Consider $L = \{a^n : n \text{ is prime }\}$. L is not regular. But $Max(L) = \emptyset$, which is regular.
- 8. (10 pts) Let A be the following DFA. Find the minimum DFA equivalent to A. Show your derivation in detail.

Sol:

