Theory of Computation

Fall 2013, Midterm Exam.

1. $(20 \mathrm{pts})$ True or False? Score $=\max \left\{0\right.$, Right $-\frac{1}{2}$ Wrong $\}$. No explanations are needed.
(a) Let r_{1} and r_{2} be two regular expressions. Then $L\left(\left(r_{1}+r_{2}\right)^{*}\right)=L\left(\left(r_{1}^{*} r_{2}^{*}\right)^{*}\right)$.

Sol: True. Easy to show.
(b) Let $L_{4}=L_{1} \cdot L_{2} \cdot L_{3}$. If L_{1} and L_{2} are regular and L_{3} is not regular, it is possible that L_{4} is regular.

Sol: True. Consider the case when $L_{1}=\emptyset$. Then $L_{4}=\emptyset$
(c) $L_{1} \subseteq L \subseteq L_{2}$ where L_{1} and L_{2} are regular, then L must be regular.

Sol: False. $\emptyset \subseteq\left\{a^{n} b^{n} \mid n \geq 0\right\} \subseteq\{a, b\}^{*}$
(d) $\left\{w=x y z y \mid x, y, z \in\{0,1\}^{+}\right\}$is regular.

Sol: True. The set is $\left\{x 0 z 0 \mid x, z \in\{0,1\}^{+}\right\} \cup\left\{x 1 z 1 \mid x, z \in\{0,1\}^{+}\right\}$(i.e., pick $y=0$ or 1)
(e) $\left(\emptyset^{*} \cdot \emptyset\right)^{*} \cdot \emptyset^{*}=\emptyset$

Sol: False. LHS $=\{\epsilon\}$
(f) $\left\{x y x^{R} \mid x, y \in\{a, b\}^{+}\right\}$is regular.

Sol: True. The language is $\left\{a y a \mid y \in\{a, b\}^{+}\right\} \cup\left\{b y b \mid y \in\{a, b\}^{+}\right\}$(i.e., pick $x=a$ or b).
(g) The language generated by the grammar $G=(\{S\},\{a\}, S,\{S \rightarrow S a a a|a S| a\})$ is not regular.

Sol: False. It is a context-free language over a single-letter alphabet $\{a\}$, which is always regular. Note that even though the grammar is not of the form of a regular grammar, the language could still be regular.
(h) Let $L_{1}, L_{2}, \ldots, L_{n}, \ldots$ be a countably infinite number of regular languages. $\bigcup_{i \geq 1} L_{i}=L_{1} \cup L_{2} \cup \cdots \cup L_{n} \cup \cdots$ is always regular.
Sol: False. Consider $\bigcup_{p \text { is prime }}\left\{a^{p}\right\}$.
(i) Define $a \backslash L=\{w \mid a w \in L\}$. If $L=\{0,001,100\}$, then $0 \backslash L=\{\epsilon, 01\}$.

Sol: True
(j) Let h be a (homo)morphism from Σ^{*} to Δ^{*}. Given an arbitrary language $A \subseteq \Delta^{*}, h\left(h^{-1}(A)\right)=A$.

Sol: False. A may contain a word w such that $h^{-1}(w)=\emptyset$.
2. (10 pts) Let $A=\left\{x x \mid x \in\{a, b\}^{*}\right\}$. Consider (homo)morphism $h:\{a, b\}^{*} \rightarrow\{0,1\}^{*}$ with $h(a)=00 ; h(b)=\epsilon$.
(a) What is $h(A)$? Why?

Sol. $\left\{0^{4 n} \mid n \geq 0\right\}$
(b) What is $h^{-1}(h(A))$? Why?

Sol. $\left\{w \in\{a, b\}^{*} \mid w\right.$ contains an even number of $\left.a^{\prime} s\right\}$
3. (10 pts) Find a Chomsky normal form for the language $\left\{0^{m} 1^{m} 0^{n} 1^{n} \mid m, n \geq 1\right\}$.
$G=\left(\left\{S, M, O, I, O^{\prime}\right\},\{0,1\}, S, P\right)$, with $P=$
$S \rightarrow M M$
$M \rightarrow O^{\prime} I ; \quad O^{\prime} \rightarrow O M ; \quad O \rightarrow 0 ; \quad I \rightarrow 1$
4. (10 pts) Prove that $\left\{0^{n^{3}} \mid n \geq 0\right\}$ is not regular using Myhill-Nerode theorem.

Sol.
Let $p=(k+1)^{3}-k^{3}=3 k^{2}+3 k+1$. Clearly $0^{k^{3}} \cdot 0^{p}=0^{(k+1)^{3}} \in L$. However, $0^{(k+1)^{3}} \cdot 0^{p} \notin L$, because its length is $k^{3}+6 k^{2}+6 k+2$, but $(k+2)^{3}=k^{3}+6 k^{2}+12 k+8$, i.e., $0^{(k+1)^{3}} \cdot 0^{p}$ falls between $0^{k^{3}}$ and $0^{(k+1)^{3}}$. Hence $0^{k^{3}} \not \equiv{ }_{L}$ $0^{(k+1)^{3}}$, since there exists a z such that $0^{k^{3}} z \in L$ but $0^{(k+1)^{3}} z \notin L$. In view of the above, $0^{k^{3}}, 0^{(k+1)^{3}}, 0^{(k+2)^{3}} \ldots$ are pairwise nonequivalent. By Myhill-Nerode theorem, L is not regular.
5. (10 pts) For a string $a_{1} a_{2} \cdots a_{n}$, define the operation shift as shift $\left(a_{1} a_{2} \cdots a_{n}\right)=a_{2} \cdots a_{n} a_{1}$.

For example, shift $(a b c d e)=b c d e a)$. Given a language L, $\operatorname{shift}(L)=\{\operatorname{shift}(w) \mid w \in L\}$.
Question: Are regular languages closed under shift? That is, if L is regular, so is shift (L) ? Give a formal proof. Sol. Yes.
Idea: (1) store the first symbol read in the "finite-state control" which can contain any symbol of Σ, and then go to a state $q_{\text {firststep }}$ that allows the automaton to consume the first symbol while storing it in the "finite-state control".
(2) consume the input string while behaving like M, (3) if the DFA is in a final state, and the next symbol read is the same as the symbol in the "finite-state control", then guess that the next symbol being read is the last symbol of the input string and go to the final state of the NFA.

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ to accept L, we construct the NFA without ϵ-transitions which contains Q, new start state s^{*}, new final state f^{*}, and a new state $q_{\text {firststep }}$

$$
\left((\Sigma \times Q) \cup\left\{s^{*}, f^{*}, q_{\text {firststep }}\right\}, \Sigma, \Delta,\left\{s^{*}\right\},\left\{f^{*}\right\} \cup\left\{\left(a, q_{\text {firststep }}\right) \mid \delta(s, a) \in F\right\}\right)
$$

- $\Delta\left(s^{*}, a\right)=\left\{\left(a, q_{\text {firststep }}\right)\right\}, \forall a \in \Sigma$
- $\Delta\left(\left(a, q_{\text {firststep }}\right), b\right)=\{(a, \delta(\delta(s, a), b))\}, \forall a, b \in \Sigma$
- $\Delta((a, q), b)=\{(a, \delta(q, b))\}, \forall a, b \in \Sigma, \forall q \notin F$
- $\Delta((a, q), a)=\left\{(a, \delta(q, a)), f^{*}\right\}, \forall a \in \Sigma, \forall q \in F$
- $\Delta\left(f^{*}, a\right)=\emptyset, \forall a \in \Sigma$

6. (10 pts) Consider the following NFA M. Assuming that we designate A as state $1, B$ as state 2 and C as state 3 . We associate regular expressions $R_{i, j}^{k}$ with M where $R_{i, j}^{k}$ is the set of strings formed by going from state i to state j without passing through states whose indices are higher than k. Find $R_{1,3}^{3}$. Show your derivation in detail.

Sol.

- $R_{1,3}^{3}=R_{1,3}^{2} \cup\left(R_{1,3}^{2}\left(R_{3,3}^{2}\right)^{*} R_{3,3}^{2}\right)$.

$$
\begin{aligned}
& -R_{3,3}^{2}=R_{3,3}^{1} \cup\left(R_{3,2}^{1}\left(R_{2,2}^{1}\right)^{*} R_{2,3}^{1}\right) \\
& \quad *\left(R_{3,3}^{1}=1,, R_{3,2}^{1}=00^{*} 1, R_{2,2}^{1}=\left(1+00^{*} 1\right), R_{2,3}^{1}=0\right) \Longrightarrow R_{3,3}^{2}=1+00^{*} 1\left(1+00^{*} 1\right)^{*} 0 \\
& -R_{1,3}^{2}=R_{1,3}^{1} \cup\left(R_{1,2}^{1}\left(R_{2,2}^{1}\right)^{*} R_{2,3}^{1}\right) \\
& \quad *\left(R_{1,3}^{1}=\emptyset, R_{1,2}^{1}=0^{*} 1, R_{2,2}^{1}=\left(1+00^{*} 1\right), R_{2,3}^{1}=0\right) \Longrightarrow R_{1,3}^{2}=0^{*} 1\left(1+00^{*} 1\right)^{*} 0
\end{aligned}
$$

7. (20 pts) Define $\operatorname{Max}(L)=\{w \mid w \in L$, if $w y \in L$ then $y=\epsilon\}$ and $\operatorname{Min}(L)=\{w \mid w \in L$, if $(x y=w, x \in L)$ then $y=$ $\epsilon\}$.
(a) (10 pts) Prove that the class of regular languages is closed under Max.

Sol. The proof is by construction. If L is regular, then it is accepted by some DFSA $M=(Q, A, \delta, s, F)$. We construct a new DFSM $M^{\prime}=\left(Q^{\prime}, A, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$, such that $L\left(M^{\prime}\right)=M a x(L)$. The idea is that M^{\prime} will operate exactly as M would have except that F^{\prime} will include only states that are accepting states in M and from which there exists no path of at least one character to any accepting state (back to itself or to any other).
(b) (6 pts) Consider a language $L=\left\{a^{n} b^{m} c^{t} \mid t=n\right.$ or $\left.t=m\right\}$. Find $\operatorname{Max}(L)$ and $\operatorname{Min}(L)$.

Sol. $\operatorname{Max}(L)=\left\{a^{n} b^{m} c^{t} \mid t=\max \{m, n\}\right\}$;
$\operatorname{Min}(L)=\left\{a^{n} b^{m} c^{t} \mid t=\min \{m, n\}\right\}$, if $m, n>0 ;=\{\epsilon\}$, if m, n are allowed to be zero (i.e., $\epsilon \in L$).
(c) (4 pts) If $\operatorname{Max}(L)$ is regular, must L also be regular? Prove your answer.

Sol. No. Consider $L=\left\{a^{n}: n\right.$ is prime $\}$. L is not regular. But $\operatorname{Max}(L)=\emptyset$, which is regular.
8. (10 pts) Let A be the following DFA. Find the minimum DFA equivalent to A. Show your derivation in detail.

Sol:

