Theory of Computation

Midterm Exam, Nov. 14, 2011

- 1. (21 pts) Are the following statements true or false. Justify by a proof or a suitable counterexample.
 - (a) If L_1 is finite and $L_1 \cup L_2$ is regular then L_2 is regular. **True**. Let $L_3 = (L1 \cup L2) \cap (\bar{L_1})$ - this is regular. Therefore $L_2 = L_3 \cup (L_1 \cap L_2)$ is regular as the second component is finite (and regular).
 - (b) If L_1 is regular (and infinite) and $L_1 \cdot L_2$ is regular then L_2 is regular. **False.** Consider $L_1 = 0^*$ and $L_2 = 0^p$ where p is prime, then $L_1 \cdot L_2 = 000^*$ which is regular.
 - (c) If L^* is regular, so is L. False. Consider $L_2 = 0^p$ where p is prime, then $L_2^* = 000^*$ which is regular.
 - (d) Consider a language L and a homomorphism h. If h(L) is regular, then L is always regular.

False. Take $\{0^n 1^n \mid n \ge 0\}$ and h(0) = 0 and $h(1) = \epsilon$.

(e) Let $L_1 \subseteq L_2$ (over alphabet Σ) both be regular languages. If L_2 can be accepted by a DFA with n states, then L_1 can always be accepted by some DFA with no more than n states.

False. Consider $L_2 = \Sigma^*$, which can be accepted by a DFA with one state.

- (f) $(R \cup S)^* = R^* \cup S^*$, where R and S are two languages. **False.** Let $R = \{a\}$ and $S = \{b\}$. Then string $ab \in (R \cup S)^*$ but $ab \notin R^* \cup S^*$.
- (g) $(R \cap S)T = RT \cap ST$, where R, S and T are languages. **False.** Let $R = \{\epsilon\}$ and $S = \{a\}$ and $T = a^*$. Then string $a \in RT \cap ST$ but $a \notin (R \cap S)T$.
- 2. (4 pts) Give a regular expression for the language containing all strings of 0's and 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's. (For example, $01\underline{00}1011011$ is in the language, while $011\underline{00}1011$ is not.)

Sol.: $((1+(0+01)^*)00)^*((1+01)^*+0)$

3. (10 pts) A shuffle of two strings $x, y \in \Sigma^*$ denoted by x||y is the set of strings that can be obtained by interleaving the strings x and y in any manner. For example $ab||cd = \{abcd, acbd, cabd, cabd, cadb, cdab\}$. (The strings need not be of the same length.) For two sets of strings A, B, the shuffle is defined as $A||B = \bigcup_{x \in A, y \in B} x||y$. Prove that if both A and B are regular, then A||B is also regular.

Sol. Let $M_A = (Q_A, \Sigma, \delta_A, q_{A,0}, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_{B,0}, F_B)$ be FA accepting A and B, respectively. Construct $M = (Q, \Sigma, \delta, q_0, F)$ to accept A||B as follows.

1

- $Q = Q_A \times Q_B$
- $q_0 = (q_{A,0}, q_{B,0})$
- $F = F_A \times F_B$
- If $q'_A \in \delta_A(q_A, a)$, then $(q'_A, r_B) \in \delta((q_A, r_B), a) \ \forall r_B \in Q_B$

- If
$$q'_B \in \delta_B(q_B, a)$$
, then $(r_A, q'_B) \in \delta((r_A, q'_B), a) \ \forall r_A \in Q_A$

- 4. (10 pts) Define $L_1 \# L_2 = \{x \# y \mid x \in L_1, y \in L_2, |x| = |y|\}$, where # is a new symbol. Is the following statement true or false? Justify your answer.
 - If L_1 and L_2 are regular, then $L_1 \# L_2$ is also regular.

False: Consider $L_1 = 0^*$ and $L_2 = 1^*$. $L_1 \# L_2 = \{0^n \# 1^n \mid n \ge 0\}$ – which is not regular.

5. (10 pts) Use the pumping lemma to show that $L = \{0^n 1^m \mid n, m \geq 1 \text{ and } m \text{ leaves a remainder of 3 when divided by } n\}$ is not regular. (For example, $0^4 1^7$, $0^5 1^{13}$ are in L.) (Hint: Let p be the pumping constant. Take $w = 0^{p+4} 1^{p+7}$.)

Solution: Observe that if $0^n 1^m \in L$ then n > 3, as otherwise the remainder can never be 3.

Let $p \ge 0$ be the pumping length. Take, $w = 0^{p+4}1^{p+7}$; clearly, $w \in L$ as p+4>3 no matter what p is, and p+7 leaves a remainder of 3 when divided by p+4. Let x,y,z be any partition of w such that w=xyz, $|xy| \le p$ and |y| > 0.

Since $|xy| \le p$, we can conclude (without loss of generality) that $x = 0^r$, $y = 0^s$ and $z = 0^t 1^{p+7}$, where r+s+t=p+4. Further, since |y|>0, we have s>0. Now, $xy^2z=0^{r+2s+t}1^{p+7}=0^{(p+4)+s}1^{p+7}$. Depending on whether $p+4+s\le p+7$ or p+4+s>p+7, we have $(p+7) \mod (p+4+s)$ is either ≤ 2 or p+7>3. Thus, $xy^2z\not\in L$, and L does not satisfy the pumping lemma. Therefore, L is not regular.

6. (10 pts) Given a language $L \subseteq \Sigma^*$ and two strings $x, y \in \Sigma^*$, $x \equiv_L y$ iff $\forall z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$. Give the \equiv_L equivalence classes of the language $L = a^*ba^*$. Also draw a minimum DFA accepting L.

Solution: Here are the equivalence classes:

$$[\lambda]_{\equiv_L} = a^*, [b]_{\equiv_L} = a^*ba^*, [bb]_{\equiv_L} = (a \cup b)^*b(a \cup b)^*b(a \cup b)^*,$$

and here is the minimal state DFA M_L :

7. (10 pts) Let L be a language. Show that if every subset of L is regular, then L must be finite (i.e., containing a finite number of strings).

(Hint: Prove it by contradiction. Note that for every $w \in L$, there exists a $w' \in L$ such that |w'| > 2|w|. (|w| denotes the length of w.) Use the pumping lemma if needed.)

Proof. We will prove it by contradiction. Assume that L were infinite. Let w_0 be an arbitrary string in L. Let $w_i \in L$ with $|w_i| > 2|w_{i-1}|$, where $i = 1, 2, \ldots$. Since L is infinite, such strings w_i 's exist. Let $L_0 = \{w_0, w_1, \ldots, \}$. Then L_0 is a subset of L, and L_0 is infinite. We note that L_0 so constructed has the following property: For any two strings $u \in L_0$ and $v \in L_0$, if v is longer than u, then

$$|v| > 2|u|. (1)$$

By assumption, L_0 is regular. It follows from the pumping lemma that there exists a positive integer K such that for any $w \in L_0$ with $|w| \ge K$, there must be strings x, y, z such that $w = xyz, y \ne \epsilon$, and $xy^2z \in L_0$. But $|xy^2z| = |w| + |y| \le 2|w|$, and so Inequality 1 is violated, which implies that $xy^2z \notin L_0$. This is a contradiction. Thus, L must be finite. This completes the proof.

8. (10 pts) Consider the ϵ -NFA defined in Figure 1 (where \rightarrow and * mark the initial and final states, respectively):

	ϵ	a	b	c
$\rightarrow p$	ϕ	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	ϕ
*7	$\{q\}$	$\{r\}$	φ	$\{p\}$

Figure 1: An ϵ -NFA.

- (a) (4 pts) Compute the ϵ -closure of each state.
- (b) (6 pts) Convert the automaton to a DFA.

Solution:

$$\begin{array}{lll} \epsilon - closure(p) & = & \{p\} \\ \epsilon - closure(q) & = & \{p,q\} \\ \epsilon - closure(r) & = & \{p,q,r\} \end{array}$$

Solution:

× 4.	a	b	C
$\rightarrow \{p\}$	$\{p\}$	$\{p,q\}$	$\{p,q,r\}$
$\{p,q\}$	$\{p,q\}$	$\{p,q,r\}$	$\{p,q,r\}$
$*\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$

- 9. (15 pts) Consider the DFA given in Figure 2. Suppose we want to find an equivalent minimum DFA.
 - (a) (10 pts) Use the table filling method discussed in class to find all distinguishable pairs of states. Show T[i,j] for $1 \le i < j \le 4$. Mark T[i,j] with an "X" if there exists a string w that can tell i and j apart as far as reaching a final state is concerned. Show your work in sufficient detail.
 - (b) (5 pts) Draw the minimum DFA.

Answer:

T	1	2	3	4
1		X	X	X
2			X	X
3				
4				

Figure 2: A DFA.

Answer:

