Theory of Computation
 Midterm Exam, Fall 2010

1. (15 pts) Which of the following languages are regular? If the language is regular, present a finite automaton or regular expression. If not, give a proof using the pumping lemma.
(a) The set of all 0-1 strings in which the total number of zeros to the right of each 1 is even.

Ans. Regular. $0^{*}\left(1^{*} 00\right)^{*} 1^{*}$
(b) The set of all 0-1 strings that contain more 1 s than 0 s .

Ans. Not regular. Use pumping lemma on string $0^{m} 1^{m+1}$, where m is the pumping constant.
(c) The set of all 0-1 strings of the form $0^{m} 1^{n}$ where m is odd and n is even.

Ans. Regular. $0(00)^{*}(11)^{*}$.
(d) The set of all $0-1$ strings in which the number of occurrences of " 000 " and of " 111 " are the same. (Note that the string " 1110000111 " contains two occurrences of each.)
Ans. Not regular. Use pumping lemma.
2. (10 pts) Use the pumping lemma to show in detail that the language $\left\{a^{n^{3}} \mid n \geq 1\right\}$ is not regular.

Ans. Use the pumping lemma, along with the fact that $n^{3}<n^{3}+k<(n+1)^{3}$, for every $k \leq n$.
3. (10 pts) Prove that $L=\left\{a^{m} b^{n} c^{k} \mid m, n, k \geq 0, m \neq n\right.$ or $m \neq k$ or $\left.n \neq k\right\}$ is not regular. (Hint: Use closure properties of regular languages along with the pumping lemma.)
Ans. Consider the language $\bar{L} \cap a^{*} b^{*} c^{*}$. The rest is easy.
4. (15 pts) Answer the following two questions:
(a) (6 pts) For regular languages $R \subseteq \Sigma^{*}$, prove that $T A I L(R)=\left\{y \mid \exists x \in \Sigma^{*}, x y \in R\right\}$ is regular language.

Ans. Use the following construction.

(b) (9 pts) Let r, s, r_{I}, s_{I} be regular expressions for $R, S, T A I L(R)$, and $T A I L(S)$ respectively. Using only these regular expressions and the operations + , concatenation, and ${ }^{*}$, give regular expressions for the following languages: (1) $T A I L(R \cup S) ;(2) T A I L(R S) ;(3) T A I L\left(R^{*}\right)$. No explanations are needed.
Ans. (1) $T A I L(R \cup S)=r_{I}+s_{I}$;
(2) $T A I L(R S)=s_{I}+r_{I} s$;
(3) $\operatorname{TAIL}\left(R^{*}\right)=r_{I} r^{*}$
5. (15 pts) Consider the following DFA.

(a) (9 pts) Find an equivalent DFA with the fewest number of states. Show your work in sufficient detail.

Solution: Below each new state is labeled by the set of states it is the result of merging.

	0	1
$\rightarrow *\{a, d\}$	$\{a, d\}$	$\{b, c, h\}$
$\{b, c, h\}$	$\{e, f\}$	$\{b, c, h\}$
$\{e, f\}$	$\{a, d\}$	$\{g\}$
$*\{g\}$	$\{b, c, h\}$	$\{b, c, h\}$

(b) (6 pts) For each pair of states $\{p, q\}$ in your minimized DFA, give a word w which distinguishes p and q.

Solution: The table supplied below contains all the strings necessary.

	$\{a, d\}$	$\{b, c, h\}$	$\{e, f\}$
$\{b, c, h\}$	ϵ		
$\{e, f\}$	ϵ	0	
$\{g\}$	0	ϵ	ϵ

6. (15 pts) For each of the following languages over $\Sigma=\{a, b\}$, write a context-free grammar for it.
(a) $L_{1}=\left\{a^{n} b^{m} \left\lvert\, \frac{m}{2} \leq n \leq m\right.\right\}$.

Ans. $S \rightarrow a S b|a S b b| \epsilon$
(b) $L_{2}=\left\{w w^{R}| | w \mid \geq 1\right\}$.

ANs. $S \rightarrow a S a|b S b| a a \mid b b$
(c) $L_{3}=\left\{a^{i+j} b^{j} \mid i \geq j \geq 0\right\}$.

ANs. $S \rightarrow a a S b|a S| \epsilon$
7. (20 pts) True or False? Score $=$ Max $\left\{0\right.$, Right $-\frac{1}{2}$ Wrong $\}$. No explanations needed.
(a) \bigcirc A PDA with two stacks can accept the language $\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$.
(b) \bigcirc For any language L, there are infinitely many different grammars G such that $L(G)=L$.
(c) $\times \quad$ If L is a CFL and R is a regular language, then $R-L$ is a CFL.
(d) \times If some word w in $L(G)$ has two different derivations, then G is ambiguous.
(e) \bigcirc If L is not context-free, then L^{R} is not context free either (where R is the reversal operator).
(f)$L=\left\{0^{n} 1^{m} 0^{m}: n+m=3 \bmod 5\right\}$ is context-free but not regular.
(g) \bigcirc If L is context-free and R and S are regular, then $\operatorname{MAJORITY}(L, R, S)=\{w \mid w$ is in least two of $R, L, S\}$ is also context-free.
Ans. Modify the PDA M_{L} that accepts L to simultaneously simulate R and S. Accept if at least two accept.
(h) $\times \quad\left\{a^{i} b^{j} c^{k} \mid 0<i<j<k\right\}$ is context-free.
(i) \times Let Σ be a finite alphabet, and let $h: \Sigma^{*} \rightarrow \Sigma^{*}$ be a homomorphism. For any language L, define $h^{*}(L)$ to be $h^{*}(L)=L \cup h(L) \cup h(h(L)) \cup \ldots$. If L is regular, then $h^{*}(L)$ is also regular.
Ans. $h^{*}(L)$ is not necessarily regular, even if L is regular. Let $L=\{0\}$ and define $h(0)=00$. Then $h^{*}(L)=$ $\left\{0^{2^{n}} \mid n \geq 0\right\}$.
(j) $\bigcirc L=\left\{0^{n} 1^{m} 0^{n} \mid n<12<m\right\}$ is regular.

