Theory of Computation

Spring 2023, Midterm Exam. (April 18, 2023)
(1) (10 pts) Design a DFA to accept the language $L=\left\{w \in\{a, b\}^{*} \mid w\right.$ starts and ends with the same symbol $\}$. Note that $\epsilon \notin L$, but $a, b \in L$. Draw the DFA.
Sol.

(2) (10 pts) Convert the following NFA to an equivalent DFA using the subset construction

Sol.

(3) (15 pts) Consider language $L=\left\{0^{n} 1^{k} \in\{0,1\}^{*} \mid n \geq 0 \wedge k \leq 5\right\}$. Answer the following questions. You do not need to justify your work.
(a) (10 pts) Give the equivalence classes induced by the \equiv_{L} relation. (Recall that $x \equiv_{L} y \Leftrightarrow\left(\forall z \in \Sigma^{*}, x z \in L \Leftrightarrow y z \in\right.$ L).)

Sol.

- L is the language represented by a regular expression:

$$
0^{*}(\epsilon+1+11+111+1111+11111)
$$

- $C_{1}=L\left(0^{*}\right), C_{2}=L\left(0^{*} 1\right), C_{3}=L\left(0^{*} 11\right), C_{4}=L\left(0^{*} 111\right), C_{5}=L\left(0^{*} 1111\right), C_{6}=L\left(0^{*} 11111\right), C_{7}=\left(\{0,1\}^{*}-\right.$ $\bigcup_{i=1}^{6} C_{i}$.

(b) (5 pts) Draw the minimum DFA that accepts L.

Sol.
(4) (10 pts)
(a) (5 pts) Draw an NFA for the language $L=\left\{(10)^{n} 1^{m} \mid n \geq 1\right.$ is odd and $m \geq 0$ is even $\}$.

Sol.

(b) (5 pts) Give a context-free grammar for the language, $L=\left\{0^{n} 1^{n} 2^{m} 3^{m} \mid n \geq 1 \wedge m \geq 1\right\}$.

Sol. $S \rightarrow A B ; A \rightarrow 0 A 1|01 ; B \rightarrow 2 B 3| 23$;
(5) (10 pts) Construct a minimum DFA for the following DFA using the Table Filling algorithm discussed in class. Be sure to show the table as part of your answer.

Sol.

	a	b	c	d	e	f	g
a	-	-	-	-	-	-	-
b	\times	-	-	-	-	-	-
c		\times	-	-	-	-	-
d	\times		\times	-	-	-	-
e		\times		\times	-	-	-
f	\times	\times	\times	\times	\times	-	-
g	\times	\times	\times	\times	\times		-

Hence the min DFA has the following transition function

	0	1
$\{a, c, e\}$	$\{b, d\}$	$\{f, g\}$
$\{b, d\}$	$\{f, g\}$	$\{a, c, e\}$
$\{f, g\}$	$\{f, g\}$	$\{f, g\}$

The initial state is $\{a, c, e\}$, which is also the final state.
(6) (10 pts) Give a right-linear CFG for the language $\left\{a^{n} \mid n \bmod 3=2\right\}$, i.e., the remainder of n divided by 3 is 2). A CFG is right-linear if its productions are of the forms either $A \rightarrow a \mid \epsilon$, or $A \rightarrow b B$.
Sol. $S_{0} \rightarrow a S_{1} ; S_{1} \rightarrow a S_{2} ; S_{2} \rightarrow a S_{0} \mid \epsilon$. The start symbol is S_{0}.
(7) (10 pts) Consider two possible ways to encode signals: level transitions vs. pulses. When using pulses, you normally send a 0 and when you want to send a signal, you send a 1 . For example. to send signals at times $3,6,7$, you send string $0010011000 \ldots$. The same signal can be sent using level transitions by the string $00111 \underline{01111 \ldots \text {, i.e., at times } 3,6 \text {, }}$ 7 you change one symbol to the other. Suppose we let T be the translation function from pulses to levels. For example, $T(011111)=(010101)$ and $T(111)=101$. Given a language $L \subseteq\{0,1\}^{*}$, we define $T(L)=\{T(w) \mid w \in L\}$.
Question: Prove that if L is regular, $T(L)$ is also regular. (Hint: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting L. Build a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime} . q_{0}^{\prime}, F^{\prime}\right)$ to accept $T(L)$. You may consider $Q^{\prime}=Q \times\{0,1\}$.)
Sol. Construct the following DFA M^{\prime}

- $Q^{\prime}=Q \times\{0,1\}$
- $q_{0}^{\prime}=\left(q_{0}, 0\right)$
- δ^{\prime} is as follows:
$-\delta^{\prime}((q, 0), 0)=(\delta(q, 0), 0)$
$-\delta^{\prime}((q, 0), 1)=(\delta(q, 1), 1)$
$-\delta^{\prime}((q, 1), 0)=(\delta(q, 1), 0)$
$-\delta^{\prime}((q, 1), 1)=(\delta(q, 0), 1)$
- $F^{\prime}=\{(q, x) \mid q \in F\}$

Note: In M^{\prime} state $(q, 1)$ (resp., $(q, 0)$) means the signal is at the "high" (resp., "low") level, and M 's state is q. If at a high (resp., low) level and M^{\prime} sees a 0 (resp., 1), which means a pulse is present. Then the next state of M is $\delta(q, 1)$, and M^{\prime} 's level becomes low (resp., high).
(8) (10 pts) Use the pumping lemma to show that $\left\{0^{2^{n}} \mid n \geq 0\right\}\left(\subseteq 0^{*}\right)$ is not regular.

Sol. Assume that the language were regular. Let p be the pumping constant. Consider $0^{2^{p}}=u v w$. For the string $u v^{2} w$, $\left|u v^{2} w\right|=2^{p}+|v|$. As $|v| \leq p<2^{p}, 2^{p}+|v|<2^{p+1}$. Hence, $u v^{2} w$ is not in the language.
(9) (15 pts) Consider the following context-free grammar: $S \rightarrow a S b|a S b b| a b \mid a b b$
(a) (5 pts) Is the grammar ambiguous? Justify your answer.

Sol. Yes. $a a b b b$ can be derived by two derivation trees:
i. $S \xrightarrow{\text { rule } 1} a S b \xrightarrow{\text { rule } 4} a a b b b$
ii. $S \xrightarrow{\text { rule } 2} a S b b \xrightarrow{\text { rule } 3} a a b b b$
(b) (10 pts) Convert the grammar to an equivalent one in Chomsky Normal Form. Show your work in sufficient detail. Sol.

$$
\begin{array}{lc}
S \rightarrow A P|A Q| A B \mid A C \\
P \rightarrow S B & Q \rightarrow S C \\
A \rightarrow a & B \rightarrow b \\
C \rightarrow B B &
\end{array}
$$

i. Introduce $A \rightarrow a ; B \rightarrow b$
ii. Replace $S \rightarrow a S b$ by $S \rightarrow A P ; P \rightarrow S B$
iii. Replace $S \rightarrow a S b b$ by $S \rightarrow A Q ; Q \rightarrow S C ; C \rightarrow B B$
iv. Replace $S \rightarrow a b$ by $S \rightarrow A B$
v. Replace $S \rightarrow a b b$ by $S \rightarrow A C$ (Note that $C \rightarrow B B$ has already been introduced)

