Theory of Computation Spring 2023, Midterm Exam. (April 18, 2023)

(1) (10 pts) Design a DFA to accept the language $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$. Note that $e \notin L$, but $a, b \in L$. Draw the DFA. Sol.

(2) (10 pts) Convert the following NFA to an equivalent DFA using the subset construction

Sol.

- (3) (15 pts) Consider language $L = \{0^n 1^k \in \{0,1\}^* \mid n \ge 0 \land k \le 5\}$. Answer the following questions. You do not need to justify your work.
 - (a) (10 pts) Give the equivalence classes induced by the \equiv_L relation. (Recall that $x \equiv_L y \Leftrightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$.) Sol.
 - L is the language represented by a regular expression:

$$0^{*}(\epsilon + 1 + 11 + 111 + 1111 + 11111)$$

• $C_1 = L(0^*), C_2 = L(0^*1), C_3 = L(0^*11), C_4 = L(0^*111), C_5 = L(0^*1111), C_6 = L(0^*1111), C_7 = (\{0,1\}^* - \bigcup_{i=1}^6 C_i)$

- (b) (5 pts) Draw the minimum DFA that accepts L. Sol.
- (4) (10 pts)
 - (a) (5 pts) Draw an NFA for the language $L = \{(10)^n 1^m \mid n \ge 1 \text{ is odd and } m \ge 0 \text{ is even}\}$. Sol.

- (b) (5 pts) Give a context-free grammar for the language, $L = \{0^n 1^n 2^m 3^m \mid n \ge 1 \land m \ge 1\}$. Sol. $S \to AB$; $A \to 0A1 \mid 01$; $B \to 2B3 \mid 23$;
- (5) (10 pts) Construct a minimum DFA for the following DFA using the Table Filling algorithm discussed in class. Be sure to show the table as part of your answer.

Sol.								
	a	b	c	d	e	f	g	
a	-	-	-	-	-	-	-	
b	×	-	-	-	-	-	-	
с		×	-	-	-	-	-	
d	×		×	-	-	-	-	
е		×		×	-	-	-	
f	×	×	×	×	×	-	-	
g	×	×	×	×	×		-	

		0	1
Hence the min DFA has the following transition function	$\{a, c, e\}$	$\{b,d\}$	$\{f,g\}$
	$\{h, d\}$	$\{f_{a}\}$	$\{a, c, e\}$

The initial state is $\{a, c, e\}$, which is also the final state.

 $\{f,g\}$

 $\{f, g\}$

 $\{f, g\}$

- (6) (10 pts) Give a right-linear CFG for the language {aⁿ | n mod 3 = 2}, i.e., the remainder of n divided by 3 is 2). A CFG is right-linear if its productions are of the forms either A → a | ε, or A → bB.
 Sol. S₀ → aS₁; S₁ → aS₂; S₂ → aS₀ | ε. The start symbol is S₀.
- (7) (10 pts) Consider two possible ways to encode signals: *level transitions* vs. *pulses*. When using pulses, you normally send a 0 and when you want to send a signal, you send a 1. For example, to send signals at times 3, 6, 7, you send string 00<u>10011000</u>.... The same signal can be sent using level transitions by the string 00<u>11101</u>111..., i.e., at times 3, 6, 7 you change one symbol to the other. Suppose we let T be the translation function from pulses to levels. For example, T(011111) = (010101) and T(111) = 101. Given a language $L \subseteq \{0, 1\}^*$, we define $T(L) = \{T(w) \mid w \in L\}$. Question: Prove that if L is regular, T(L) is also regular. (Hint: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting L. Build a DFA $M' = (Q', \Sigma, \delta'.q'_0, F')$ to accept T(L). You may consider $Q' = Q \times \{0, 1\}$.)

Sol. Construct the following DFA M'

- $Q' = Q \times \{0, 1\}$
- $q'_0 = (q_0, 0)$
- δ' is as follows:
 - $\begin{aligned} &- \delta'((q,0),0) = (\delta(q,0),0) \\ &- \delta'((q,0),1) = (\delta(q,1),1) \\ &- \delta'((q,1),0) = (\delta(q,1),0) \end{aligned}$
 - $\delta'((q,1),1) = (\delta(q,0),1)$

•
$$F' = \{(q, x) \mid q \in F\}$$

Note: In M' state (q, 1) (resp., (q, 0)) means the signal is at the "high" (resp., "low") level, and M's state is q. If at a high (resp., low) level and M' sees a 0 (resp., 1), which means a pulse is present. Then the next state of M is $\delta(q, 1)$, and M''s level becomes low (resp., high).

- (8) (10 pts) Use the pumping lemma to show that $\{0^{2^n} | n \ge 0\} (\subseteq 0^*)$ is not regular. Sol. Assume that the language were regular. Let p be the pumping constant. Consider $0^{2^p} = uvw$. For the string uv^2w , $|uv^2w| = 2^p + |v|$. As $|v| \le p < 2^p$, $2^p + |v| < 2^{p+1}$. Hence, uv^2w is not in the language.
- (9) (15 pts) Consider the following context-free grammar: $S \rightarrow aSb \mid aSbb \mid ab \mid abb$

(a) (5 pts) Is the grammar ambiguous? Justify your answer. **Sol.** Yes. *aabbb* can be derived by two derivation trees:

i. $S \xrightarrow{rule1} aSb \xrightarrow{rule4} aabbb$ ii. $S \xrightarrow{rule2} aSbb \xrightarrow{rule3} aabbb$

(b) (10 pts) Convert the grammar to an equivalent one in Chomsky Normal Form. Show your work in sufficient detail. Sol.

$$\begin{array}{ll} S \rightarrow AP \mid AQ \mid AB \mid AC \\ P \rightarrow SB & Q \rightarrow SC \\ A \rightarrow a & B \rightarrow b \\ C \rightarrow BB \end{array}$$

- i. Introduce $A \to a; B \to b$
- ii. Replace $S \to aSb$ by $S \to AP$; $P \to SB$
- iii. Replace $S \to aSbb$ by $S \to AQ$; $Q \to SC$; $C \to BB$
- iv. Replace $S \to ab$ by $S \to AB$
- v. Replace $S \to abb$ by $S \to AC$ (Note that $C \to BB$ has already been introduced)