
Theory of Computation
Spring 2021, Final Exam (Solutions)

Due: June 22, 2021

1. (10 pts) Decide if the following language is decidable or not with a formal proof.
L = {〈M〉 | Turing machineM accepts some w ∈ Σ∗ with more than one million (i.e., 106) steps.}
Sol.: Undecidable. Assume there exists a decider R for L. Construct the following S:

S = On 〈M〉, a TM
1. Construct 〈M ′〉 from 〈M〉:
M ′ = On x, an input string

a. Run 106 useless steps;
b. Simulate M on x and return the result of the simulation.

2. If R(〈M ′〉) accepts, then reject; otherwise accept.

The above S is a decider for ETM , solving the emptiness problem of TMs, which is known to
be undecidable.

2. (10 pts) Show that if P = PSPACE, then every language A ∈ P , except A = ∅ and A = Σ∗, is
PSPACE-complete under the polynomial-time many-one reduction.
Sol. Let B be any language in PSPACE and let A ∈ P (= PSPACE) be another language not
equal to ∅ or Σ∗. Then there exist strings x ∈ A and y 6∈ A. To reduce an instance w of B
to that of A, we just check in polynomial time if w ∈ B. If yes, we output x; output y when
w 6∈ B. That is, f(w) = x if w ∈ B, and f(w) = y if w 6∈ B. So w ∈ B iff f(w) ∈ A. Therefore
B ≤p

m A holds. Hence A is PSPACE-hard.

3. (10 pts) True or False? Justify your answers.

(a) If A,B ∈ NP , then (A ∪B) ∈ NP and (A ∩B) ∈ NP .
Sol.: True. Let MA and MB be polynomial-time NTM accepting A and B, resp., construct
M whose initial state has ε transitions going to the initial states of MA and MB . M accepts
A ∪B. For A ∩B, construct the product of MA and MB .

(b) There exist NP -complete languages A and B such that A ∩B is not NP -complete.
Sol.: True. Suppose A and B have their alphabet disjoint. The A ∩ B = ∅, which is
clearly not NP-hard.

4. (10 pts) Consider the following two languages over the alphabet Σ = {0, 1}.

• Lu = {〈M,w〉 : TM M accepts input w}
• L15 = {〈M ′〉 : |L(M ′)| = 15}, i.e., the set of TMs whose languages have exactly 15 strings.

Prove that L15 is undecidable via a reduction from Lu. Do not use the Rice’s theorem.
Sol.

1

5. (10 pts) Let 〈M1〉, 〈M2〉, 〈M3〉, ... be an enumeration of all Turing machines over alphabet Σ.
Let w1, w2, w3, ... be an enumeration of all words over Σ (i.e., w1, w2, w3... ∈ Σ∗). We consider
the following language L = {w ∈ Σ∗ | w = wi, for some i, and Mi does not accept wi}. Prove
that L is not Turing-recognizable.
Sol. Proof by contradiction. Assume L is TM-recognizable. Then there is some TM M that
recognizes L. Let i be such that M = Mi. Consider the word wi. If wi is accepted by Mi, then
by definition of L, wi ∈ Σ∗\L; hence Mi cannot be accepting L. If wi is not accepted by Mi,
then by definition of L, wi ∈ L; hence again Mi must accept wi. But one of these must be true;
hence M cannot be a recognizer for L. Contradiction proves that there is no TM that recognizes
L.

6. (10 pts) A finite automaton with outputs (FAO) M = (Q,Σ,Γ, δ, q0, F) is a device which is
just like a finite automaton except that at each step, when M reads an input symbol in Σ, it
advances its input head, enters a new state, and outputs a string in Γ∗. That is, M ’s transition
is of the form (q′, w) ∈ δ(q, a), where q, q′ are states, a is an input symbol, and w ∈ Γ∗ is an
output string. Suppose (q1, 000) ∈ δ(q0, a) and (q2, 1111) ∈ δ(q1, b), where q0 and q2 are the
initial and final states, respectively. Then M outputs 0001111 upon accepting ab, and we say
the pair (ab, 0001111) ∈ R(M). Formally, R(M) = {(x, y) | x ∈ Σ∗, y ∈ Γ∗,M outputs y upon
accepting x}.

• Given FAOs M1 and M2, is it decidable whether R(M1)∩R(M2) = ∅? Justify your answer.

Sol. Given an instance of PCP {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi, yi ∈ Σ∗, we construct
M1 and M2 over input alphabet {σi | 1 ≤ i ≤ n}, in the following way:

(a) M1: read σi, write xi

(b) M2: read σi, write yi

It is not hard to see that the PCP has a match iff R(M1) ∩R(M2) 6= ∅.

7. (10 pts) Give a convincing argument to show that BPP ⊆ PSPACE, where BPP is the class
of Bounded-Error Polynomial Probabilistic Time.
Sol. BPP is contained within PSPACE, because a deterministic poly-space machine can simulate
a probabilistic poly-time machine on all possible random sequences, calculate the probability
that the probabilistic machine will accept the input, and give its output based on whether this
is ≥ 2/3 or ≤ 1/3.

8. (10 pts) Give a convincing argument to show that if NP = co-NP , then NPNP = NP . Recall
that NPNP is the class of languages that can be accepted by nondeterministic polynomial-time
oracle Turing machines using languages in NP as oracles. (Hint: can you replace a query to
the oracle by simulating the computation of a nondeterministic Turing machine operating in
polynomial time?)
Sol. Consider a language in NPNP accepted by a nondeterministic polynomial-time OTM M
using oracle set O (in NP). As NP = co−NP , O (resp., Σ∗\O, i.e., the complement of O) can
be accepted by a polynomial-time NTM N (resp., N ′). Whenever M encounters a query state
with w on its query tape, instead of inquiring oracle O, M triggers N and N ′ using w as their
inputs. If N accepts, enters ”yes” state of M ; if N ′ accepts, enters ”no” state of M . By doing
so, there is no need to ask oracle O, as the inquiry can be simulated faithfully as shown in the
following figure.

2

query state

“yes” state

“no” state

w in
oracle X

w not in
oracle X

query state

“yes” state

“no” state

Simulate

N on w

Simulate

N’ on w

9. (10 pts) Prove that the following language is NP-complete.
L = {(〈M〉, x, 1t) : ∃y ∈ {0, 1}∗, |y| ≤ t,M(x, y) = 1,M halts after ≤ t steps}.
To this end, you must show L ∈ NP and L is NP-hard. In the definition of L, M is a de-
terministic Turing machine (i.e., a ”verifier”) treating y as a ”certificate”. You may think of
M(x, y) = 1 as M accepts given x, y.
Sol.

• (∈ NP) Consider the following NTM N , which on input (〈M〉, x, 1t), nondeterministically
chooses a y ∈ {0, 1}∗, |y| ≤ t, simulates M on (x, y) for at most t steps. If M halts, accepts;
otherwise, reject. Then clearly L(N) = L.

• (NP−hard) Given an arbitrary language A ∈ NP which is accepted by an NTM M in p(n)
time, for some polynomial p(n). Given an w ∈ Σ∗, we define the following mapping f such
that f(w) = (〈M〉, w, 1p(|w|)). Clearly, w ∈ A iff (〈M〉, w, 1p(|w|)) ∈ L. Hence, A ≤p

m L.

10. (10 pts) Suppose a language L ∈ NP is proved to be EXPTIME-complete, answer the following
two questions. Here EXPTIME stands for deterministic exponential time.

(a) Is it necessary that L is NP complete? Why?
Sol.: Yes. If an NP-complete problem is EXP-complete, then NP = PSPACE = EXP
and every EXP-complete problem is NP-complete as well (and PSPACE which was between
the two classes get sandwiched).

(b) Can we conclude that P = PSPACE or P 6= PSPACE? Why?
Sol.: P 6= PSPACE. Since P 6= EXPTIME by time hierarchy theorem, and the
hypothesis implies NP = PSPACE = EXPTIME, it follows that P 6= PSPACE.

3

