Due:

Theory of Computation
Spring 2021, Final Exam (Solutions)

June 22, 2021

. (10 pts) Decide if the following language is decidable or not with a formal proof.

L = {{M) | Turing machine M accepts some w € X* with more than one million (i.e., 10°) steps.}
Sol.: Undecidable. Assume there exists a decider R for L. Construct the following S:

S =O0On (M), a TM
1. Construct (M’) from (M):
M’ = On z, an input string
a. Run 10° useless steps;
b. Simulate M on x and return the result of the simulation.
2. If R({M'")) accepts, then reject; otherwise accept.

The above S is a decider for Er)s, solving the emptiness problem of TMs, which is known to
be undecidable.

(10 pts) Show that if P = PSPACE, then every language A € P, except A =0 and A = 3* is
PSPAC E-complete under the polynomial-time many-one reduction.

Sol. Let B be any language in PSPACE and let A € P(= PSPACE) be another language not
equal to () or ¥*. Then there exist strings x € A and y ¢ A. To reduce an instance w of B
to that of A, we just check in polynomial time if w € B. If yes, we output z; output y when
w ¢ B. That is, f(w) =z if w € B, and f(w) =y if w ¢ B. Sow € B iff f(w) € A. Therefore
B <P A holds. Hence A is PSPACE-hard.

(10 pts) True or False? Justify your answers.

(a) f A, Be€ NP, then (AUB) € NP and (ANB) € NP.
Sol.: True. Let M4 and Mg be polynomial-time NTM accepting A and B, resp., construct
M whose initial state has e transitions going to the initial states of M 4 and Mpg. M accepts
AU B. For AN B, construct the product of M4 and Mp.

(b) There exist N P-complete languages A and B such that AN B is not N P-complete.
Sol.: True. Suppose A and B have their alphabet disjoint. The AN B = (), which is
clearly not NP-hard.

(10 pts) Consider the following two languages over the alphabet ¥ = {0, 1}.
o L, ={(M,w): TM M accepts input w}
o L5 ={(M'):|L(M")| =15}, i.e., the set of TMs whose languages have exactly 15 strings.

Prove that Lq5 is undecidable via a reduction from L,. Do not use the Rice’s theorem.
Sol.

Given a Turing machine M and input w, construct a Turing machine M which behaves
as follows on being given input .
I. M simulates the behavior of M on input w;

2. if M halts on w and accepts, then M examines its own input @, halting in a final

state if [w]| < 3 and halting in a non-final state otherwise;

3.4f M halts on w and rejects, then M rejects its own input w.



5. (10 pts) Let (M), (Ms), (Ms),... be an enumeration of all Turing machines over alphabet X.
Let wy,wsy, ws, ... be an enumeration of all words over ¥ (i.e., wy, wq, ws... € ¥*). We consider
the following language L = {w € ¥* | w = w;, for some i, and M; does not accept w;}. Prove
that L is not Turing-recognizable.

Sol. Proof by contradiction. Assume L is TM-recognizable. Then there is some TM M that
recognizes L. Let i be such that M = M,;. Consider the word w;. If w; is accepted by M;, then
by definition of L, w; € ¥*\L; hence M; cannot be accepting L. If w; is not accepted by M;,
then by definition of L, w; € L; hence again M; must accept w;. But one of these must be true;

hence M cannot be a recognizer for L. Contradiction proves that there is no TM that recognizes
L.

6. (10 pts) A finite automaton with outputs (FAO) M = (Q,%,T,0,qo, F) is a device which is
just like a finite automaton except that at each step, when M reads an input symbol in 3, it
advances its input head, enters a new state, and outputs a string in I'*. That is, M’s transition
is of the form (¢’,w) € §(q,a), where ¢, ¢’ are states, a is an input symbol, and w € I'* is an
output string. Suppose (¢1,000) € §(qo,a) and (g2,1111) € d(q1,b), where ¢o and g2 are the
initial and final states, respectively. Then M outputs 0001111 upon accepting ab, and we say
the pair (ab,0001111) € R(M). Formally, R(M) = {(z,y) | x € ¥*,y € T*, M outputs y upon
accepting x}.

e Given FAOs M7 and Mo, is it decidable whether R(M;)NR(Ms) = 0?7 Justify your answer.

Sol. Given an instance of PCP {(z1,y1), (%2,y2), .- (Tn,Yn)}, where z;,y; € ¥*, we construct
M, and Ms over input alphabet {o; | 1 <4 < n}, in the following way:

(a) My: read oy, write x;

(b) Ms: read o;, write y;
It is not hard to see that the PCP has a match iff R(M;) N R(Mz) # 0.

7. (10 pts) Give a convincing argument to show that BPP C PSPACE, where BPP is the class
of Bounded-Error Polynomial Probabilistic Time.
Sol. BPP is contained within PSPACE, because a deterministic poly-space machine can simulate
a probabilistic poly-time machine on all possible random sequences, calculate the probability
that the probabilistic machine will accept the input, and give its output based on whether this
is >2/3 or <1/3.

8. (10 pts) Give a convincing argument to show that if NP = co-N P, then NPN? = NP. Recall

that NPNP is the class of languages that can be accepted by nondeterministic polynomial-time
oracle Turing machines using languages in NP as oracles. (Hint: can you replace a query to
the oracle by simulating the computation of a nondeterministic Turing machine operating in
polynomial time?)
Sol. Consider a language in NPV accepted by a nondeterministic polynomial-time OTM M
using oracle set O (in NP). As NP =co— NP, O (resp., ¥*\0, i.e., the complement of O) can
be accepted by a polynomial-time NTM N (resp., N'). Whenever M encounters a query state
with w on its query tape, instead of inquiring oracle O, M triggers N and N’ using w as their
inputs. If N accepts, enters "yes” state of M; if N’ accepts, enters "no” state of M. By doing
so, there is no need to ask oracle O, as the inquiry can be simulated faithfully as shown in the
following figure.



9.

10.

w in “yes” state : o
Simulate O—O Yes state

oracle X
query state QW N onw

—

w not in Simulate 3, “no” state
oracle X “no” state N” on w

(10 pts) Prove that the following language is NP-complete.

L={({(M),z,1%) : 3y € {0,1}*,|y| < t, M(z,y) = 1, M halts after < ¢ steps}.

To this end, you must show L € NP and L is NP-hard. In the definition of L, M is a de-
terministic Turing machine (i.e., a ”verifier”) treating y as a ”certificate”. You may think of
M(x,y) =1 as M accepts given z,y.

Sol.

e (€ NP) Consider the following NTM N, which on input ({(M),z,1!), nondeterministically
chooses a y € {0,1}*, |y| < t, simulates M on (z,y) for at most ¢ steps. If M halts, accepts;
otherwise, reject. Then clearly L(N) = L.

e (NP—hard) Given an arbitrary language A € N P which is accepted by an NTM M in p(n)
time, for some polynomial p(n). Given an w € ¥*, we define the following mapping f such
that f(w) = ((M),w, 17U*D). Clearly, w € A iff ((M),w,1P(*D) € L. Hence, A <P, L.

(10 pts) Suppose a language L € N P is proved to be EX PTIM E-complete, answer the following
two questions. Here EX PTIM FE stands for deterministic exponential time.

(a) Is it necessary that L is NP complete? Why?
Sol.: Yes. If an NP-complete problem is EXP-complete, then NP = PSPACE = EXP
and every EXP-complete problem is NP-complete as well (and PSPACE which was between
the two classes get sandwiched).

(b) Can we conclude that P = PSPACE or P # PSPACE? Why?
Sol.: P # PSPACE. Since P # EXPTIME by time hierarchy theorem, and the
hypothesis implies NP = PSPACE = EXPTIME, it follows that P # PSPACE.



