Due: June 22, 2021

- 1. (10 pts) Decide if the following language is decidable or not with a formal proof. $L = \{ \langle M \rangle \mid$ Turing machine M accepts some $w \in \Sigma^*$ with more than one million $(i.e., 10^6)$ steps.} **Sol.:** Undecidable. Assume there exists a decider R for L. Construct the following S :
	- $S = \text{On } \langle M \rangle$, a TM
		- 1. Construct $\langle M' \rangle$ from $\langle M \rangle$:
			- $M' = \text{On } x$, an input string
				- a. Run 10^6 useless steps;
			- b. Simulate M on x and return the result of the simulation.
		- 2. If $R(\langle M' \rangle)$ accepts, then reject; otherwise accept.

The above S is a decider for E_{TM} , solving the emptiness problem of TMs, which is known to be undecidable.

- 2. (10 pts) Show that if $P = PSPACE$, then every language $A \in P$, except $A = \emptyset$ and $A = \Sigma^*$, is PSPACE-complete under the polynomial-time many-one reduction. **Sol.** Let B be any language in PSPACE and let $A \in P(=PSPACE)$ be another language not equal to \emptyset or Σ^* . Then there exist strings $x \in A$ and $y \notin A$. To reduce an instance w of B to that of A, we just check in polynomial time if $w \in B$. If yes, we output x; output y when $w \notin B$. That is, $f(w) = x$ if $w \in B$, and $f(w) = y$ if $w \notin B$. So $w \in B$ iff $f(w) \in A$. Therefore $B \leq^p_m A$ holds. Hence A is PSPACE-hard.
- 3. (10 pts) True or False? Justify your answers.
	- (a) If $A, B \in NP$, then $(A \cup B) \in NP$ and $(A \cap B) \in NP$. **Sol.:** True. Let M_A and M_B be polynomial-time NTM accepting A and B, resp., construct M whose initial state has ϵ transitions going to the initial states of M_A and M_B . M accepts $A \cup B$. For $A \cap B$, construct the product of M_A and M_B .
	- (b) There exist NP-complete languages A and B such that $A \cap B$ is not NP-complete. **Sol.:** True. Suppose A and B have their alphabet disjoint. The $A \cap B = \emptyset$, which is clearly not NP-hard.
- 4. (10 pts) Consider the following two languages over the alphabet $\Sigma = \{0, 1\}$.
	- $L_u = \{ \langle M, w \rangle : \text{ TM M accepts input } w \}$
	- $L_{15} = \{ \langle M' \rangle : |L(M')| = 15 \}, \text{ i.e., the set of TMs whose languages have exactly 15 strings.}$

Prove that L_{15} is undecidable via a reduction from L_u . Do not use the Rice's theorem. Sol.

Given a Turing machine M and input w, construct a Turing machine \tilde{M} which behaves as follows on being given input \hat{w} .

- 1. \widehat{M} simulates the behavior of M on input w;
- 2. if M halts on w and accepts, then \widehat{M} examines its own input \widehat{w} , halting in a final state if $|\hat{w}| \leq 3$ and halting in a non-final state otherwise;
- 3. if M halts on w and rejects, then \widehat{M} rejects its own input \widehat{w} .

5. (10 pts) Let $\langle M_1 \rangle$, $\langle M_2 \rangle$, $\langle M_3 \rangle$, ... be an enumeration of all Turing machines over alphabet Σ. Let $w_1, w_2, w_3, ...$ be an enumeration of all words over Σ (i.e., $w_1, w_2, w_3... \in \Sigma^*$). We consider the following language $L = \{w \in \Sigma^* \mid w = w_i, \text{ for some } i, \text{ and } M_i \text{ does not accept } w_i\}.$ Prove that L is not Turing-recognizable. Sol. Proof by contradiction. Assume L is TM-recognizable. Then there is some TM M that

recognizes L. Let i be such that $M = M_i$. Consider the word w_i . If w_i is accepted by M_i , then by definition of L, $w_i \in \Sigma^* \backslash L$; hence M_i cannot be accepting L. If w_i is not accepted by M_i , then by definition of L, $w_i \in L$; hence again M_i must accept w_i . But one of these must be true; hence M cannot be a recognizer for L. Contradiction proves that there is no TM that recognizes L.

- 6. (10 pts) A finite automaton with outputs (FAO) $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a device which is just like a finite automaton except that at each step, when M reads an input symbol in Σ, it advances its input head, enters a new state, and outputs a string in Γ^* . That is, M's transition is of the form $(q', w) \in \delta(q, a)$, where q, q' are states, a is an input symbol, and $w \in \Gamma^*$ is an output string. Suppose $(q_1, 000) \in \delta(q_0, a)$ and $(q_2, 1111) \in \delta(q_1, b)$, where q_0 and q_2 are the initial and final states, respectively. Then M outputs 0001111 upon accepting ab , and we say the pair $(ab, 0001111) \in R(M)$. Formally, $R(M) = \{(x, y) \mid x \in \Sigma^*, y \in \Gamma^*, M \text{ outputs } y \text{ upon }$ $accepting x$.
	- Given FAOs M_1 and M_2 , is it decidable whether $R(M_1) \cap R(M_2) = \emptyset$? Justify your answer.

Sol. Given an instance of PCP $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}\$, where $x_i, y_i \in \Sigma^*$, we construct M_1 and M_2 over input alphabet $\{\sigma_i \mid 1 \leq i \leq n\}$, in the following way:

- (a) M_1 : read σ_i , write x_i
- (b) M_2 : read σ_i , write y_i

It is not hard to see that the PCP has a match iff $R(M_1) \cap R(M_2) \neq \emptyset$.

7. (10 pts) Give a convincing argument to show that $BPP \subseteq PSPACE$, where BPP is the class of Bounded-Error Polynomial Probabilistic Time. Sol. BPP is contained within PSPACE, because a deterministic poly-space machine can simulate

a probabilistic poly-time machine on all possible random sequences, calculate the probability that the probabilistic machine will accept the input, and give its output based on whether this is $\geq 2/3$ or $\leq 1/3$.

8. (10 pts) Give a convincing argument to show that if $NP = co-NP$, then $NP^{NP} = NP$. Recall that NP^{NP} is the class of languages that can be accepted by nondeterministic polynomial-time oracle Turing machines using languages in NP as oracles. (Hint: can you replace a query to the oracle by simulating the computation of a nondeterministic Turing machine operating in polynomial time?)

Sol. Consider a language in NP^{NP} accepted by a nondeterministic polynomial-time OTM M using oracle set O (in NP). As $NP = co-NP$, O (resp., $\Sigma^* \backslash O$, i.e., the complement of O) can be accepted by a polynomial-time NTM N (resp., N'). Whenever M encounters a query state with w on its query tape, instead of inquiring oracle O, M triggers N and N' using w as their inputs. If N accepts, enters "yes" state of M ; if N' accepts, enters "no" state of M . By doing so, there is no need to ask oracle O , as the inquiry can be simulated faithfully as shown in the following figure.

9. (10 pts) Prove that the following language is NP-complete. $L = \{((M), x, 1^t) : \exists y \in \{0, 1\}^*, |y| \le t, M(x, y) = 1, M \text{ halts after } \le t \text{ steps}\}.$ To this end, you must show $L \in NP$ and L is NP-hard. In the definition of L, M is a deterministic Turing machine (i.e., a "verifier") treating y as a "certificate". You may think of $M(x, y) = 1$ as M accepts given x, y. Sol.

- ($\in NP$) Consider the following NTM N, which on input $(\langle M \rangle, x, 1^t)$, nondeterministically chooses a $y \in \{0,1\}^*$, $|y| \le t$, simulates M on (x, y) for at most t steps. If M halts, accepts; otherwise, reject. Then clearly $L(N) = L$.
- (NP –hard) Given an arbitrary language $A \in NP$ which is accepted by an NTM M in $p(n)$ time, for some polynomial $p(n)$. Given an $w \in \Sigma^*$, we define the following mapping f such that $f(w) = (\langle M \rangle, w, 1^{p(|w|)})$. Clearly, $w \in A$ iff $(\langle M \rangle, w, 1^{p(|w|)}) \in L$. Hence, $A \leq_m^p L$.
- 10. (10 pts) Suppose a language $L \in NP$ is proved to be $EXPTIME$ -complete, answer the following two questions. Here $EXPTIME$ stands for deterministic exponential time.
	- (a) Is it necessary that L is NP complete? Why? **Sol.: Yes.** If an NP-complete problem is EXP-complete, then $NP = PSPACE = EXP$ and every EXP-complete problem is NP-complete as well (and PSPACE which was between the two classes get sandwiched).
	- (b) Can we conclude that $P = PSPACE$ or $P \neq PSPACE$? Why? **Sol.:** $P \neq PSPACE$. Since $P \neq EXPTIME$ by time hierarchy theorem, and the hypothesis implies $NP = PSPACE = EXPTIME$, it follows that $P \neq PSPACE$.