
Theory of Computation
Spring 2020, Final Exam (Solutions)

June 23, 2020

1. (20 pts) True or False? No penalty for wrong answers. (Note that ≤P stands for polynomial-time many-one
reduction and ≤m stands for many-one reduction.)

(1) The language {aibjci | i ≤ j ≤ 2i} is not context-free.
Sol. O

(2) The class of non-context-free languages is closed under complementation.
Sol. ×
{ww | w ∈ {0, 1}∗} is non-context-free, but its complement is CFL

(3) If A is Turing-recognizable and A ≤m A, then A is Turing-decidable.
Sol. O

(4) If L1 and L2 are NP-complete, then L1 ≤P L2 and L2 ≤P L1.
Sol. O
It follows directly from the definition of NP-completeness.

(5) If L1 and L2 are NP-complete, then L1 ≤m L2 and L2 ≤m L1.
Sol. O
Surely, if L1 ≤P L2 then also L1 ≤m L2.

(6) If L1 ≤P L2, L2 ≤P L1, and L1, L2 ∈ NP , then L1 and L2 are both NP-complete.
Sol. ×
Let L1 = L2 = ∅. Surely ∅ ≤P ∅ by a reduction that is e.g. the identity function but ∅ cannot be
NP-complete (because none of the languages in NP, except for ∅ itself, are reducible to ∅).

(7) If L1 is NP-complete and L1 ≤P L2, then L2 is NP-complete.
Sol. ×
We only know that L2 is NP-hard.

(8) NP is the class of languages that cannot be decided in polynomial time using deterministic Turing
machines.
Sol. ×

(9) co-NP ⊆ EXPTIME.
Sol. O

(10) If L ∈ P, then L∗ ∈ P as well.
Sol. O

(11) L = {〈M,w〉 |M accepts w in less than 100 steps} is decidable.
Sol. O

(12) If A is recursive and A ≤P B, then B must be recursive.
Sol. ×

(13) The problem of determining if a context-free grammar generates the empty language is undecidable.
Sol. ×

(14) The class of Turing-recognizable languages is closed under intersection.
Sol. O

(15) The set of Turing-recognizable languages is a countably infinite set (i.e., there exists a one-to-one corre-
spondence between the set and the set of natural numbers).
Sol. O

(16) Suppose L1 is context-free and L2 is regular, then the problem of deciding whether L1 ⊆ L2 is decidable.
Sol. O

(17) Primitive recursive functions are those that can be computed by Turing machines that always halt.
Sol. × Ackermann function is a total recursive function which is not primitive recursive.

(18) It is possible for some undecidable language to be NP-Complete.
Sol. ×
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(19) The language L = {〈M,w〉 | TM M moves right exactly twice while operating on w} is decidable.
Sol. O
If it can move right only twice, then M can read only the first two input characters.

(20) NSPACE(log2 n) ⊆ P .
Sol. O

2. (10 pts) Let Σ = {a, b}, and consider the language A = {w ∈ Σ∗ | w = wR, |w| is even}, where wR denotes
the reverse of w and |w| denotes the length of w. For instance, aabbaa ∈ A.

(a) Give a CFG G for A. Be sure to specify G as a 4-tuple G = (V,Σ, R, S).
Sol. S → aSa | bSb | ε

(b) Give a PDA for A. You only need to give the drawing.
Sol.

 

a, ε a 

b, εb 
a, a ε 

b, b ε 

ε, ε S ε, Sε ε,εε 

3. (10 pts) Consider the following context-free grammar G in Chomsky normal form:

S → AA | ε

A→ BB | AB | a

B → BA | b

In CYK parsing algorithm, given a w = a1 . . . an, we define tij = {A | A ∗⇒ ai . . . aj}. Fill in the blanks in
the following table in the process of parsing w = abba.

tij 1 2 3 4
1
2 -
3 - -
4 - - -

a b b a

Sol.

tij 1 2 3 4
1 A A S, A S, A
2 - B A S, A
3 - - B B
4 - - - A
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4. (10 pts) Show that if P=NP then every language B ∈ P , except for ∅ and Σ∗, is NP-complete. (Hint: Show
that for every language A ∈ P=NP, A ≤P B.)
Sol. Assume a polynomial-time TM MA decides A.

5. (12 pts) Consider the following classes of languages as (1)-(7).
(1) Finite, (2) Regular, (3) Context-free, (4) Context-sensitive, (5) Recursive, (6) Recursively
enumerable, (7) All possible languages.
For each of the following languages, specify the lowest-numbered class to which it surely belongs. For example,
for a context-free language L that is not regular, the right answer is (3), although L clearly belongs to all
classes of languages larger than (3). Similarly, suppose L is recursively enumerable, the right answer is (6),
although L could possibly be recursive but the available information does not guarantee that.

(a) .............. The complement of an undecidable language.
Sol. 7 Take an r.e. but not recursive language, whose complement is not r.e.

(b) .............. The complement of a language in NP.
Sol. 5; NP ⊆ PSPACE. PSPACE is recursive.

(c) .............. The intersection of two context-free languages.
Sol. 4 Context-free languages are also context-sensitive. Context-sensitive languages are closed under
intersection.

(d) .............. The complement of a context-sensitive language.
Sol. 4 Context-sensitive language are closed under complementation (due to Immerman theorem).

(e) .............. The intersection of a recursive language and a language that is not recursively enumerable.
Sol. 7 Let the recursive language be Σ∗.

(f) .............. The intersection of a recursive language and a recursively enumerable language.
Sol. 6 r.e. ∩ recursive is r.e.

6. (10 pts) Consider ETM = {〈M〉 |M is a TM with L(M) = ∅}. It is known that ETM is not recursive. Answer
the following question:

(a) Is ETM co-Turing-recognizable? Why?
Sol. Yes. Design a TM M ′ that nondeterministically guesses an input x and simulates M on x, accepts
if M accepts x. Clearly, M ′ accepts ETM ; hence, ETM co-Turing-recognizable.

(b) Does ETM ≤m ATM hold? Why? Recall that ATM = {〈M,w〉 |M is a TM that accepts w}.
Sol. No. If ETM ≤m ATM , then ETM is Turing-recognizable. This, together with (a) above, implies
Tring-decidability of ETM , which is known to be false.
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7. (10 pts) Define a two-headed finite automaton (2DFA) to be a deterministic finite automaton that has two
read-only, bidirectional (i.e., two-way) heads that start at the left-hand end of the input tape and can be
independently controlled to move in either direction. The tape of a 2DFA is finite and is just large enough
to contain the input plus two additional blank tape cells, one on the left-hand end and one on the right-hand
end, that serve as delimiters (i.e., end-markers). A 2DFA accepts its input by entering a special accept state.

(a) Explain in a convincing way how a 2DFA can recognize the language {anbncn | n ≥ 0}.
Sol. Let the two heads be h1 and h2. Assume that initially both are scanning the first input symbol.

i. Move h2 to the beginning of b, while keeping h1 intact;

ii. Move both h1 and h2 to the right if h1 reads an a and h2 reads a b; repeat until h1 sees a b and h2
sees a c simultaneously, then go to the next step. (This step is to compare the number of as with
the number of bs.)

iii. Move both h1 and h2 to the right if h1 reads an b and h2 reads a c; repeat until h1 sees a c and h2
sees the right endmarker simultaneously, then accepts. (This step is to compare the number of bs
with the number of cs.)

(b) Let E2DFA = {〈M〉 | M is a 2DFA and L(M) = ∅}. Explain in a convincing way how to use the
undecidability of PCP to show that E2DFA is not decidable. (Hint: suppose P = {(x1, y1), ..., (xn, yn)}
is an instance of a PCP. Can you design a 2DFA M such that L(M) 6= ∅ iff P has a match?)
Sol. Suppose the alphabet of P = {(x0, y0), ..., (xn, yn)} is Σ = {a, b}. Design a E2DFA with alphabet
{0, 1,#, a, b} which operate in the following way:

i. Check if the input w is of the form ({0, 1}+ ·#)∗{a, b}∗; reject if otherwise. Reset the two heads to
the leftmost position.

ii. For an input, e.g., 011#101#0#abbaaabab, the E2DFA accepts if abbaaabab = x3x5x0=y3y5y0, which
can be done by

A. using the first head h1 to read 011, find x3 (kept in the finite state control of the 2DFA), compare
x3 with the prefix of abbaaabab scanned by the second head h2. If successful, repeat the above
by letting h1 read the second index, i.e., 101 in our case, and h2 compare x5 with the remainder
of the input, and so on ... until the input is completely read. Then reset both heads to the
leftmost position, and go to the next step.

B. As in the previous step, use h1 to find the index i and h2 to check whether yi matches the
corresponding part in abbaaabab.

Clearly, the 2DFA accepts iff the PCP has a match.
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8. (10 pts) True or False? Justify your answers.

(a) Suppose L is TM-recognizable but not TM-decidable. Then any TM that recognizes L must fail to halt
on an infinite number of strings.
Sol. True. If not we can imagine a decider for L: first compare input to the elements of that finite set
and if it is there reject. Otherwise simulate ”recognizer” of L on the input and return what it returns.
Note that it just shows that such a decider exists, it is not a recipe of how to construct it since we don’t
have a representation of that finite set.

(b) Suppose A and B are recursively enumerable languages such that A ∪B and A ∩B are both decidable
(i.e., recursive). Then A is decidable.
Sol. True.

9. (8 pts) A set L is r.e. iff there is a recursive predicate (computable by a TM that always halts) R such that
L = {x | ∃y : R(x, y)}. L is co-r.e. iff there is a recursive predicate R such that L = {x | ∀y : R(x, y)}. By
counting the number of alternating quantifiers, you actually get a measure of difficulty.

Consider HALTTM = {〈M,x〉 | M halts on x}. As HALTTM can be rewritten as {〈M,x〉 | ∃i : M halts
in i steps on x}, the corresponding R can be defined as R(M,x, i)= true if M (on x) halts in i steps; false,
otherwise. Likewise, ETM = {〈M〉 | L(M) = ∅} can be written as {〈M〉 | ∀x∀i : M does not accept in i steps
on x}.

(a) Consider ALLTM = {〈M〉 | L(M) = Σ∗}. Show that L(M) = Σ∗ can be expressed as ∀..∃..R(..).
Complete the detail of the above logical formula.
Sol. ∀x, ∃i,M accepts x in i steps.

(b) Consider FINITETM = {〈M〉 | L(M) is finite}. Express the condition ”L(M) is finite” using a logical
formula.
Sol. ∃i∀j∀y, |y| > i,M does not accept y in j steps.
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