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1. (20 pts) True or False? Justify your answer in a brief yet convincing way.

(1) {〈D1, D2〉 | DFAs D1 and D2 accept a string in common} is decidable.
Solution: True. Decidable: create a DFA for L(D1) ∩ L(D2) using the Cartesian-product construction
and check whether an accept state is reachable from the start state.

(2) {〈G,w〉 | CFG G generates a string that starts with w as its prefix} is decidable.
Solution: True. Decidable. Construct a PDA for L(G) and a DFA for the regular language wΣ∗, then
combine them into a PDA for L(G) ∩ wΣ∗ using the Cartesian-product construction; finally, convert the
resulting PDA into a grammar and test whether the grammar generates any strings (using the algorithm
from class).

(3) {〈M〉 | L(M) ∈ PSPACE} ∈ PSPACE.
Solution: False. Undecidable. Use Rice’s theorem, which asserts that every nontrivial property of the
language of a Turing machine is undecidable.

(4) {〈M, q〉 | the Turing machine M enters the state q on some input} is decidable.
Solution: False. Undecidable. Let L denote the language in question. If L were decidable, then we would
be able to check whether the language of any given Turing machine M is empty by running L’s decider
on 〈M, qaccept〉. This would contradict Rice’s theorem, which asserts that every nontrivial property of the
language of a Turing machine (such as emptiness) is undecidable.

(5) {d | the digit d appears infinitely often in the decimal expansion of π = 3.14159...} is decidable.
Solution: True. Decidable. The language is finite, and hence, regular.

2. (20 pts) Consider a (one-way infinite) nondeterministic Turing machine M over the input alphabet Σ = {a},
tape alphabet Γ = {a,t}, states Q = {q, qacc, qrej} and the following transition function δ:

δ(q, a) = {(q, a,R), (qrej ,t, L)}, δ(q,t) = {(qacc, a, R)}.

Fill in all legal windows with the following chosen first rows. The number of windows in every row indicates
how many possible legal windows you should be able to find. Notice that if a left move is made at the leftmost
tape symbol, the head does not move.
Solution:

3. (10 pts) Prove formally that L = {〈M〉 | M is a Turing machine, and the language of M is {(010)n | n ≥ 1}}
is undecidable. Do not use Rice’s theorem.
Solution: Assume there is a TM ML deciding the given language L. We use a reduction from ATM to show
a contradiction for the existence of such a ML. On the input 〈M,w〉, the mapping (i.e., a TM Mf ) does the
following to construct a TM Mw:

(1) On the input x does the following:

(a) simulates the run of M on w;

(b) if M rejects, - Mw rejects;
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(c) if M accepts, - Mw checks whether x has the form (010)n, n ≥ 1. If yes, - accepts. If not, - rejects.

(2) Uses ML to determine whether L(Mw) = {(010)n | n ≥ 1}. If yes, - accepts. If not, - rejects.

4. (5 pts) Show that every infinite Turing-recognizable language has an infinite Turing-decidable subset. (Hint:
Recall that a langauge is Turing-recognizable iff there is a Turing machine that enumerates the language.)
Solution: It is known that every Turing-recognizable language has an enumerator that enumerates all the
strings of the language. Let W = w1, w2, · · ·wn · · · be the output sequence of the enumerator. We construct
the following subsequence X = x1, x2, · · · iteratively: Initially, let x1 = w1. For every i > 1, if |wi| does
not exceed the longest string in X, drop wi; otherwise add wi to X, and then repeat the above procedure
by considering the next string wi+1. It is clear that X is an infinite sequence of increasing length, which
corresponds to a decidable language.

5. (5 pts) Show that if P = NP then the language L = {0n1n | n ≥ 0} is NP-complete (under ≤p) . The L ∈ NP
is simple. You only have to show L to be NP -hard, i.e., for every language A ∈ NP (= P ), A ≤p L.
Solution: For every language A ∈ NP (= P ) over alphabet Σ, there is a DTM MA accepting A in polynomial
time. We consider the following mapping (i.e., a DTM Mf ) from Σ∗ to {0, 1}∗. If w ∈ L(MA), then f(w) =
01 ∈ L; otherwise, f(w) = 10 6∈ L. The DTM Mf runs in polynomial time as it can be constructed by slightly
modifying MA. Hence, we have A ≤p L.

6. (10 pts) Prove that the class P is closed under Kleene star, i.e., if A ∈ P , then A∗ ∈ P . (Hint: use dynamic
programming. Given a string w, we let wi,j = wi · · ·wj denote the substring of w = w1w2 · · ·wn starting with
wi and ending with wj . Let table(i, j) = true if wi,j ∈ A∗.) Be sure to analyze the running time.
Solution:

7. (18 pts) For each of the following languages, decide whether it is (1) recursive, (2) recursively enumerable
but not recursive, (3) not recursively enumerable. Justify your answer formally.
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• L1 = {〈M〉 |M is a TM and |L(M)| ≤ 3}.
Solution: (3) Not recursively enumerable.
We prove this by a reduction from the complement of the halting problem HP . f(〈M,x〉) = 〈M ′〉, where
M ′ on input w: it erases its input, copies M and x to its tape, and runs M on x; it accepts if M halts on
x. We now prove the validity of reduction:

– 〈M,x〉 ∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any input ⇒ |L(M ′) ≤ 3 ⇒ M ′ ∈ L1.

– 〈M,x〉 6∈ HP ⇒ M halts on x ⇒ M ′ accepts all input ⇒ |L(M ′) > 3 ⇒ M ′ 6∈ L1.

• L2 = {〈M〉 |M is a TM and |L(M)| > 3}.
Solution: (2) Recursively enumerable but not recursive

– Recursively enumerable. The acceptor runs M on all inputs in an interleaved mode, and halts when-
ever 3 inputs have been accepted. Notice that the acceptor generates the input strings for M one by
one as they are needed. Another way to think of the acceptor is to nondeterministically generate 3
input strings and simulate the 3 strings one by one and accepts if all 3 inputs are accepted.

– Not recursive. Follows from Rice’s theorem.

• L3 = {〈M〉 |M is a TM and there exists an input on which M halts in less than |〈M〉| steps}.
Solution: (1) Recursive.
The TM that decides the language works as follows on input 〈M〉. It first finds the length of 〈M〉, and
stores it. Then, it runs M on all inputs of length at most 〈M〉, for at most 〈M〉 steps, and accepts if M
accepts at least one of the strings within the specified number of steps.

8. (7 pts) Prove formally that f(n) = 1 + 2 + · · · + n is primitive recursive. You may assume that functions
x+ y, x · y, xy, x− y, sign(x), compare≤(x, y) are p.r.
Solution:

f(n) = f ′(0, n) f ′(x, 0) = g(x) f ′(x, S(n)) = h(x, f ′(x, n), n)

Here the function g(x) = 0, h(x, y, z) = π2(x, y, z) + S(π3(x, y, z)).

9. (5 pts) In the silly Post Correspondence Problem, SPCP, in each pair the top string has the same length as the
bottom string. Is the SPCP decidable? Why?
Solution: Decidable. SPCP has a solution iff there is a pair (x, y) such that x = y.
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