Theory of Computation
Fall 2016, Final Exam. Solutions

January 9, 2017

1. (30 pts) True or False? Score = max{0, Right - % Wrong}. No explanations are needed.

(1) If L* is decidable then L is decidable.
False

(2) It is decidable whether given a TM M and an input x, M enters some state more than 100 times.
True

(3) Every recursively enumerable language can be accepted by a TM whose head only moves to the right.
False

(4) The language L = {(M) : L(M) € NP} € NP.
False

(5) If L1 Sp L2 and L2 Sp Ll, then L1 = LQ.
False

(6) The following problem is decidable: Given a TM M and a string w, does M accept w within |w| steps?
True

(7) For any k > 1, there is no language that is decided by a TM with k tapes, but is undecidable by any
TM having k — 1 tapes.
True

(8) {{(G,D):Gisa CFG,D is a DFA, and L(G) C L(D)} is decidable.
True

(9) If L C {0}* then L is decidable.
False

(10) CFL C P.
True

(11) If A and B are in NP, then A - B is also in NP.
True

(12) The set of all r.e. languages is countable.
True

(13) The language EQPDA = {(C, D) : C and D are PDAs with L(C) = L(D)} is Turing-decidable.
False

(14) Recursive languages are closed under the Kleene star (i.e., if L is recursive, so is L*).
True

(15) PCP over the alphabet {0,1} is decidable.
False

2. (12 pts) Recall that, if w = a1 ---a, € X" is a string, wf = a, ---ay is the 7reversal” of w. If L C ©* is
a language, we let LT = {w® : w € L}. Let Apy = {(M,w) : M accepts w} and Agp = {(M) : L(M) =
(L(M))E}, here M denotes a TM.

Prove the (1) (6 pts) Arar <m Ag, and (2) (6 pts) Arar <., Ag.

Solution:

o (Ary <, A). We must map (M, w) into (M’) such that M accepts w iff L(M') = (L(M'))®. The
mapping must be Turing-computable. So let M’ on input z behave as follows:

If z = 01 then accept.

Run M on w

If M accepts w, then accept
If M rejects w, then reject

Now if M accepts w then L(M') = ¥* so L(M') = (L(M"))®; while if M does not accept w then L(M') =
{01} s0 L(M') # (L(M))".

o (Ary <, Agr). We must map (M, w) into (M’) such that (a) if M does not accept w then L(M') =
(L(M"))E, and (b) if M does accept w then L(M’) # (L(M'))*. The mapping must be Turing-computable.
So let M’ on input x behave as follows:

Run M on w
If M accepts w and x = 01, then accept
Reject

Now if M does not accepts w then L(M’) = (); so L(M’') = (L(M"))f; while if M does accept w then
LMY = {01} s0 L(M") # (L(M')".

. (10 pts) Prove that bounded halting BH = {(M,x,1*) : NTM M halts on x in k steps} is NP-complete
(i.e., BH € NP (5 pts) and BH is NP-hard (5 pts)).

Solution: BH is in NP - the membership certificate is the binary string of length k& which corresponds to
the accepting computation. Given that string, it is easy to verify whether the computation is accepting
deterministically in polynomial time (by simulating M on z for k steps using a universal TM, slightly
modified).

BH is NP-hard. Let L be an NP language. By definition, there exists a NTM M, and a polynomial P;, such
that M}, accepts any string of length n in Pp(n) steps. Given a string = (an instance of L), a corresponding
instance of BH is the triple (M, x, 1PL(|I|)). It is easy to verify that the transformation from = to the
corresponding triple can be done by a TM in polynomial time - it suffices to copy M|, (a constant string),
copy « from the input and output Pr(|z|) ones (notice that polynomials are polynomial-time computable).

. (10 pts) Let Fy, Fy, F3,--- be an effective enumeration of all primitive recursive functions. Answer the
following two questions: (a) (4 pts) Is the function f(i,n) = F;(n) a total TM-computable function? Why?
(b)(6 pts) Is f(i,n) a primitive recursive function? Why? You must justify your answers.

Solution: (a) Yes, since all primitive recursive functions are total TM-computable functions. (b) No. Let
f'(n) = f(n,n) + 1(= Fu,(n) +1). Clearly, f'(n) # Fi(n),¥i > 1; hence, f'(n) is not primitive recursive.
Therefore, f(i,n) is not primitive recursive either.

. (16 pts) Given a TM M (with only left/right moves and without e transitions) and an input z, define the
following two sets

(a) ValComps s, = {wiFwadfwsdFwsdf - - - w, #
(b) ValCompsﬁ’w = {w #Fwl#Hws#Fwl# - w,# : (if n is odd; wy #wEHws#wEH# - wE# otherwise)

e wy = qox is the initial ID,

e w, is an accepting ID, and

o w; = wiy1, V1l <i<n}
We also define ValComps,, = (U,cx- ValComps,, ,.), and ValCompsh, = (Upes- ValC’omsz\RLI). Among
the following language classes (regular, CFL, co-CFL, context-sensitive, recursive, r.e., and co-r.e.), identify
the smallest class each of ValComps; ., ValCompsII:’;[’I7 ValComps ;, and ValComps®, belongs. You need
to justify your answer.
Solution:
ValComps, ,, is regular since it is finite.
ValCompsﬁx is regular since it is finite.
ValComps ,; is a CSL since it can be accepted by a linear bounded automaton (LBA).

ValC’ompsﬁ is a co-CFL since its complement is CF. The key is the ability for a PDA to check, given
wi#wﬁ_l for some 4, whether w; /4 w;11. The PDA accepting the complement of ValComps]\R/[is to
check, given a string z, (1) if = is not of the form wy#wii#ws#wl# - #, then accept; (2) if 3,
w; 7 wiy1, then accept.

6. (10 pts) Let Ay, As C ¥* be two r.e. languages such that 4; U Ay = ¥* and A; N Ay # (. Prove that
A; <, (A1 N Ag).
Solution: Let M; be a TM recognizing A; and M, a TM recognizing As. Further, since we know that
A1 N Ay # 0, let y be some string in A1 N Ay. We describe a reduction f such that z € A; iff f(z) € A1 N A,
as follows:
On input x run the computations of M; and Ms on x ”in parallel”, halting when either M; or M, halts
and accepts x. if M7 accepts x then output y else output x.

Notice that since A1 U Ay = X*, we know either M7 or My must accept x; so the computation will definitely
halt. Now, if when running in parallel M; and Ms we find that © € Ay then f(z) =y € A; N As. On the
other hand, if we find that x € Ay then f(x) = 2 € Ay N Ay if and only if € A;. Thus, either way, x € A,
if f(fﬂ) € AN As.

7. (7 pts) Based on what we learned in class about various complexity classes, fill in each of the following
blanks with C, C or =.
L C NL = coNL C P C NP C PSPACE= NPSPACE C EXPTIME

8. (5 pts) Prove that f(z,y) = 2¥ is primitive recursive. You may assume that the multiplication function
g(x,y) = x - y is primitive recursive.
Solution:

