
Theory of Computation
Fall 2016, Final Exam. Solutions

January 9, 2017

1. (30 pts) True or False? Score = max{0, Right - 1
2 Wrong}. No explanations are needed.

(1) If L∗ is decidable then L is decidable.
False

(2) It is decidable whether given a TM M and an input x, M enters some state more than 100 times.
True

(3) Every recursively enumerable language can be accepted by a TM whose head only moves to the right.
False

(4) The language L = {⟨M⟩ : L(M) ∈ NP} ∈ NP .
False

(5) If L1 ≤p L2 and L2 ≤p L1, then L1 = L2.
False

(6) The following problem is decidable: Given a TM M and a string w, does M accept w within |w| steps?
True

(7) For any k > 1, there is no language that is decided by a TM with k tapes, but is undecidable by any
TM having k − 1 tapes.
True

(8) {⟨G,D⟩ : G is a CFG,D is a DFA, and L(G) ⊆ L(D)} is decidable.
True

(9) If L ⊆ {0}∗ then L is decidable.
False

(10) CFL ⊆ P .
True

(11) If A and B are in NP , then A ·B is also in NP.
True

(12) The set of all r.e. languages is countable.
True

(13) The language EQPDA = {⟨C,D⟩ : C and D are PDAs with L(C) = L(D)} is Turing-decidable.
False

(14) Recursive languages are closed under the Kleene star (i.e., if L is recursive, so is L∗).
True

(15) PCP over the alphabet {0, 1} is decidable.
False

2. (12 pts) Recall that, if w = a1 · · · an ∈ Σn is a string, wR = an · · · a1 is the ”reversal” of w. If L ⊆ Σ∗ is
a language, we let LR = {wR : w ∈ L}. Let ATM = {⟨M,w⟩ : M accepts w} and AR = {⟨M⟩ : L(M) =
(L(M))R}, here M denotes a TM.
Prove the (1) (6 pts) ATM ≤m AR, and (2) (6 pts) ATM ≤m AR.
Solution:
• (ATM ≤m A). We must map ⟨M,w⟩ into ⟨M ′⟩ such that M accepts w iff L(M ′) = (L(M ′))R. The
mapping must be Turing-computable. So let M ′ on input x behave as follows:

If x = 01 then accept.

Run M on w

If M accepts w, then accept

If M rejects w, then reject

1

Now if M accepts w then L(M ′) = Σ∗ so L(M ′) = (L(M ′))R; while if M does not accept w then L(M ′) =
{01} so L(M ′) ̸= (L(M ′))R.

• (ATM ≤m AR). We must map ⟨M,w⟩ into ⟨M ′⟩ such that (a) if M does not accept w then L(M ′) =
(L(M ′))R, and (b) if M does accept w then L(M ′) ̸= (L(M ′))R. The mapping must be Turing-computable.
So let M ′ on input x behave as follows:

Run M on w

If M accepts w and x = 01, then accept

Reject

Now if M does not accepts w then L(M ′) = ∅; so L(M ′) = (L(M ′))R; while if M does accept w then
L(M ′) = {01} so L(M ′) ̸= (L(M ′))R.

3. (10 pts) Prove that bounded halting BH = {(M,x, 1k) : NTM M halts on x in k steps} is NP-complete
(i.e., BH ∈ NP (5 pts) and BH is NP-hard (5 pts)).
Solution: BH is in NP - the membership certificate is the binary string of length k which corresponds to
the accepting computation. Given that string, it is easy to verify whether the computation is accepting
deterministically in polynomial time (by simulating M on x for k steps using a universal TM, slightly
modified).

BH is NP-hard. Let L be an NP language. By definition, there exists a NTM ML and a polynomial PL such
that ML accepts any string of length n in PL(n) steps. Given a string x (an instance of L), a corresponding
instance of BH is the triple (ML, x, 1

PL(|x|)). It is easy to verify that the transformation from x to the
corresponding triple can be done by a TM in polynomial time - it suffices to copy ML (a constant string),
copy x from the input and output PL(|x|) ones (notice that polynomials are polynomial-time computable).

4. (10 pts) Let F1, F2, F3, · · · be an effective enumeration of all primitive recursive functions. Answer the
following two questions: (a) (4 pts) Is the function f(i, n) = Fi(n) a total TM-computable function? Why?
(b)(6 pts) Is f(i, n) a primitive recursive function? Why? You must justify your answers.
Solution: (a) Yes, since all primitive recursive functions are total TM-computable functions. (b) No. Let
f ′(n) = f(n, n) + 1(= Fn(n) + 1). Clearly, f ′(n) ̸= Fi(n), ∀i ≥ 1; hence, f ′(n) is not primitive recursive.
Therefore, f(i, n) is not primitive recursive either.

5. (16 pts) Given a TM M (with only left/right moves and without ϵ transitions) and an input x, define the
following two sets

(a) ValCompsM,x = {w1#w2#w3#w4# · · ·wn# :

(b) ValCompsRM,x = {w1#wR
2 #w3#wR

4 # · · ·wn# : (if n is odd; w1#wR
2 #w3#wR

4 # · · ·wR
n# otherwise)

• w1 = q0x is the initial ID,

• wn is an accepting ID, and

• wi → wi+1, ∀1 ≤ i < n.}

We also define ValCompsM = (
∪

x∈Σ∗ ValCompsM,x), and ValCompsRM = (
∪

x∈Σ∗ ValCompsRM,x). Among
the following language classes (regular, CFL, co-CFL, context-sensitive, recursive, r.e., and co-r.e.), identify
the smallest class each of ValCompsM,x, ValCompsRM,x, ValCompsM , and ValCompsRM belongs. You need
to justify your answer.
Solution:

(a) ValCompsM,x is regular since it is finite.

(b) ValCompsRM,x is regular since it is finite.

(c) ValCompsM is a CSL since it can be accepted by a linear bounded automaton (LBA).

(d) ValCompsRM is a co-CFL since its complement is CF. The key is the ability for a PDA to check, given
wi#wR

i+1 for some i, whether wi ̸→ wi+1. The PDA accepting the complement of ValCompsRM is to
check, given a string x, (1) if x is not of the form w1#wR

2 #w3#wR
4 # · · ·#, then accept; (2) if ∃i,

wi ̸→ wi+1, then accept.

2

6. (10 pts) Let A1, A2 ⊆ Σ∗ be two r.e. languages such that A1 ∪ A2 = Σ∗ and A1 ∩ A2 ̸= ∅. Prove that
A1 ≤m (A1 ∩A2).
Solution: Let M1 be a TM recognizing A1 and M2 a TM recognizing A2. Further, since we know that
A1∩A2 ̸= ∅, let y be some string in A1∩A2. We describe a reduction f such that x ∈ A1 iff f(x) ∈ A1∩A2

as follows:
On input x run the computations of M1 and M2 on x ”in parallel”, halting when either M1 or M2 halts
and accepts x. if M1 accepts x then output y else output x.

Notice that since A1∪A2 = Σ∗, we know either M1 or M2 must accept x; so the computation will definitely
halt. Now, if when running in parallel M1 and M2 we find that x ∈ A1 then f(x) = y ∈ A1 ∩ A2. On the
other hand, if we find that x ∈ A2 then f(x) = x ∈ A1 ∩A2 if and only if x ∈ A1. Thus, either way, x ∈ A1

iff f(x) ∈ A1 ∩A2.

7. (7 pts) Based on what we learned in class about various complexity classes, fill in each of the following
blanks with ⊂, ⊆ or =.
L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

8. (5 pts) Prove that f(x, y) = xy is primitive recursive. You may assume that the multiplication function
g(x, y) = x · y is primitive recursive.
Solution:

f(x, 0) = S(Z(x)) (= 1)

f(x, S(y)) = g(x, f(x, y), y), where g(x1, x2, x3) = mul(π1(x1, x2, x3), π2(x1, x2, x3))

3

