Due: January 11, 2015

- 1. (26 pts) True or False? Score = max{0, Right $\frac{1}{2}$ Wrong}. No explanations are needed.
 - (1) $\{a^m b^n c^k d^l \mid 2m + 5n = 3k + 4l\}$ is context-free. True
 - (2) $\{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } j > max(i, k)\}$ is not context free. True
 - (3) If L and L' are deterministic context-free, then $\overline{L \cap L'}$ is context-free. True
 - (4) $L_k = \{ \langle M \rangle \mid M \text{ halts after at most k steps on } \epsilon \}$ is not decidable. False
 - (5) If $L \leq_m \{0^n 1^n \mid n \geq 0\}$ then L is recursive. Here \leq_m denotes the many-one reduction. True
 - (6) If $L \cdot L'$ (i.e., the concatenation of L and L') is not r.e., then either L or L' is not r.e. **True**
 - (7) if L_1 and L_2 are in NP, then $L_1 \cup L_2$ is also in NP. True
 - (8) If L is in P, so is L^* . True
 - (9) $\{\langle G, w \rangle \mid G \text{ is a context-free grammar and } w \in L(G)\}$ is in P. **True**
 - (10) If both L and L' are in P, L L' is also in P. **True**
 - (11) $\{\langle M \rangle \mid L(M) = \emptyset$, where M is a TM} is NP-hard. True
 - (12) Every total function is a partial recursive function. False
 - (13) { $\langle M, x \rangle$ | on input x, TM M enters some state more than 50 times} is recursive. True
- 2. (20 pts) Consider the following classes of languages numbered (1)-(6)

(1) Finite (2) Regular (3) Context-free (4) Recursive (5) Recursively enumerable (r.e.) (6) All languages

For each of the following languages L, decide an $i, 1 \le i \le 6$ such that L is in Class i but not in Class i - 1. For instance, the answer to $L = \{a^n b^n \mid n \ge 0\}$ is 3. No explanations are needed.

- (1) $\{a^n b^m a^n b^m \mid m, n \ge 0\}$ Answer: 4
- (2) $\{w \in \{a, b\}^* \mid \text{ the length of } w \text{ is even and the first half is all } a's\}$ Answer: 3. The language is generated by CFG $S \to aSa|aSb|\epsilon$.
- (3) $\{w \in \{a, b\}^* \mid \text{ the number of } b\text{'s in } w \text{ is a multiple of the number of } a\text{'s in } w \}$ **Answer:** 4. $L \cap a * b * = \{a^n b^{kn} | n, k \ge 0\}$, which is not context-free.
- (4) $\{w \in \{0,1\}^* \mid \text{ the number of times 01 appears as a substring is equal to the number of times 10 appears as a substring }$

Answer: 2.

The language is $\epsilon + 0(0 + 11^*0)^* + 1(1 + 00^*1)^*$

(5) $\{\langle M \rangle \mid \text{ there are at least two strings that } M \text{ accepts} \}$ Answer: 5

- (6) The complement of $\{a^n b^n c^n \mid n \ge 0\}$ Answer: 3
- (7) $\{x_1 \# x_2 \# \cdots \# x_k \mid k \ge 2, x_h \in \{a, b\}^*, 1 \le h \le k, \text{ and } x_i x_k = x_j^R \text{ for some } i < j < k\}$ (here R denotes "reversal")

Answer: 4. The language intersects with $a^* \# b^* a^* \# b^*$ is $\{a^n \# b^m a^n \# b^m \mid m, n \ge 0\}$, which is not CF.

- (8) $\{\langle M_1, M_2 \rangle \mid L(M_1) \subseteq L(M_2), \text{ where } M_1, M_2 \text{ are Turing machines} \}$ Answer: 6
- (9) $\{\langle M_i, M_j, x \rangle \mid M_i(x) \prec M_j(x)\}$, where $M_i(x) \prec M_j(x)$ denotes that $M_i(x)$ halts in fewer steps than $M_j(x)$. We do not specify whether $M_i(x)$ accepts or rejects, and we allow the possibility that $M_j(x)$ never halts. **Answer:** 5. Given input $\langle M_i, M_j, x \rangle$ we can first simulate $M_i(x)$ until it halts. If it never halts, $M_i(x) \prec M_j(x)$ is necessarily false, so it's okay if we loop in this phase. If $M_i(x)$ halts after n steps, we then simulate $M_j(x)$ for up to n + 1 steps. If $M_i(x)$ is still running after n + 1 steps, we accept.
- (10) $\{\langle M_i, M_j \rangle \mid \exists x, M_i(x) \prec M_j(x)\}$, where \prec is defined as above. **Answer:** 5. On input $\langle M_i, M_j \rangle$ we enumerate all pairs $\langle x, n \rangle$. For each pair, if $M_i(x)$ halts within n steps and $M_j(x)$ does not, we accept.
- 3. (5 pts) For language $D = \{w \# w \mid w \in \Sigma^*\}$, it is known that \overline{D} (i.e., the complement of D) is context-free. Use closure properties of context free languages to prove that for any regular language A, the complement of $E = \{w \# w \mid w \in A\}$ (i.e., \overline{E}) is context-free. **Answer**: $E = D \cap (A \cdot \{\#\} \cdot A)$. Hence, $\overline{E} = \overline{D} \cup (\overline{A \cdot \{\#\} \cdot A})$, which is the union of a CFL and a regular set – a CFL.
- 4. (8 pts) Assuming that A is recursive, is the following language B also recursive? Justify your answer formally. $B = \{w \in \{0,1\}^* \mid \exists x \in \{0,1\}^*, |x| = |w| \text{ and } x \in A\}.$ Answer: Suppose TM M decides A. Define TM N = On input a string w

Let n = |w| be the length of wFor all n-bit binary strings xdo If M(x) accepts then accept End-for Reject

- 5. (8 pts) Suppose that you are given an algorithm A_F to decide the following language $F = \{\langle Q \rangle \mid \text{TM } Q \text{ halts on at least one input}\}$. Using A_F as a subroutine, give an algorithm A_H to decide $H = \{\langle P, w \rangle \mid \text{TM } P \text{ halts on input } w\}$. **Answer:** Given $\langle P, w \rangle$, we construct the following TM Q: on input x if $x \neq w$ loop forever else Simulate P on x. Then run A_F on input $\langle Q \rangle$.
- 6. (15 pts) Consider $REGULAR_{TM} = \{\langle M \rangle \mid \text{ the language recognized by Turing machine } M \text{ is regular}\}$. Prove that $REGULAR_{TM}$ is neither co-r.e. nor r.e. **Answer** See Figure 1.
- 7. (10 pts) A context-free grammar is ambiguous if some string has two different derivation trees using this grammar. Show that ambiguity of CFGs is undecidable using a reduction from the Post Correspondence Problem. **Answer**: Given a PCP instance $P = \{\frac{u_1}{v_1}, \frac{u_2}{v_2}, ..., \frac{u_n}{v_n}\}$, construct the following CFG G: $S \to S_u \mid S_v; \ S_u \to u_i S_u a_i \mid u_i a_i; \ S_v \to v_i S_v a_i \mid v_i a_i, 1 \le i \le n.$
- 8. (8 pts) Prove that recursive languages are NOT closed under homomorphism. (Hint: Given a TM M and an input w, it is undecidable to decide whether M accepts w; however, if a number n is given, then it becomes decidable to decide whether M accepts w in n steps. You may assume that $\langle M, w \rangle$ are encoded using symbols a and b (i.e., $\langle M, w \rangle \in \{a, b\}^*$), and $n \in \{0, 1\}^*$ is encoded in binary.)

Answer: Consider $L = \{\langle M, x, n \rangle \mid \langle M, x \rangle \in \{a, b\}^*, n \in \{0, 1\}^*$, TM *M* on input *w* will halt in *n* (represented in a binary number) steps}. Clearly *L* is recursive. Now consider homomorphism $h(a) = a; h(b) = b; h(0) = h(1) = \epsilon$. Then $h(L) = \{\langle M, x \rangle \mid \langle M, x \rangle \in \{a, b\}^*$, TM *M* on input *w* will halt.}, which is A_{TM} .

We show that $A_{TM} \leq_m REGULAR_{TM}$, and that $A_{TM} \leq_m \overline{REGULAR_{TM}}$, which will prove that it is neither. $A_{TM} \leq_m REGULAR_{TM}$: "On input $\langle M, w \rangle$: Form a TM R as follows: "On input x: If x is of the form $0^n 1^n$, accept. Otherwise run M on w and accept if M accepts w." Output $\langle R \rangle$." Then R accepts a regular language if and only if M accepts w. $A_{TM} \leq_m \overline{REGULAR_{TM}}$: "On input $\langle M, w \rangle$: Form a TM S as follows: "On input x: If x is not of the form $0^n 1^n$, reject. Otherwise run M on w and accept if M accepts w." Output $\langle S \rangle$." Then S accepts a regular language if and only if M does not accept w.

Figure 1: Proof of Problem 6