Theory of Computation
Fall 2014, Final Exam. (Solutions)

Date: January 12, 2015

(1)

(10 pts) Given two languages A and B, define Ao B ={zy |x € A,y € B,|z| = |y|}. Suppose A and B are
regular, is A o B always context-free? Justify your answer.

Solution: Yes.

Proof Idea: A word z is in Ao B, iff z = xy where © € A and y € B, |z| = |y|. Let M4 and Mg be the two
FA accepting A and B, resp. Design a PDA M doing the following:

e Read (nondeterminically) and use M4 to decide z € A, and each time a symbol is read, push a symbol
onto M’s stack

e Read the rest of the string y and use Mp to decide y € B, and each time a symbol is read, pop a symbol
from M'’s stack

e Accept if both M4 and Mp accept and the stack is empty at the end.

(10 pts) Prove that the language L = {(M,z,#!) | nondeterministic Turing machine M accepts z within ¢
steps on at least one branch } is NP-complete.

Solution:

(in NP) To show L is in NP, we need to show the existence of a TM M’ accepting L in polynomial time.
Basically M’ plays the role of M except that it treats the middle part = as its input, and M’ uses #! to keep
track of the number of steps it performs. (This can be easily done by changing a # to a @ each time a step
is carried out.) M’ accepts (M, z,#') in polynomial time iff M accepts x in ¢ time.

(NP-hard) Let M be a polynomial time NTM with time bound p(n). Let Ly ,,) be the language accepted
by such a TM. Consider the following reduction from Ly) to L = {(M, z, #P() | nondeterministic Turing
machine M accepts z within ¢ steps on at least one branch }. Clearly x € Ly () iff (M, z, #P(n) ¢ L,

(10 pts) Prove that the class NP is closed under the star operation.
Solution: Let L, accepted by an NTM M with time bound p(n), be a language in NP. We design the
following NTM M’ to accept language L*.

e Nondeterministically guess a partition y1y2 - - yx (=x).
e Run M to check, for every i = 1, ..., k, y; € L, which can be done in p(|y;|) time.
e Accept if all the checking succeeds.

Clearly M’ runs in polynomial time.

(10 pts) Is it true that if A <,, B and B is context-free, then A is a recursive language? Why? (Here <,,
denote the many-one reduction.)

Solution: Yes.

Let M be a PDA accepting B. To tell whether « € A, first apply the computable mapping f (guaranteed by
the many-one reduction) to yield f(x), and let M decide whether f(z) € B. As the membership problem for
context-free languages is decidable, A is therefore recursive.

(10 pts) Prove that the following language is NOT decidable. Do not use Rice’s theorem in your proof.
L={(M)|M isa Turing machine and M accepts 1011 }.

Solution: We reduce Arps to L. Given a (M,), construct the following TM M':
On input y, simulate M on z. If M accepts x, then accept if y = 1011.
Clearly, (M,z) € Appy iff (M) € L

(10 pts) Prove that every infinite Turing-recognizable language has an infinite Turing-decidable subset. (Hint:
Think of Turing machines as enumerators.)

Solution: It is known that a language is r.e., (resp., recursive) iff there exists an enumerator generating
strings (resp., strings in lexicographical order) in the language. Let M be an enumerator generating the
infinite r.e. language. We construct the following enumerator M':

(10)

(a) M generates a new string x.

(b) If there is a string y already in the output tape of M’ with y > = (according to lexicographical order),
then discard z

(¢) Otherwise, write x to the output tape.

(d) Repeat the above three steps.
It is not hard to see that M’ generates an infinite subset of the given r.e. language in lexicographical order.

(10 pts) Given a context-free grammar G, is it decidable whether L(G) is infinite? Justify your answer
formally.

Solution: Let n be the pumping constant associated with L(G). We can show that L(G) is infinite iff there
is a word € L(G) such that n < |z| < 2n. Hence, by testing all words of lengths between n and 2n, the
problem is decidable as the membership problem for CFL is decidable.

(10 pts) Prove that the following language is undecidable
L ={(G) | G is an ambiguous context-free grammar}
(Hint: Use PCP. Recall that a CFG G is ambiguous if there is a word = with two derivation trees in G.)

Solution: Let P = {(z1,v1), .., (Tn,¥Yn)} be an instance of PCP. We construct the following grammar G
with rules

S =S |8y
Se = x15za1 | ... | xpSean | x1a1 | ... | Tpan
Sy = y1Syar | ... | YynSyan [yra1 | ... [ynan

where aq, ..., a, are new symbols. It is not hard to see that PCP has a match iff G generates some word in
an ambiguous way.

(10 pts) Let L = {w | either w = Oz for some & € App or w = ly, for some y € Arp}. Prove that neither

L nor L is recursively enumerable. (Recall that Aryr = {(M, z) | M is a Turing machine that accepts input
z}.)

Solution: It is known that A7, is not r.e.iTo show neith(ir L nor L is r.e., it suffices to establish Apas <pm L
(in this case, L is non-r.e.) and Aras <, L (in this case, L is non-r.e.)

To show Arpr <., L, consider the mapping f(y) = ly. Clearly, y € Apys iff f(y) € L.

To show Aryr <m L, we show Arys <., L. Consider the mapping f(x) = Ox. Clearly, z € A7y iff f(z) € L.

(10 pts) Suppose Cy, C1, ...Cp, .. is an infinite sequence of classes of languages such that Vi > 0,C; C NP,

C; ; Cit1 and Cj is closed under <} (ie., if Ly <p' L2 and Ly € Cj, then L; € C;). Define C = UiZO C;.
Prove that the class of language C' does not contain any NP-complete language w.r.t. <;* (the polynomial-
time many-one reduction).

Solution: Suppose, in contrast, that C' contains a complete language L. Then L € C; for some ¢ > 0, and V
L'e C, L' <3 L. Now consider Cj11(C C). If L' € Cjyq, then L' < L implying that L’ € C;, contradicting

c
Ci # Ciq1.

