
Theory of Computation
Fall 2013, Final Exam.

Date: January 6, 2014

(I) (40 pts) True or False? Score = max{0, Right - 1
2 Wrong}.

(1) Let L = {ai | i is a prime number }(⊆ {a}∗). The complement of L, i.e., a∗ − L, is context-free but not regular.
False

(2) The language {aibjck | i, j, k ≥ 0, j = max{i, k}} is not context-free.
True

(3) The complement of the language {anbncn | n ≥ 0} is context-free.
True

(4) If a language L and its complement L̄ are both context-free, then L must be regular.
False

(5) L = {⟨M⟩ | L(M) is infinite and M is a PDA } is recursive.
True

(6) {w#wR | w ∈ {0, 1}∗} can be accepted by a two-tape deterministic Turing machine (DTM) in O(n) time.
True

(7) Consider a type of automata each of which is a deterministic PDA augmented with a counter, i.e., a deterministic
machine with a pushdown stack and a counter. Such automata are Turing-equivalent.
True

(8) L = {⟨M⟩ | M is a TM that write a blank symbol over a nonblank symbol when it runs on some input} is not
recursive
True

(9) L = {⟨M,p, x⟩ | on input x, TM M never enters state p} is not recursive.
True

(10) {⟨M,w⟩ | TM M accepts word w} ≤m 0∗1∗, where ≤m denotes many-one reduction.
False

(11) {anbn | n ≥ 0} ≤p
m {anbm | n,m ≥ 0}, where ≤p

m denotes polynomial-time many-one reduction.
True

(12) {anbn | n ≥ 0} ≤m {anbm | n,m ≥ 0}.
True

(13) There is an undecidable subset of 0∗.
True

(14) The class NP (nondeterministic polynomial time) is closed under union.
True

(15) A 2-way PDA is a PDA whose input head can more in both directions. 2-way deterministic PDA accept only
context-free languages.
False

(16) It a function f is computable by a Turing machine that always halts, then f is primitive recursive.
False

(17) {anbncndn | n ≥ 0} is in P (deterministic polynomial time).
True

(18) Given a context-free language L and a regular language R, the problem of deciding whether ”L = R?” is undecid-
able.
True

(19) The halting problem of TMs is NP-hard.
True

(20) It is known that DSPACE(log n)
⊂
̸= DSPACE(log2 n). (

⊂
̸= means ”is a proper subset of”.)

True
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(II) (15 pts) Let G be the following CFG in Chomsky Normal Form, where S is the start symbol:
S → AB | CA | a
A → BC | a | b
B → CC | c
C → AC | b
What follows is a partially filled table T (i, j) based on the CYK parsing algorithm to decide whether a string x is in
L(G). T (i, j) is the set of nonterminals that can derive ai · · · aj for an input string x = a1a2 · · · an, where 1 ≤ i ≤ j ≤ n.

j
T (i, j) 1 2 3 4 5

1 B A ∅ ? ?
2 − A,C S B,C ?

i 3 − − A,S C B,C, S
4 − − − A,C B,C, S
5 − − − − A,C

(a) (3 pts) What is the string x for this table? Why?
Sol: cbabb

(b) (9 pts) What are the three missing entries T (1, 4), T (2, 5) and T (1, 5)? Why?
Sol: T (1, 4) = A,C, T (2, 5) = A,B,C, S and T (1, 5) = A,B,C, S

(c) (3 pts) Is x ∈ L(G)? Why?
Sol: Yes

(III) (15 pts) A context-free grammar is said to be linear if its productions are of the form A → ϵ, A → a, A → aB, A → Bb,
or A → aBb, where a, b ∈ Σ.

(a) (8 pts) Prove the following pumping lemma for linear languages:
Let L be a linear language. Then there exists a positive integer n such that for every w ∈ L with |w| ≥ n, w can
be decomposed into w = uvxyz such that (1) |uvyz| ≤ n, (2) |vy| ≥ 1 and (3) uvixyiz ∈ L, for all i ≥ 0. (Note
that x can be of arbitrary length.)
Proof

S

A

A

u v x y z 

Height

# nonterminals 

(b) (7 pts) Use the above pumping lemma to show that linear languages are not closed under concatenation, i.e.,
given linear languages A and B, A ·B need not be linear. (Hint: consider {0n1n | n ≥ 1}.)
Proof
Consider {0n1n | n ≥ 1} · {0n1n | n ≥ 1} = {0n1n0m1m | n,m ≥ 1}. The rest is easy.

(IV) (5 pts) Let A ⊆ Σ∗ be a recursive language, and B = {x | ∃w ∈ Σ∗, xw ∈ A}, i.e., B consists of all strings that are
prefixes of strings in A. Prove that B is recursively enumerable.
Proof
Let s1, s2, ... be all strings in Σ∗. On input x, for i = 1, 2, ..., run M on xsi, if M accepts then accept; otherwise go to
the next i.

(V) (5 pts) Is the following statement true? Justify your answer.
Given a recursively enumerable language A, if A ≤m Ā, then A is recursive. (Here Ā = Σ∗ −A.)
Sol: Yes
Note that A ≤m Ā ⇒ Ā ≤m A; hence Ā is r.e. A and Ā being r.e. imply A is recursive.
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(VI) (10 pts) Let B = {⟨M⟩ | M is a TM, L(M) = {ϵ}}. Suppose you want to show that
{⟨M,w⟩ | M is a TM, M accepts w} ≤m B using a reduction f that maps ⟨M,w⟩ to M1.

(a) Fill in the blanks (i.e., A1 and A2) in the following two statements in a way that states what you have to do to
make the reduction work.

• If M accepts w, then ........L(M1) = {ϵ}.........
• If M does not accept w, then ........L(M1) ̸= {ϵ}.........

(b) Given M and w, give the definition of the desired TM M1 by filling in the blanks (i.e., A3−A5) in the following

M1 = ”On input x

If x ̸= ϵ, ........Reject.........

If x = ϵ, simulate M on w

If M accepts w, ........Accept.........

If M rejects w, .........Reject.........”

(VII) (10 pts) Classify the following languages into (1) recursive, (2) recursively enumerable (i.e., r.e.) but not
recursive, (3) co-r.e. but not recursive, and (4) none of the above. Proofs are not needed.

(a) L1 = {⟨M⟩ | M is a Turing Machine that accepts some string in 0∗}.
Sol: (2) This language is undecidable by Rice’s theorem. It is r.e.. A nondeterministic TM can guess a string w
in 0∗ and then run M on it.

(b) L2 = {⟨M⟩ | M is a Turing Machine that does not accept any palindrome }. Recall that a palindrome is a word
w such that w = wR (wR is the reversal of w ).
Sol: (3) This language is undecidable by Rice’s theorem. It is co-r.e.. A nondeterministic TM can guess a
palindrome accepted by M and verify it by running M on it. So if M ∈ L̄2, it can be accepted by the NTM. It
is not r.e. because if it were, it would be decidable.

(c) L3 = {⟨M⟩ | M is a Turing Machine that terminates on some input in 1000 steps}.
Sol: (1) This is decidable. Since M has to terminate in 1000 steps, at most 1000 symbols of the input strings
are relevant. So one could try them all exhaustively and run 1000 steps of M to see if it terminates.

(d) L4 = {⟨M⟩ | M is a Turing Machine that accepts 1 and does not accept 0}.
Sol: (4) Let Lu = {⟨M,w⟩ | M accepts w}. We first show L̄u ≤m L4 by the following

On input M,w:
Return the following machine:

R: on input x
if x = 1 then accept
else Run M on w

if M accepts then accept.

We now show L̄u ≤m L̄4 by the following

On input M,w:
Return the following machine:

R: on input x
if x = 0 then reject
else Run M on w

if M accepts then accept.

Since L̄u is not r.e., the answer follows.

(e) L5 = {⟨M,w⟩ | M is a linear bounded automaton that does not halt on w}.
Sol: (1) L5 is decidable. Note that a linear-bounded automata can be in at most qngn possible configurations,
where |w| = n, g is the size of the tape alphabet and q is the number of states. We can decide L5 using a TM that
simulates the LBA. If the LBA accepts or rejects within qngn steps, then the TM halts and rejects, since M,w
is not in L5. Otherwise TM accepts M,w, since M does not halt on w. Since the TM always halts and correctly
decides the question, L5 is decidable.
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