Date: January 6, 2014

- (I) (40 pts) True or False? Score = max{0, Right $\frac{1}{2}$ Wrong}.
 - (1) Let $L = \{a^i \mid i \text{ is a prime number }\} (\subseteq \{a\}^*)$. The complement of L, i.e., $a^* L$, is context-free but not regular. False
 - (2) The language $\{a^i b^j c^k \mid i, j, k \ge 0, \ j = max\{i, k\}\}$ is not context-free. True
 - (3) The complement of the language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free. True
 - (4) If a language L and its complement \overline{L} are both context-free, then L must be regular. False
 - (5) $L = \{ \langle M \rangle \mid L(M) \text{ is infinite and } M \text{ is a PDA } \}$ is recursive. True
 - (6) $\{w \# w^R \mid w \in \{0,1\}^*\}$ can be accepted by a two-tape deterministic Turing machine (DTM) in O(n) time. True
 - (7) Consider a type of automata each of which is a deterministic PDA augmented with a counter, i.e., a deterministic machine with a pushdown stack and a counter. Such automata are Turing-equivalent. True
 - (8) $L = \{\langle M \rangle \mid M \text{ is a TM that write a blank symbol over a nonblank symbol when it runs on some input} is not recursive$ **True**
 - (9) $L = \{ \langle M, p, x \rangle \mid \text{ on input } x, \text{TM } M \text{ never enters state } p \}$ is not recursive. True
 - (10) $\{\langle M, w \rangle \mid \text{TM } M \text{ accepts word } w\} \leq_m 0^* 1^*$, where \leq_m denotes many-one reduction. False
 - (11) $\{a^n b^n \mid n \ge 0\} \le_m^p \{a^n b^m \mid n, m \ge 0\}$, where \le_m^p denotes polynomial-time many-one reduction. True
 - (12) $\{a^n b^n \mid n \ge 0\} \le_m \{a^n b^m \mid n, m \ge 0\}.$ True
 - (13) There is an undecidable subset of 0^* . True
 - (14) The class NP (nondeterministic polynomial time) is closed under union. True
 - (15) A 2-way PDA is a PDA whose input head can more in both directions. 2-way deterministic PDA accept only context-free languages. False
 - (16) It a function f is computable by a Turing machine that always halts, then f is primitive recursive. False
 - (17) $\{a^n b^n c^n d^n \mid n \ge 0\}$ is in P (deterministic polynomial time). True
 - (18) Given a context-free language L and a regular language R, the problem of deciding whether "L = R?" is undecidable. **True**
 - (19) The halting problem of TMs is NP-hard. $${\bf True}$$
 - (20) It is known that $DSPACE(\log n) \stackrel{\subset}{\neq} DSPACE(\log^2 n)$. ($\stackrel{\subseteq}{\neq}$ means "is a proper subset of".) **True**

(II) (15 pts) Let G be the following CFG in Chomsky Normal Form, where S is the start symbol:

 $B \rightarrow CC \mid c$

$$\begin{array}{c} D \\ C \\ C \\ \end{array} \rightarrow AC \\ | \\ b \end{array}$$

What follows is a partially filled table T(i, j) based on the CYK parsing algorithm to decide whether a string x is in L(G). T(i, j) is the set of nonterminals that can derive $a_i \cdots a_j$ for an input string $x = a_1 a_2 \cdots a_n$, where $1 \le i \le j \le n$.

- (a) (3 pts) What is the string x for this table? Why?Sol: cbabb
- (b) (9 pts) What are the three missing entries T(1, 4), T(2, 5) and T(1, 5)? Why? **Sol:** T(1, 4) = A, C, T(2, 5) = A, B, C, S **and** T(1, 5) = A, B, C, S
- (c) (3 pts) Is $x \in L(G)$? Why? Sol: Yes
- (III) (15 pts) A context-free grammar is said to be *linear* if its productions are of the form $A \to \epsilon$, $A \to a$, $A \to aB$, $A \to Bb$, or $A \to aBb$, where $a, b \in \Sigma$.
 - (a) (8 pts) Prove the following pumping lemma for linear languages:
 Let L be a linear language. Then there exists a positive integer n such that for every w ∈ L with |w| ≥ n, w can be decomposed into w = uvxyz such that (1) |uvyz| ≤ n, (2) |vy| ≥ 1 and (3) uvⁱxyⁱz ∈ L, for all i ≥ 0. (Note that x can be of arbitrary length.)
 Proof

(b) (7 pts) Use the above pumping lemma to show that linear languages are not closed under concatenation, i.e., given linear languages A and B, $A \cdot B$ need not be linear. (Hint: consider $\{0^n1^n \mid n \ge 1\}$.) **Proof**

Consider $\{0^n 1^n \mid n \ge 1\} \cdot \{0^n 1^n \mid n \ge 1\} = \{0^n 1^n 0^m 1^m \mid n, m \ge 1\}$. The rest is easy.

(IV) (5 pts) Let A ⊆ Σ* be a recursive language, and B = {x | ∃w ∈ Σ*, xw ∈ A}, i.e., B consists of all strings that are prefixes of strings in A. Prove that B is recursively enumerable.
Proof
Let a a back back at a for i = 1.2 and M on malif. M accents then accents otherwise go to be all strings in Σ*. On input m for i = 1.2 and M on malif.

Let $s_1, s_2, ...$ be all strings in Σ^* . On input x, for i = 1, 2, ..., run M on xs_i , if M accepts then accept; otherwise go to the next i.

(V) (5 pts) Is the following statement true? Justify your answer. Given a recursively enumerable language A, if $A \leq_m \bar{A}$, then A is recursive. (Here $\bar{A} = \Sigma^* - A$.) Sol: Yes Note that $A \leq_m \bar{A} \Rightarrow \bar{A} \leq_m A$; hence \bar{A} is r.e. A and \bar{A} being r.e. imply A is recursive.

- (VI) (10 pts) Let $B = \{\langle M \rangle \mid M \text{ is a TM}, L(M) = \{\epsilon\}\}$. Suppose you want to show that $\{\langle M, w \rangle \mid M \text{ is a TM}, M \text{ accepts } w\} \leq_m B \text{ using a reduction } f \text{ that maps } \langle M, w \rangle \text{ to } M_1.$
 - (a) Fill in the blanks (i.e., A1 and A2) in the following two statements in a way that states what you have to do to make the reduction work.
 - If M accepts w, then $\mathbf{L}(\mathbf{M_1}) = \{\epsilon\}$
 - If M does not accept w, then $\mathbf{L}(\mathbf{M_1}) \neq \{\epsilon\}$
 - (b) Given M and w, give the definition of the desired TM M_1 by filling in the blanks (i.e., A3 A5) in the following
 - $M_1 =$ "On input x
 - If $x \neq \epsilon$,Reject.....
 - If $x = \epsilon$, simulate M on w
 - If M accepts w,Accept....
 - If M rejects w,Reject......."
- (VII) (10 pts) Classify the following languages into (1) recursive, (2) recursively enumerable (i.e., r.e.) but not recursive, (3) co-r.e. but not recursive, and (4) none of the above. Proofs are not needed.
 - (a) L₁ = {⟨M⟩ | M is a Turing Machine that accepts some string in 0*}.
 Sol: (2) This language is undecidable by Rice's theorem. It is r.e.. A nondeterministic TM can guess a string w in 0* and then run M on it.
 - (b) L₂ = {⟨M⟩ | M is a Turing Machine that does not accept any palindrome }. Recall that a palindrome is a word w such that w = w^R (w^R is the reversal of w).
 Sol: (3) This language is undecidable by Rice's theorem. It is co-r.e.. A nondeterministic TM can guess a palindrome accepted by M and verify it by running M on it. So if M ∈ L2, it can be accepted by the NTM. It is not r.e. because if it were, it would be decidable.
 - (c) $L_3 = \{\langle M \rangle \mid M \text{ is a Turing Machine that terminates on some input in 1000 steps}\}$. Sol: (1) This is decidable. Since M has to terminate in 1000 steps, at most 1000 symbols of the input strings are relevant. So one could try them all exhaustively and run 1000 steps of M to see if it terminates.
 - (d) $L_4 = \{ \langle M \rangle \mid M \text{ is a Turing Machine that accepts 1 and does not accept 0} \}.$ Sol: (4) Let $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$. We first show $\overline{L_u} \leq_m L_4$ by the following

On input M,w:

Return the following machine: R: on input x if x = 1 then accept else Run M on w if M accepts then accept.

We now show $\overline{L_u} \leq_m \overline{L_4}$ by the following

On input M,w: Return the following machine: R: on input x if x = 0 then reject else Run M on w if M accepts then accept.

Since $\overline{L_u}$ is not r.e., the answer follows.

(e) $L_5 = \{ \langle M, w \rangle \mid M \text{ is a linear bounded automaton that does not halt on } w \}.$

Sol: (1) L_5 is decidable. Note that a linear-bounded automata can be in at most qng^n possible configurations, where |w| = n, g is the size of the tape alphabet and q is the number of states. We can decide L5 using a TM that simulates the LBA. If the LBA accepts or rejects within qng^n steps, then the TM halts and rejects, since M, wis not in L_5 . Otherwise TM accepts M, w, since M does not halt on w. Since the TM always halts and correctly decides the question, L5 is decidable.