
Theory of Computation
Fall 2012, Final Exam. (Solutions)

Due: January 7, 2013

1. (20 pts) Consider the following classes of languages numbered (1)-(7)
(1) Empty (2) Finite (3) Regular (4) Context-free
(5) Recursive (6) Recursively enumerable (r.e.) (7) All languages
For each of the following languages specify the lowest-numbered class to which it surely belongs;
no need to provide any justification for your answers. For example, for a context-free language
L that is not regular, the right number is 4. Similarly, suppose a language L is recursively
enumerable, although it could possibly be recursive, the available information does not guarantee
that it is recursive, then the right answer is 6.

(a) The complement of a non-r.e. language.
Answer: 7

(b) The complement of a language in NP (i.e., nondeterministic polynomial time).
Answer: 5

(c) The complement of a context-free language.
Answer: 5

(d) The intersection of a recursive language and a language that is not r.e..
Answer: 7

(e) The intersection of a recursive language and an r.e. language.
Answer: 6

(f) L = {aibjckdl | i = k and j = l}
Answer: 5

(g) L = {aibjckdl | i = l and j = k}
Answer: 4

(h) L = {aibjckdl | i× j × k × l is divisible by 5}
Answer: 3

(i) The complement of the language generated by the following grammar:
S → aiSwi; S → ϵ, where ai ∈ Σ, wi ∈ Σ∗, 1 ≤ i ≤ k, for some k.
Answer: 4

(j) The complement of {aibici | i ≥ 0} (Σ = {a, b, c}).
Answer: 4

2. (9 pts) There are three ways to define acceptance of a PDA A = (Q,Σ,Γ, δ, q0, Z0, F). Fill in
the final instantaneous description for each of the following:

(a) {w | A accepts w by Final State} = {w | [q0, w, Z0] ⊢∗ [f, ϵ, α], f ∈ F, α ∈ Γ∗}
(b) {w | A accepts w by Empty Stack} = {w | [q0, w, Z0] ⊢∗ [q, ϵ, ϵ], q ∈ Q}
(c) {w | A accepts w by Final State and Empty Stack} = {w | [q0, w, Z0] ⊢∗ [f, ϵ, ϵ], f ∈ F}

3. (15 pts) Let S = {⟨M⟩ | M is a DFA that accepts wR whenever it accepts w}. Show that S
is decidable. (wR is the reversal of w.)
Answer (Proof sketch): If M is a DFA, let MR be the DFA that accepts the reverse of all the
strings thatM accepts. Such a DFA can be constructed by reverting each of the transitions in the
DFA and by switching the initial and the final states. Notice that ⟨M⟩ ∈ S ⇔ L(M) = L(MR)
⇔ M,MR are equivalent. The membership of ⟨M⟩ can be checked by using the equivalence
checking algorithm of DFA.

4. (15 pts) Let T = {⟨M⟩ | M is a Turing machine that accepts wR whenever it accepts w}.
Show that T is undecidable. Do not use Rice’s theorem. (Hint: Establish a reduction from the
Halting Problem.)

1

Answer: Let ATM = {⟨M,w⟩ | TMM accepts w}

5. (10 pts) Prove or disprove the following statement (≤m denote the many-one reduction):

L is recursive iff L ≤m 0∗1∗

Answer:
(⇒) If L is recursive (i.e. decidable), then we have a decider for L (i.e., a TM that always
halts which decides L). We can modify the decider to get a reduction to the language 0∗1∗

The decider takes a string w as input, and if w ∈ L, it accepts. Else it rejects. Now modify
the decider to output the string 01 on acceptance and the string 10 on rejection. This machine
suffices as a reduction machine. The output string is in 0∗1∗ iff w ∈ L.
(⇐) If L ≤m 0∗1∗, then we can use the reduction to reduce to the language 0∗1∗. This language
is regular and hence decidable. So L is decidable, by reduction to a decidable language.

6. (15 pts) Prove that the following language is not recursive:

Lcomp = {⟨M1,M2⟩ | L(M1) = L(M2)}

Note that the words in Lcomp encode two Turing machines M1 and M2 such that the language
of M1 is the complement of the language of M2. (Hint: To prove this result you may assume
that the language Lall = {⟨M⟩ | L(M) = Σ∗} is not recursive.)

7. (10 pts) Suppose that

• A ⊆ Σ∗ is NP -complete,

• B ⊆ Σ∗ is in P ,

• A ∩B = ∅;, and
• A ∪B ̸= Σ∗

Prove that A ∪B is NP -complete. (You need to prove that (1) A ∪B is in NP , and (2) A ∪B
is NP -hard.)
Answer:
(Proof of (1)) Let MA and MB be TMs operating in NP and P, respectively, accepting A and
B, respectively. For every x ∈ Σ∗, let M be a TM which first nondeterministically chooses MA

or MB to simulate on input x, and accepts accordingly. Clearly M , operating in NP, accepts
A ∪B.
(Proof of (2)) (Simplified version) From A ∪ B ̸= Σ∗, we let x be a word in Σ∗ − (A ∪ B).
Since A is NP-complete, every language in L in NP is reducible to A through a polynomial time
mapping say σL such that w ∈ L iff σL(w) ∈ A. We now define a polynomial time mapping δL
from L to A ∪B such that w ∈ L iff δL(w) ∈ (A ∪B). δ is defined as follows:

2

If δL(w) ̸∈ B, then δL(w) = σL(w);
if δL(w) ∈ B, then δL(w) = x, which is not in A ∪B. Note that B ∩A = ∅.
Hence, w ∈ L iff δL(w) ∈ (A ∪B), implying that A ∪B is NP-hard.

8. (6 pts) Assuming that the addition function x + y and the multiplication function x · y are
primitive recursive, prove that the following function is primitive recursive:
x⊖ y = x− y if x ≥ y; x⊖ y = 0 if x < y.
Answer: First note that the following function

P (x) = x− 1 if x ≥ 1; P (x) = 0, if x = 0

is primitive recursive since P (x) can be defined as P (0) = 0, and P (x + 1) = π2(P (x), x) = x.
Then let x⊖ y = T (x, y).

T (x, 0) = π1(x); T (x, y + 1) = P ◦ π2(x, T (x, y), y)

3

