Theory of Computation
Fall 2012, Final Exam. (Solutions)

Due: January 7, 2013

1. (20 pts) Consider the following classes of languages numbered (1)-(7)
(1) Empty (2) Finite (3) Regular (4) Context-free
(5) Recursive (6) Recursively enumerable (r.e.) (7) All languages
For each of the following languages specify the lowest-numbered class to which it surely belongs;
no need to provide any justification for your answers. For example, for a context-free language
L that is not regular, the right number is 4. Similarly, suppose a language L is recursively
enumerable, although it could possibly be recursive, the available information does not guarantee
that it is recursive, then the right answer is 6.

(a) The complement of a non-r.e. language.
Answer: 7

(b) The complement of a language in NP (i.e., nondeterministic polynomial time).
Answer: 5

(¢) The complement of a context-free language.
Answer: 5

(d) The intersection of a recursive language and a language that is not r.e..
Answer: 7

(e) The intersection of a recursive language and an r.e. language.
Answer: 6

(f) L={a'bcFd |i=k and j=1}
Answer: 5

(g) L={a'bcFd |i=1 and j =k}
Answer: 4

(h) L ={a't/ckd" | i x j x k x 1 is divisible by 5}
Answer: 3

(i) The complement of the language generated by the following grammar:
S — a;Sw;; S — €, where a; € X, w; € ¥, 1 <1 <k, for some k.
Answer: 4

(j) The complement of {a’bic’ | i > 0} (¥ = {a,b,c}).
Answer: 4

2. (9 pts) There are three ways to define acceptance of a PDA A = (Q,X%,T, 6, qo, Zo, F). Fill in
the final instantaneous description for each of the following:
(a) {w| A accepts w by Final State} = {w | [qo,w, Zo] F* [f,€,a], f € F,a € T'*}
(b) {w | A accepts w by Empty Stack} = {w | [qo,w, Zo] F* [q,€,¢€],q € Q}
(¢) {w | A accepts w by Final State and Empty Stack} = {w | [qo,w, Zo] F* [f, €, €], f € F'}

3. (15 pts) Let S = {(M) | M is a DFA that accepts w® whenever it accepts w}. Show that S
is decidable. (w’ is the reversal of w.)
Answer (Proof sketch): If M is a DFA, let M ¥ be the DFA that accepts the reverse of all the
strings that M accepts. Such a DFA can be constructed by reverting each of the transitions in the
DFA and by switching the initial and the final states. Notice that (M) € S < L(M) = L(M¥%)
& M, M are equivalent. The membership of (M) can be checked by using the equivalence
checking algorithm of DFA.

4. (15 pts) Let T = {(M) | M is a Turing machine that accepts w!* whenever it accepts w}.
Show that T is undecidable. Do not use Rice’s theorem. (Hint: Establish a reduction from the
Halting Problem.)

Answer: Let Ay = {(M,w) | TMM accepts w}
We reduce Aty to T'. It follows that T' is undecidable. Given (M, w), we need M’ such that
(M,w) € Atm <= (M') € T. The description of M’ is as follows.

(a) On input x, check if = = 01 or 10
(b) If # # 01 and = # 10, reject.

(c) If = = 01, accept.

(d)

d) If » = 10, simulate M on w. Accept r it M accepts w, reject = it M rejects w.

It is easy to see that L(M') = {01,10} if M accepts w and L(M') = {01} if M does not
accept w. So the above condition for reduction is satisfied, and hence Aty <, T'.

5. (10 pts) Prove or disprove the following statement (<,, denote the many-one reduction):
L is recursive iff L <,,, 0*1*

Answer:

(=) If L is recursive (i.e. decidable), then we have a decider for L (i.e., a TM that always
halts which decides L). We can modify the decider to get a reduction to the language 0*1*
The decider takes a string w as input, and if w € L, it accepts. Else it rejects. Now modify
the decider to output the string 01 on acceptance and the string 10 on rejection. This machine
suffices as a reduction machine. The output string is in 0*1* iff w € L.

(<) If L <,;, 0%1*, then we can use the reduction to reduce to the language 0*1*. This language
is regular and hence decidable. So L is decidable, by reduction to a decidable language.

6. (15 pts) Prove that the following language is not recursive:

Leomp = {{My, M) | L(My) = L(M2)}
Note that the words in L.omp encode two Turing machines M; and M, such that the language
of M; is the complement of the language of Ms. (Hint: To prove this result you may assume
that the language Loy = {(M) | L(M) = ¥*} is not recursive.)

Solution: We give a reduction from L, to Leopp. Since L,y is known to be non-recursive, it
follows that L.omp is non-recursive,

The reduction f works as follows: Given the machine M which is an instance of L., the
reduction f creates an instance of Loomp by setting My = M and choosing M3 as a Turing machine
with the empty language. We can choose M, to be any Turing machine without any final states,
e.g., a Turing with only an initial state, no final states and no transitions. The reduction f is easily
computable by a halting Turing machine. We observe that L(M;) = ¥* so L(M;) = L(M) if and
only if L(My) = ¥*. It follows that < My, My > is in L.y, if and only if M € Lay.

7. (10 pts) Suppose that

e A C¥*is NP-complete,
e BC¥*"isin P,

e ANB =10;, and

e AUB #¥*

Prove that AU B is N P-complete. (You need to prove that (1) AU B is in NP, and (2) AUB
is N P-hard.)

Answer:

(Proof of (1)) Let M4 and Mg be TMs operating in NP and P, respectively, accepting A and
B, respectively. For every x € ¥*, let M be a TM which first nondeterministically chooses M4
or Mp to simulate on input z, and accepts accordingly. Clearly M, operating in NP, accepts
AUB.

(Proof of (2)) (Simplified version) From AU B # ¥*, we let « be a word in ¥* — (A U B).
Since A is NP-complete, every language in L in NP is reducible to A through a polynomial time
mapping say oy, such that w € L iff o7, (w) € A. We now define a polynomial time mapping dy,
from L to AU B such that w € L iff 6, (w) € (AU B). § is defined as follows:

If 67 (w) & B, then dp(w) = o (w);
if ;(w) € B, then ér(w) = x, which is not in AU B. Note that BN A = {).
Hence, w € L iff 01, (w) € (AU B), implying that AU B is NP-hard.

. (6 pts) Assuming that the addition function x 4+ y and the multiplication function z -y are
primitive recursive, prove that the following function is primitive recursive:
roy=x—yifz>y; zxzoy=0ifz<y.

Answer: First note that the following function

Plz)=oc—1ifz>1;, Px)=0,ifz=0

is primitive recursive since P(z) can be defined as P(0) = 0, and P(z + 1) = ma(P(z),z) = a.
Then let z © y = T(x,y).

T(z,0) = mi(x); T(v,y+1)=Pom(x,T(x,y),y)

