Due: January 7, 2013

- 1. (20 pts) Consider the following classes of languages numbered (1)-(7)
	- **(1) Empty (2) Finite (3) Regular (4) Context-free**
	- **(5) Recursive (6) Recursively enumerable (r.e.) (7) All languages**

For each of the following languages specify the *lowest-numbered* class to which it *surely* belongs; no need to provide any justification for your answers. For example, for a context-free language L that is not regular, the right number is 4. Similarly, suppose a language L is recursively enumerable, although it could possibly be recursive, the available information does not guarantee that it is recursive, then the right answer is 6.

- (a) The complement of a non-r.e. language. **Answer:** 7
- (b) The complement of a language in NP (i.e., nondeterministic polynomial time). **Answer:** 5
- (c) The complement of a context-free language. **Answer:** 5
- (d) The intersection of a recursive language and a language that is not r.e.. **Answer:** 7
- (e) The intersection of a recursive language and an r.e. language. **Answer:** 6
- (f) $L = \{a^i b^j c^k d^l \mid i = k \text{ and } j = l\}$ **Answer:** 5
- (g) $L = \{a^i b^j c^k d^l \mid i = l \text{ and } j = k\}$ **Answer:** 4
- (h) $L = \{a^i b^j c^k d^l \mid i \times j \times k \times l \text{ is divisible by } 5\}$ **Answer:** 3
- (i) The complement of the language generated by the following grammar: $S \to a_i S w_i$; $S \to \epsilon$, where $a_i \in \Sigma$, $w_i \in \Sigma^*$, $1 \le i \le k$, for some *k*. **Answer:** 4
- (j) The complement of $\{a^i b^i c^i \mid i \geq 0\} \ (\Sigma = \{a, b, c\}).$ **Answer:** 4
- 2. (9 pts) There are three ways to define acceptance of a PDA $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Fill in the final instantaneous description for each of the following:
	- (a) $\{w \mid A \text{ accepts } w \text{ by } Final \text{ State}\} = \{w \mid [q_0, w, Z_0] \mid ^* [f, \epsilon, \alpha], f \in F, \alpha \in \Gamma^*\}$
	- (b) $\{w \mid A \text{ accepts } w \text{ by } Empty \text{ Stack}\} = \{w \mid [q_0, w, Z_0] \mid F^* [q, \epsilon, \epsilon], q \in Q\}$
	- (c) $\{w \mid A \text{ accepts } w \text{ by } Final \text{ State } and \text{ Empty } Stack\} = \{w \mid [q_0, w, Z_0] \mid \{w \mid f, \epsilon, \epsilon\}, f \in F\}$
- 3. (15 pts) Let $S = \{ \langle M \rangle \mid M \text{ is a DFA that accepts } w^R \text{ whenever it accepts } w \}.$ Show that *S* is decidable. $(w^R$ is the reversal of w .) **Answer** (Proof sketch): If *M* is a DFA, let M^R be the DFA that accepts the reverse of all the strings that *M* accepts. Such a DFA can be constructed by reverting each of the transitions in the DFA and by switching the initial and the final states. Notice that $\langle M \rangle \in S \Leftrightarrow L(M) = L(M^R)$ *⇔ M, M^R* are equivalent. The membership of *⟨M⟩* can be checked by using the equivalence checking algorithm of DFA.
- 4. (15 pts) Let $T = \{ \langle M \rangle \mid M \text{ is a Turing machine that accepts } w^R \text{ whenever it accepts } w \}.$ Show that *T* is undecidable. Do not use Rice's theorem. (Hint: Establish a reduction from the Halting Problem.)

Answer: Let $A_{TM} = \{(M, w) | TMM \text{ accepts } w\}$

We reduce A_{TM} to T. It follows that T is undecidable. Given $\langle M, w \rangle$, we need M' such that $\langle M, w \rangle \in A_{\mathsf{TM}} \Longleftrightarrow \langle M' \rangle \in T$. The description of M' is as follows.

- (a) On input x, check if $x = 01$ or 10
- (b) If $x \neq 01$ and $x \neq 10$, reject.
- (c) If $x = 01$, accept.
- (d) If $x = 10$, simulate M on w. Accept x if M accepts w, reject x if M rejects w.

It is easy to see that $L(M') = \{01, 10\}$ if M accepts w and $L(M') = \{01\}$ if M does not accept w. So the above condition for reduction is satisfied, and hence $A_{TM} \leq_m T$.

5. (10 pts) Prove or disprove the following statement $(\leq_m$ denote the many-one reduction):

L is recursive iff $L \leq_m 0^* 1^*$

Answer:

(*⇒*) If *L* is recursive (i.e. decidable), then we have a decider for *L* (i.e., a TM that always halts which decides *L*). We can modify the decider to get a reduction to the language 0^*1^* The decider takes a string *w* as input, and if $w \in L$, it accepts. Else it rejects. Now modify the decider to output the string 01 on acceptance and the string 10 on rejection. This machine suffices as a reduction machine. The output string is in 0^*1^* iff $w \in L$.

(\Leftarrow) If *L* ≤_{*m*} 0^{***}1^{*}, then we can use the reduction to reduce to the language 0^{***}1^{*}. This language is regular and hence decidable. So *L* is decidable, by reduction to a decidable language.

6. (15 pts) Prove that the following language is not recursive:

$$
L_{comp} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)} \}
$$

Note that the words in L_{conn} encode two Turing machines M_1 and M_2 such that the language of *M*¹ is the complement of the language of *M*2. (Hint: To prove this result you may assume that the language $L_{all} = \{ \langle M \rangle | L(M) = \Sigma^* \}$ is not recursive.)

Solution: We give a reduction from L_{all} to L_{comp} . Since L_{all} is known to be non-recursive, it follows that L_{comp} is non-recursive.

The reduction f works as follows: Given the machine M which is an instance of L_{all} , the reduction f creates an instance of L_{comp} by setting $M_1 = M$ and choosing M_2 as a Turing machine with the empty language. We can choose M_2 to be any Turing machine without any final states, e.g., a Turing with only an initial state, no final states and no transitions. The reduction f is easily computable by a halting Turing machine. We observe that $\overline{L(M_2)} = \Sigma^*$ so $L(M_1) = \overline{L(M_2)}$ if and only if $L(M_1) = \Sigma^*$. It follows that $\langle M_1, M_2 \rangle$ is in L_{comp} if and only if $M \in L_{all}$.

7. (10 pts) Suppose that

- $A \subseteq \Sigma^*$ is *NP*-complete,
- $B \subseteq \Sigma^*$ is in *P*,
- $A \cap B = \emptyset$; and
- $A \cup B \neq \Sigma^*$

Prove that $A \cup B$ is *NP*-complete. (You need to prove that (1) $A \cup B$ is in *NP*, and (2) $A \cup B$ is *NP*-hard.)

Answer:

(Proof of (1)) Let *M^A* and *M^B* be TMs operating in NP and P, respectively, accepting *A* and *B*, respectively. For every $x \in \Sigma^*$, let *M* be a TM which first nondeterministically chooses M_A or *M^B* to simulate on input *x*, and accepts accordingly. Clearly *M*, operating in NP, accepts *A ∪ B*.

(Proof of (2)) (Simplified version) From $A \cup B \neq \Sigma^*$, we let *x* be a word in $\Sigma^* - (A \cup B)$. Since *A* is NP-complete, every language in *L* in NP is reducible to *A* through a polynomial time mapping say σ_L such that $w \in L$ iff $\sigma_L(w) \in A$. We now define a polynomial time mapping δ_L from *L* to $A \cup B$ such that $w \in L$ iff $\delta_L(w) \in (A \cup B)$. δ is defined as follows:

If $\delta_L(w) \notin B$, then $\delta_L(w) = \sigma_L(w)$; if $\delta_L(w) \in B$, then $\delta_L(w) = x$, which is not in $A \cup B$. Note that $B \cap A = \emptyset$. Hence, $w \in L$ iff $\delta_L(w) \in (A \cup B)$, implying that $A \cup B$ is NP-hard.

8. (6 pts) Assuming that the addition function $x + y$ and the multiplication function $x \cdot y$ are primitive recursive, prove that the following function is primitive recursive: $x \ominus y = x - y$ if $x \geq y$; $x \ominus y = 0$ if $x < y$. **Answer:** First note that the following function

$$
P(x) = x - 1
$$
 if $x \ge 1$; $P(x) = 0$, if $x = 0$

is primitive recursive since $P(x)$ can be defined as $P(0) = \mathbf{0}$, and $P(x+1) = \pi_2(P(x), x) = x$. Then let $x \ominus y = T(x, y)$.

$$
T(x,0) = \pi_1(x); \quad T(x,y+1) = P \circ \pi_2(x,T(x,y),y)
$$