Theory of Computation

Final Exam, January 9, 2012

- (b) $L_2 = \{ \langle M \rangle | M \text{ is a TM that accepts all even numbers} \}$
- (c) $L_3 = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is finite} \}.$ (Sol.) C.

 $| \langle M \rangle | \text{steps} \}$

(Sol.) A.

- (d) $L_4 = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is infinite} \}.$ (Sol.) C.
- (e) $L_5 = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is an uncountably infinite set} \}$ (Sol.) A. The language is empty.
- (f) $L_6 = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } \epsilon \in L(M_1) \cup L(M_2) \}$. (Sol.) B
- (g) $L_7 = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } \epsilon \in L(M_1) \cap L(M_2) \}$. (Sol.) B.
- (h) $L_8 = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } \epsilon \in L(M_1) L(M_2) \}.$ (Sol.) C.
- (i) $L_9 = \{ \langle M \rangle | M \text{ is a TM, and there exists an input whose length is less than 100 on which } M \text{ halts} \}$ (Sol.) B.
- (j) $L_{10} = \{ \langle M \rangle | M \text{ is a TM and } M \text{ is the only TM that accepts } L(M) \}$ (Sol.) A. The language is empty.
- 3. (10 pts) Consider the following grammar:

$$S \to AB \mid BC \quad A \to AB \mid a \quad B \to CC \mid b \quad C \to BA \mid b$$

Apply the CYK algorithm to determine whether the string *ababa* is generated by the grammar. You need to draw the CYK table to show the computation.

(Sol.) Refer to the textbook or class notes for the solution of a similar problem.

- 4. (10 pts) For a Language $L \subseteq \Sigma^*$, define $reflect(L) = \{ww^R \mid \exists w \in L\}$ where w^R denotes the reverse of the string w.
 - (a) (4 pts) Consider $L_0 = \{0^i 1^i \mid i \geq 0\}$ and $L_1 = 0^* 1^*$. What are $reflect(L_0)$ and $reflect(L_1)$? Sol.) $reflect(L_0) = \{0^i 1^{2i} 0^i \mid i \geq 0\}$ and $reflect(L_1) = \{0^i 1^{2j} 0^i \mid i, j \geq 0\}$.
 - (b) (6 pts) Is the class of context-free languages closed under reflect? Justify your answer. (Sol.) L_0 is context-free. However, $reflect(L_0)$ is not context-free.
- 5. (10 pts) Prove that the language $L = \{a^i b^j c^k \mid j < i, j < k\}$ is NOT context-free.

Proof. Expecting a contradiction, assume L_1 is a CFL and let $p \in \mathbb{N}_1$ be its pumping length. Define $s = a^{p+1}b^pc^{p+1}$. Let uvxyz = s be a partitioning such that $|vxy| \le p$ and $|vy| \ge 1$. Since $|vxy| \le p$, vy cannot have a's, b's, and c's. Since $|vy| \ge 1$, it follows that vy does not have equal numbers of a's, b's, and c's. With this ruled out, there are only two other possibilities:

- Case 1: If vy has more a's or more c's than b's, then choose s' = uxz and observe that s' has at most as many a's or at most as many c's as b's (because more a's or more c's than b's were removed).
- Case 2: If vy has more b's than a's or than c's, then choose $s' = uv^2xy^2z$ and observe that s' has at least as many b's as a's or c's (because more b's were added than a's or c's).

In both cases $s' \notin L_1$, contradicting the pumping lemma. We conclude that L_1 is not context-free

6. (10 pts) For any language $L \subseteq \Sigma^*$, and any $u \in \Sigma^*$, let $u/L = \{v \in \Sigma^* | uv \in L\}$. Prove that if L is context-free, then u/L is also context-free for every $u \in \Sigma^*$.

(Hint: Let $u = a_1 \cdots a_k$, for some k, and let $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA accepting L. Construct a PDA M' to accept u/L.)

(Sol.) Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be an FA accepting only the word u. Construct the following PDA $M_2 = (Q_2, \Sigma, \Gamma, \delta_2, q_0^2, Z_0, F_2)$, where

- $Q_2 = Q \times Q_1$, and $q_0^2 = (q_0, q_1)$
- δ_2 is the following: if $(q, Y) \in \delta(p, a, X)$, and $q' \in \delta_1(p', a)$, then $((q, q'), Y) \in \delta_2((p, p'), \epsilon, X)$.
- $F = \emptyset$.

In words, M_2 is the "product automaton" of M and M_1 except that the input symbol is suppressed (i.e., symbol a is replaced by ϵ)

Now we construct a PDA M_3 by cascading M_2 and M using the following additional transitions: for every $(q, q') \in Q \times F_1$, add a transition $(q, q') \stackrel{\epsilon, X/X}{\to} q$.

Intuitively, what M_3 does is that it runs M_2 first until some $(q, q') \in Q \times F_1$ is reached (meaning that along this computation, the prefix is u in the corresponding computation of M.) Then M_2 goes directly from (q, q') to q using an ϵ transition while keeping the contents of the stack intact. Following that, M resumes its computation from state q.

The correctness of the above construction is easy to see.

- 7. (4 pts) Define context-sensitive grammars. (Sol.)
 - (Definition 1) A grammar is context-sensitive if all productions are of the form $x \to y$, where x, y are in $(V \cup T)^+$ and $|x| \le |y|$.
 - (Definition 2) A grammar is context-sensitive if all productions are of the form $xAy \to xvy$, where x, v, y are in $(V \cup T)^*$, $A \in V$.

8. (10 pts) Let $A, B \subseteq \{0, 1\}^*$ be r.e. languages such that $A \cup B = \{0, 1\}^*$ and $A \cap B \neq \emptyset$. Prove that $A \leq_m (A \cap B)$, where \leq_m denotes the many-one reduction. (Hint: Let M_1 be a TM accepting A and M_2 be a TM accepting B. Further, since we know that $A \cap B \neq \emptyset$, we know that some string y will be accepted by both M_1 and M_2 . Construct a mapping f that witnesses \leq_m , i.e., $x \in A \Leftrightarrow f(x) \in A \cap B$.)

Given an x, run M_1 and M_2 in parallel (using the technique discussed in class) (Case1) if M_1 accepts first, then since Σ^* and N are both countably infinite, the set $\{(y,i) \mid y \in \Sigma^*, i \in N\}$ is also countably infinite. For every (y,i) pair in an enumeration sequence of $\{(y,i) \mid y \in \Sigma^*, i \in N\}$ run M_1 and M_2 on input y for i steps until finding a z such that both M_1 and M_2 accept. (Note that since $A \cap B \neq \emptyset$, such a z must exist) then output z; i.e., f(x) = z.

(Case 2) if M_2 accepts first, then output x; i.e., f(x) = x.

(Sol.) Consider the following mapping f(x):

Note that since $A \cup B = \{0, 1\}^*$, one of Case 1 or Case 2 must hold. In case 2, it is easy to see that $x \in A$ iff $f(x) = x \in A \cap B$, since x is known to be in $B = L(M_2)$.

9. (6 pts) Suppose A is recursively enumerable and $A \leq_m \bar{A}$. Prove that A is recursive. (Sol.) First we claim that if $A \leq_m B$, then $\bar{A} \leq_m \bar{B}$. To see this, let g be a mapping that witnesses $A \leq_m B$. Then g also witnesses $\bar{A} \leq_m \bar{B}$.

Now if $A \leq_m \bar{A}$, then according to the above $\bar{A} \leq_m \bar{A} = A$. Hence, if A is r.e., so is \bar{A} . Therefore, both A and \bar{A} are recursive.