Theory of Computation Final Exam, Fall 2009

Name: _____ Student I.D.KEY.....

1. (24 pts) Determine whether the following classes of languages are closed under the specified operations. (Mark 'O' for yes; '×' for no. $Score = \{Right - \frac{1}{2}Wrong\}$.)

	CFL	recursive	r.e.
\cap	×	0	Ο
U	Ο	0	Ο
* (star)	Ο	0	Ο
complementation	×	0	×
reversal	Ο	0	Ο
concatenation	Ο	0	Ο
difference	×	0	×
homomorphism	Ο	×	Ο

(NOTE: To show recursive languages not closed under homomorphism, consider the language $L = \{ \langle M, w, a^i \rangle \mid \text{TM } M \text{ accepts } w \text{ in } i \text{ steps } \}$, which is recursive. However, if a homomorphism $h \text{ maps } a \text{ to } \epsilon$ while keeping the remaining symbols intact, $h(L) = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts } w \}$ which is not recursive.

2. (27 pts) Determine whether the following problems are decidable for the specified classes of languages. (Mark 'O' for decidable; '×' for undecidable. $Score = \{Right - \frac{1}{2}Wrong\}$.)

	CFL	recursive	r.e.
$w \in L?$	Ο	0	×
$L \neq \emptyset$?	Ο	Х	×
$L = \Sigma^*$?	×	Х	×
$L_1 = L_2?$	×	Х	×
$L_1 \subseteq L_2$?	×	Х	×
$L_1 \cup L_2 = \Sigma^*?$	×	Х	×
$L_1 \cap L_2 = \emptyset?$	×	Х	×
Is $L_1 = R$, for some given regular language R ?	×	Х	×
Is $L_1 \cap R = \emptyset$, for some given regular language R ?	Ο	×	×

3. (15 pts)

(a) (5 pts) Define (many-one) mapping reduction $L \leq_m L'$ formally, where $L \subseteq \Sigma^*$ and $L' \subseteq \Gamma^*$.

(Ans.) There exists a total computable function $f: \Sigma^* \to \Gamma^*$ such that $w \in L$ iff $f(w) \in L'$.

(b) (10 pts) Let $B = \{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) \neq \{0^n 1^n \mid n \geq 0\}\}$. Suppose we want to show that $L_u \leq_m B$, where $L_u = \{\langle M, w \rangle \mid \text{Turing machine } M \text{ accepts } w\}$. We use the following mapping from (M, w) to M':

Given M and w, construct M' = "On input x" (1) If $x \in \{0^n 1^n \mid n \ge 0\}$, $M' \dots ACCEPTS$ (2) If $x \notin \{0^n 1^n \mid n \ge 0\}$, run M on wIf $M \dots ACCEPTS$, then $M' \dots ACCEPTS$

Fill in "accepts" or 'rejects" for each of the above three blanks. Then we can conclude that

- If M accepts w, then $L(M') \dots \neq \{0^n 1^n \mid n \ge 0\}$
- If M does not accept w, then $L(M') \dots = \{0^n 1^n \mid n \ge 0\}$
- 4. (9 pts) Given an alphabet Σ , is it true that $L(\subseteq \Sigma^*)$ is recursive <u>if and only if</u> $L \leq_m 011^*$? Justify your answer in a rigorous way.

(Ans.) Define the following function $f : \Sigma^* \to \{01, 11\}$ with f(w) = 01 if $w \in L$; otherwise, f(w) = 11. Clearly f is a total computable function since L is recursive. (One can think of f as a TM that decides the membership of L, and if accepts (resp., rejects), outputs 01 (resp., 11).) Hence, $L \leq_m 011^*$.

5. (10 pts) A *palindrome* is a string x such that $x = x^R$ (e.g., *abccba*). Given a context-free language L, show that it is undecidable whether L contains a palindrome. (Hint: use PCP.)

(Ans.) Let $\{(x_i, y_i) \mid 1 \leq i \leq n\}$ be an instance of the PCP problem, where $x_i, y_i \in \Sigma^*$. We construct the following CFG G = (V, T, P, S)

(a) $V = \{S, S_x S_y\} \cup \{X_i, Y_i, 1 \le i \le n\}$

(b)
$$T = \{a_i, 1 \le i \le n\} \cup \{\#\} \cup \Sigma$$

- (c) *P*:
 - $S \to S_x \# S_y$

•
$$S_x \to a_i S_x x_i \mid a_i x_i, \ 1 \le i \le n$$

• $S_y \to (y_i)^R S_y a_i \mid (y_i)^R a_i, \ 1 \le i \le n$

It is not hard to see that G generates a palindrome iff the PCP instance has a solution.

6. (15 pts)

(a) (5 pts) State Ogden's lemma.

(b) (10 pts) Use Ogden's lemma to prove that $L = \{a^n b^n c^i \mid i \neq n\}$ is not context-free. (Hint: consider a string of the form $a^n b^n c^{n+n!}$.)

(Ans.) If $L \subseteq \Sigma^*$ is context-free, then there exists a constant n such that for every $w \in L$ with $|w| \ge n$ and we mark n or more positions of w, w can be written as w = uvxyz, for some u, v, x, y, z, such that

- (a) v and y together have at least one marked position,
- (b) vxy has at most n marked positions, and
- (c) for all $i \ge 0$, $uv^i xy^i z \in L$

Assume that $L = \{a^n b^n c^i \mid i \neq n\}$ were context-free. Let n be the constant guaranteed by Ogden's lemma. Consider $a^n b^n c^{n+n!}$ ($\in L$), and we mark all the a's in a^n . Suppose $a^n b^n c^{n+n!} = uvxyz$. Consider the following cases:

- (a) v (or y) contains more than one type of symbols. Then uv^2xy^2z is clearly not in L,
- (b) vxy is in a^n . Then uv^2xy^2z contains more a than b, which is clearly not in L,
- (c) v is in a^n and y is in b^n but $|v| \neq |y|$. Clearly uv^2xy^2z is not in L,
- (d) v is in a^n and y is in b^n and |v| = |y| = p, where $1 \le p < n$. Let $v = a^p$, $y = b^p$. Consider $uv^{1+\frac{n!}{p}}xy^{1+\frac{n!}{p}}z = a^{n-p}(a^p)^{1+\frac{n!}{p}}b^{n-p}(b^p)^{1+\frac{n!}{p}}c^{n+n!} = a^{n+n!}b^{n+n!}c^{n+n!} \notin L$.