Theory of Computation Final Exam, Fall 2009

Name: *..* Student I.D. *..........KEY....................*

1. (24 pts) Determine whether the following classes of languages are closed under the specified operations. (Mark '*O*' for yes; ' \times ' for no. *Score* = {*Right* $-\frac{1}{2}W$ *rong*}.)

(NOTE: To show recursive languages not closed under homomorphism, consider $\text{the language } L = \{ \langle M, w, a^i \rangle \mid \text{ TM } M \text{ accepts } w \text{ in } i \text{ steps } \}, \text{ which is recursive.}$ **However, if a homomorphism** *h* maps a **to** ϵ while keeping the remaining symbols **intact,** $h(L) = \{(M, w) | \textbf{T}M M \text{ accepts } w\}$ which is not recursive.

2. (27 pts) Determine whether the following problems are decidable for the specified classes of languages. (Mark '*O*' for decidable; ' \times ' for undecidable. *Score* = {*Right* $\frac{1}{2}Wrong$ }.)

3. (15 pts)

(a) (5 pts) Define *(many-one) mapping reduction* $L \leq_m L'$ formally, where $L \subseteq \Sigma^*$ and $L' \subseteq \Gamma^*$.

(Ans.) There exists a total computable function $f: \Sigma^* \to \Gamma^*$ such that $w \in L$ iff $f(w) \in L'$.

(b) (10 pts) Let $B = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \neq \{0^n1^n \mid n \geq 0\} \}.$ Suppose we want to show that $L_u \leq_m B$, where $L_u = \{ \langle M, w \rangle \mid$ Turing machine M accepts w $\}$. We use the following mapping from (*M, w*) to *M′* :

Given *M* and *w*, construct $M' = "On input x"$ (1) If *x ∈ {*0 *n*1 *n | n ≥* 0*}*, *M′ACCEP T S........................* (2) If $x \notin \{0^n1^n \mid n \ge 0\}$, run *M* on *w* If *MACCEP T S........................*, then *M′ACCEP T S........................*

Fill in "accepts" or 'rejects" for each of the above three blanks. Then we can conclude that

- *•* If *M* accepts *w*, then *L*(*M′*) *........ ̸*= *{*0 *n*1 *n | n ≥* 0*}......................................*
- *•* If *M* does not accept *w*, then *L*(*M′*) *........* = *{*0 *n*1 *n | n ≥* 0*}......................................*
- 4. (9 pts) Given an alphabet Σ , is it true that $L(\subseteq \Sigma^*)$ is recursive if and only if $L \leq_m 011^*$? Justify your answer in a rigorous way.

(Ans.) **Define the following function** $f : \Sigma^* \to \{01, 11\}$ with $f(w) = 01$ if $w \in \mathbb{R}$ *L***;** otherwise, $f(w) = 11$. Clearly *f* is a total computable function since *L* is **recursive. (One can think of** *f* **as a TM that decides the membership of** *L***, and if accepts (resp., rejects), outputs** 01 **(resp.,** 11 **).) Hence,** $L \leq_m 011^*$.

5. (10 pts) A *palindrome* is a string x such that $x = x^R$ (e.g., *abccba*). Given a context-free language *L*, show that it is undecidable whether *L* contains a palindrome. (Hint: use PCP.)

 $(Ans.)$ Let $\{(x_i, y_i) \mid 1 \leq i \leq n\}$ be an instance of the PCP problem, where $x_i, y_i \in \Sigma^*$. We construct the following CFG $G = (V, T, P, S)$

 $\{X_i, Y_i, 1 \leq i \leq n\}$

(b)
$$
T = \{a_i, 1 \le i \le n\} \cup \{\#\} \cup \Sigma
$$

- **(c)** *P***:**
	- $S \rightarrow S_r \# S_v$

•
$$
S_x \rightarrow a_i S_x x_i \mid a_i x_i, 1 \leq i \leq n
$$

● $S_y \to (y_i)^R S_y a_i \mid (y_i)^R a_i, 1 \le i \le n$

It is not hard to see that *G* **generates a palindrome iff the PCP instance has a solution.**

- 6. (15 pts)
	- (a) (5 pts) State *Ogden's lemma*.

(b) (10 pts) Use Ogden's lemma to prove that $L = \{a^n b^n c^i \mid i \neq n\}$ is not context-free. (Hint: consider a string of the form $a^n b^n c^{n+n!}$.)

(Ans.) If $L \subseteq \Sigma^*$ is context-free, then there exists a constant *n* such that for **every** $w \in L$ **with** $|w| \geq n$ and we mark *n* or more positions of w , w can be written as $w = uvxyz$, for some u, v, x, y, z , such that

- **(a)** *v* **and** *y* **together have at least one marked position,**
- **(b)** *vxy* **has at most** *n* **marked positions, and**
- (c) for all $i \geq 0$, $uv^i xy^i z \in L$

Assume that $L = \{a^n b^n c^i \mid i \neq n\}$ were context-free. Let *n* be the constant g uaranteed by Ogden's lemma. Consider $a^nb^nc^{n+n!}$ ($\in L$), and we mark all the *a*'s in a^n . Suppose $a^n b^n c^{n+n!} = uvxyz$. Consider the following cases:

- (a) *v* (or *y*) contains more than one type of symbols. Then uv^2xy^2z is clearly **not in** *L***,**
- (b) *vxy* is in a^n . Then uv^2xy^2z contains more *a* than *b*, which is clearly not in *L*,
- (c) v is in a^n and y is in b^n but $|v| \neq |y|$. Clearly uv^2xy^2z is not in L,
- (d) v is in a^n and y is in b^n and $|v|=|y|=p$, where $1 \leq p < n$. Let $v=a^p$, $y=b^p$. Consider $uv^{1+\frac{n!}{p}}xy^{1+\frac{n!}{p}}z = a^{n-p}(a^p)^{1+\frac{n!}{p}}b^{n-p}(b^p)^{1+\frac{n!}{p}}c^{n+n!} = a^{n+n!}b^{n+n!}c^{n+n!} \notin L$.