- 1. (15 pts) True or False? Give a short yet convincing argument.
 - (1) Let f be any morphism from Σ* to Σ*. Then for any language R over Σ, R is a context-free language if and only if {f(w) : w ∈ R} is a context-free language.
 Sol. False. Consider f(a) = f(b) = ε. Then f({aⁿbⁿaⁿ | n ≥ 1} = {ε}, which is CF. But {aⁿbⁿaⁿ | n ≥ 1} is not CF.
 - (2) Given a context-free language L and a regular language R, checking " $L R = \emptyset$?" is decidable. The "-" operator denotes the set difference.

Sol. True. $L - R = L \cap \overline{R}$, which is CF. It is decidable whether a CFL is empty or not. @

- (3) $A_{TM} \leq_m \{0^n 1^n | n \geq 0\}$, where \leq_m stands for the many-one reduction. Sol. False. $\{0^n 1^n | n \geq 0\}$ is CF, which is a recursive language. If the reduction holds, then A_{TM} is recursive, which is a contradiction.
- (4) If $co-NP \subseteq NP$, then co-NP = NP. Here co-NP is the complement of NP. Sol. True. Consider an $X \in NP$, then $\overline{X} \in co - NP$ (by definition), and hence, $\overline{X} \in NP$ (since $co-NP \subseteq NP$). Therefore, $X \in co - NP$ (by definition). We thus have $X \in NP \Rightarrow X \in co - NP$, which implies $NP \subseteq co - NP$.
- (5) The language { $\langle M, x, 1^t \rangle | M$ is a deterministic TM which accepts x in t steps } is in P (i.e., polynomial time). Sol. True. Design a DTM M', when given $M, x, 1^t$ as its input, simulate M on x (in a way like a universal TM) for at most t steps and accept if M(x) accepts within that time bound.
- 2. (15 pts) Consider the following grammar G in Chomsky Normal Form:

 $S \to a \mid YZ;$ $Z \to a \mid ZY;$ $Y \to b \mid ZZ \mid YY$

where S is the start symbol. Use the CYK (dynamic programming) algorithm to determine whether the string babba is in L(G) or not. To this end, we define X_{ij} to be the set of nonterminals that can derive the substring from positions i to j, where $i \leq j$. For example, the substring from positions 2 to 4 is *abb*, and from positions 4 to 5 is *ba*. Complete those X_{ij} entries in the following table:

	X_{ij}	1	2	3	4	5	Hence, $babba \notin L(G)$.
	1	Y	S	S	S	Y	
ſ	2	-	S, Z	Z	Z	Y	
	3	-	-	Y	Y	S	
	4	-	-	-	Y	S	
	5	-	-	-	-	S, Z	

3. (20 pts) Consider the following language classes numbered as (C1)-(C7).

(C1) Empty; (C2) Finite (FI); (C3) Regular (REG); (C4) Context-free (CF);

(C5) Recursive (rec); (C6) Recursively enumerable (r.e.); (C7) All languages.

For each of the following languages, give the *lowest numbered* class to which it <u>surely</u> belongs. No explanations needed. For example, if a language is context-free but not regular, then answer "C4".

Sol. (1) C5 (Consider $\Sigma^* - \overline{\{a^n b^n c^n \mid n \ge q\}}$ (2) C5 $(L_1 - L_2$ is also recursive) (3) C7 (Consider $\Sigma^* - A_{TM}$) (4) C6 $(L_1 - L_2$ is also r.e.) (5) C7 (Consider $\Sigma^* - A_{TM}$) (6) C5 (the language is recursive but not CF) (7) C7 (Consider EQ_{TM}) (8) C5 $(L_1 \cap L_2$ is also recursive) (9) C5 (Consider $\{a^n b^n c^n \mid n \ge q\}$ whose complement is CF) (10) C5 (rec is closed under Kleene star).

- 4. (25 pts) For each of the following languages, decide whether it is decidable or not. Give a convincing argument. To show a language to be undecidable, do not use Rice's theorem. TMs are assumed to be deterministic.
 - (a) $L_1 = \{ \langle M_1, M_2 \rangle \mid |L(M_1) \cap L(M_2)| = 2 \}$, i.e., the set of pairs of TMs such that the intersection of their languages contains exactly two strings.
 - **Sol.** Undecidable. Given $\langle M, x \rangle$,
 - M_1 : on input y, run M on x, accepts if M accepts x;
 - M_2 : a TM that accepts two strings.

Clearly, $\langle M, x \rangle \in A_{TM}$ @iff $|L(M_1) \cap L(M_2)| = 2$, i.e., $\langle M_1, M_2 \rangle \in L_1$.

- (b) $L_2 = \{ \langle M \rangle \mid M \text{ halts on at least one input } \}.$ Sol. Undecidable. Given $\langle M, x \rangle$,
 - M': on input y, run M on x.

Clearly, $\langle M, x \rangle \in HALT_{TM}$ iff $\langle M' \rangle \in L_2$.

(c) $L_3 = \{ \langle M, x \rangle \mid M \text{ reads from more than 100 tape cells in accepting input } x \}.$ Sol. Undecidable. Given $\langle M, x \rangle$,

• M', ϵ : move right to read 100 symbols and then reset its head; then run M on x, accept if M accepts x.

Clearly, $\langle M, x \rangle \in A_{TM}$ iff $\langle M', \epsilon \rangle \in L_3$.

(d) $L_4 = \{ \langle M \rangle \mid M \text{ never enters a specific state on any input } \}.$ Sol. Undecidable. Given $\langle M, x \rangle$,

• M': on input y, run M on x, if M accepts x then enters a specific new state s not in M.

Clearly, $\langle M, x \rangle \in A_{TM}$ iff $\langle M' \rangle \in \overline{L_4}$.

- (e) $L_5 = \{ \langle M \rangle \mid M \text{ enters some state more than 100 times when give a blank tape } \}$. Sol. Decidable. Suppose M has n states. Simulate M on the blank tape,
 - Case 1: *M* halts before 100*n* steps. if *M* enters some state more than 100 times, then answer "YES"; otherwise answer "NO".
 - Case 2: *M* does not halt after 100*n* steps, answer "YES".
- 5. (15 pts)
 - (a) (7 pts) Consider UNARY-PCP which is the subset of PCP where the instance's alphabet Σ has a single letter. That is, given $\{(x_1, y_1), ..., (x_k, y_k)\}$, where $x_i, y_i \in \{a\}^*$, decide whether there exists $i_1, i_2, ..., i_h$ such that $x_{i_1}x_{i_2}\cdots x_{i_h} = y_{i_1}y_{i_2}\cdots y_{i_h}$. Is Unary-PCP decidable? Justify your answer.

Sol. Given a set of dominoes with a string in a^* on the top and another string in a^* on the bottom, i.e., of the form (a^i, a^j) , we decide whether this set is in PCP as follows.

- If a domino of type (a^i, a^i) exists, answer "YES";
- If every domino of type (a^i, a^j) has i > j (or i < j), answer "NO";
- Otherwise, there must exist two domino types (a^{b+c}, a^b) and (a^d, a^{d+e}) with c, e > 0. As e copies of the first domino and c copies of the second give up a match because there are be + ce + cd a's in the top string and the bottom string. Thus, answer "YES".
- (b) (8 pts) Consider *Binary-PCP* which is the subset of PCP when $\Sigma = \{0, 1\}$. Is Binary-PCP decidable? Justify your answer.

Sol. Suppose the original PCP P is over alphabet $\{a_1, a_2, ..., a_n\}$. We define a PCP P' over alphabet $\{0, 1\}$ in the following way. PCP P' is constructed from P by replacing symbol a_i by 10^i . For example, a pair $(a_3a_2, a_1a_4a_2)$ maps to (1000100, 1010000100).

- 6. (10 pts) Suppose we want to use the pumping lemma to prove that $L = \{x \in \{a, b\}^* \mid N_a(x) < N_b(x) < 2N_a(x)\}$ is not context-free, where $N_a(x)$ (resp., $N_b(x)$) is the number of *a*'s (resp., *b*'s) in *x*. The proof starts with picking the word $s = a^{p+1}b^{2p+1} \in L$, where *p* is the pumping constant. Now *s* can be partitioned into *uvxyz* meeting the conditions of the pumping lemma. The arguments for the cases $vxy = a^j$, $vxy = b^j$, and *v* (or *y*) contains a mixture of *a* and *b* are quite simple. To complete the proof, show in detail when vxy contains both *a*'s and *b*'s. (Hint: consider the two cases $N_a(vy) > N_b(vy)$ and $N_a(vy) \leq N_b(vy)$.) Sol.
 - If $N_a(vy) > N_b(vy)$ then we can pump down to get uxz, for which $N_a(uxz) = p + 1 j$ and $N_b(uxz) = 2p + 1 k$ with j < k. But 2(p+1-j) = 2p + 1 + 1 - 2j < 2p + 1 - k, since 1 - 2j < -k whenever j < k, so uxz is not in L.
 - If $N_a(vy) \leq N_b(vy)$, on the other hand, we can pump up to get a number of b's more than the number of a's: if we use the string $uv^p xy^p z$, $N_a(uv^p xy^p z) = p + 1 + (p 1)j$ and $N_b(uv^p xy^p z) = 2p + 1 + (p 1)k$ where $k \geq j$. Then $2N_a(uv^p xy^p z) = 2p + 2 + 2j(p 1) < 2p + 1 + (p 1)k$.