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Probabilistic Polynomial-Time TM

New kind of NTM, in which
each nondeterministic step is a
coin flip: has exactly 2 next
moves, to each of which we
assign probability 1

2

To each branch of length k, we
assign probability (1

2)k

Now we can talk about
probability of acceptance or
rejection, on input w.
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Probabilistic Polynomial-Time TM (Cont’d)

Probability of acceptance =∑
accepting path σ Prob(σ)

Probability of rejection =∑
rejecting path σ Prob(σ)

Example:
I Prob. Acceptance =

1
16 + 1

8 + 1
4 + 1

8 + 1
4 = 13

16
I Prob. Rejection = 1

16 + 1
8 = 3

16

We consider TMs that halt
(either accept or reject) on
every branch - deciders.
So the two probabilities total 1.
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Probabilistic TM

Definition 1
A probabilistic TM (PTM) is a TM with distinguished states called
coin-tossing states. For each coin-tossing state, the finite state control
specifies two possible next states. The computation of a PTM is
deterministic except that in coin-tossing states the machine tosses an
unbiased coin to decide between the two possible next states.

Another way to view PTM
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Error Probability

Definition 2
Given a PTM M and an input x, x ∈ L(M) iff Prob(M accepts x) > 1

2 .

Definition 3
The error probability of a PTM M is a function eM(x)=Prob{M gives
the wrong answer on x}

Definition 4
A PTM M is with bounded error prob. if ∃ε < 1

2 , eM(x) ≤ ε, for all x.

We write M(x) = 1 (resp., =0) for M accepts (resp., rejects) x.
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Probabilistic TMs Accepting r.e. Sets

Theorem 5
Every r.e. set is accepted by some PTM with finite average running time.

Proof.
Let W be an r.e. set and let M be a DTM accepting W. Construct the
following PTM M′

1 repeat
2 simulate one step of M(x)

3 if M(x) accepted at last step then accept
4 until cointoss()=”heads”
5 if cointoss()=”heads” the accept else reject

Clearly if x 6∈W, M′ terminates only at line 5. In this case, the prob= 1
2 ,

so x 6∈ L(M′). If x ∈W, ...
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The classes RP and coRP

Definition 6
A language L ∈ RP (Randomized Polynomial Time), iff a probabilistic
Polynomial-time TM M exists, such that

x ∈ L⇒ Prob(M(x) = 1) ≥ 1
2

x 6∈ L⇒ Prob(M(x) = 1) = 0

Definition 7
A language L ∈ co-RP, iff a probabilistic Polynomial-time TM M exists,
such that

x ∈ L⇒ Prob(M(x) = 1) = 1
x 6∈ L⇒ Prob(M(x) = 0) ≥ 1

2

These two classes complement each other, i.e., coRP = {L̄ | L ∈ RP}.
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Comparing RP with NP

Let RL be the relation defining the witness/guess for L for a
certain TM.
NP:

I x ∈ L⇒ ∃y, (x, y) ∈ RL
I x 6∈ L⇒ ∀y, (x, y) 6∈ RL

RP:
I x ∈ L⇒ Prob((x, r) ∈ RL) ≥ 1

2
I x 6∈ L⇒ ∀r, (x, r) 6∈ RL

Obviously, RP ⊆ NP
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Amplification

The constant 1
2 in the definition of RP is arbitrary.

If we have a probabilistic TM that accepts x ∈ L with probability
p < 1

2 , we can run this TM several times to ”amplify” the
probability.
If x 6∈ L, all runs will return 0.
If x ∈ L, and we run it n times than the probability that none of
these accepts is
Prob(Mn(x) = 1) = 1-Prob(Mn(x) 6= 1) = 1-Prob(M(x) 6= 1)n =
1-(1-Prob(M(x) = 1))n = 1− (1− p)n
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Alternative Definitions for RP

Definition 8
L ∈ RP1 iff ∃ probabilistic Poly-time TM M and a polynomial p(.), s.t.

x ∈ L⇒ Prob(M(x) = 1) ≥ 1
p(|x|)

x 6∈ L⇒ Prob(M(x) = 1) = 0

Definition 9
L ∈ RP2 iff ∃ probabilistic Poly-time TM M and a polynomial p(.), s.t.

x ∈ L⇒ Prob(M(x) = 1) ≥ 1− 2−p(|x|)

x 6∈ L⇒ Prob(M(x) = 1) = 0

Claim: RP1 = RP2
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The class PP

Definition 10
L ∈ PP (Polynomial Probabilistic Time) iff there exists a
polynomial-time probabilistic TM M, such that ∀x ∈ L:

if x ∈ L, Prob(M(x) = 1) > 1
2 , and

if x 6∈ L, Prob(M(x) = 1) ≤ 1
2 .
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The class BPP

Definition 11
L ∈ BPP (Bounded-Error Polynomial Probabilistic Time) iff there exists
a polynomial-time probabilistic TM M, such that ∀x ∈ L:
Prob(M(x) = χL(x)) ≥ 2

3 , where
χL(x) = 1 if x ∈ L, and
χL(x) = 0 if x 6∈ L.

Note: The BPP machine success probability is bounded away from
failure probability.

Theorem 12
If L ∈ BPP, then there exists a probabilistic polynomial TM M′, and a
polynomial p(n) s.t. ∀x, Probr∈{0,1}p(n)(M′(x, r) 6= χL(x)) < 1

3p(n)
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The class ZPP

Definition 13
L ∈ ZPP (Zero-Error Polynomial Probabilistic Time) iff there exists a
polynomial-time probabilistic TM M, such that ∀x ∈ L:
M(x) = {0, 1,⊥},

Prob(M(x) = ⊥) < 1
2 , and

Prob(M(x) = χL(x) ∨M(x) = ⊥) = 1

Prob(M(x) = χL(x)) > 1
2

The symbol ⊥ is ”I don’t know”.

The value 1
2 is arbitrary and can be replaced by 2−p(|x|) or 1− 1

p(|x|) .
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ZPP = RP ∩ coRP

Let L ∈ ZPP, M be the PTM that recognizes L.
Define M′(x) =

I let b = M(x)
I b = ⊥ then return 0, else return b

If x 6∈ L, M′(x) will never return 1.
If x ∈ L, Prob(M′(x) = 1) > 1

2 , as required.
ZPP ⊆ RP
The same way, ZPP ⊆ coRP.
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ZPP = RP ∩ coRP

Let L ∈ RP ∩ coRP, MRP and McoRP be the PTMs that recognize L
according to RP and coRP.
Define: M′(x) =

I if MRP = YES, return 1
I if McoRP = NO, then return 0, else return ⊥

MRP(x) never returns YES if x 6∈ L, and McoRP(x) never returns NO
if x ∈ L. Therefore, M′(x) never returns the opposite of χL(x).

The probability that MRP and McoRP are both wrong < 1
2 ⇒

Prob(M′(x) = ⊥) < 1
2 .

RP ∩ coRP ⊆ ZPP
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NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ RP:
• if x ∈ L : at least 75%
• if x < L : all
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TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
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• if x ∈ L : at least 75%
• if x < L : all



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ coRP:
• if x ∈ L : all
• if x < L : at least 75%



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ coRP:
• if x ∈ L : all
• if x < L : at least 75%



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ ZPP:
• if x ∈ L : no
• if x < L : no



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ ZPP:
• if x ∈ L : no
• if x < L : no



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ BPP:
• if x ∈ L : at least 75%
• if x < L : at least 75%



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ BPP:
• if x ∈ L : at least 75%
• if x < L : at least 75%



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ PP:
• if x ∈ L : at least 75%
• if x < L : less than 75%



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ PP:
• if x ∈ L : at least 75%
• if x < L : less than 75%



Relationship among Probabilistic Classes
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Relationship among Probabilistic Classes

Where does BPP fit in?
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Some Notes

Probabilistic classes with ones-sided error - RP and coRP - are
common.
ZPP defines random computations with zero-sided error, but
probabilistic runtime.
Many BPP algorithms have been de-randomised successfully
Many experts believe that (Conjecture)

P = ZPP = RP = RP = BPP ⊂ PP

BPP = P is equivalent to the existence of strong pseudo-random
number generators, which many experts consider likely
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