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Intractability

@ Recall
P C NP C PSPACE = NSPACE.

@ Yet we have not proved any intractable problem.
» A problem isintractable if it cannot be solved in polynomial time.

@ The most difficult problem appears to be TQBF € PSPACE.
e But we do not know if P = PSPACE.
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Linear Speedup

Theorem 1

Suppose TM M decides language L in time f (n). Then for any e > 0, there
exists TM M’ that decides L in time ¢ - f(n) + n + 2.

Proof Idea:
@ compress input onto fresh tape:
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Linear Speedup (cont’d)

e simulate M, m steps at a time
|b|b ‘a ‘a|b|q ‘b‘u‘a|a ‘b‘
m 1] m
| abb ‘ aab | aba ‘ aab | aba ‘
_/|:>

-4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

-2 (L,Ror R,L) to make M’s changes

@ accounting:

part 1 (copying): n + 2 steps
part 2 (simulation): 6(f(n)/m)
setm=6/¢c

total: € - f(n) +n+2
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Space Construcibility

Definition 2

f N — Nwith f(n) at least O(Ign) is called space constructible if the
function that maps 1" to the binary representation of f(n) is
computable in space O(f (n)).

@ That s, f is space constructible if there is an O(f (1)) space TM that
always halts with the binary representation of f(n) on input 1".
» Asusual, the O(f(n)) space TM has two tapes when f (1) € o(n).

Example 3

lg n is space constructible.

Proof.

On input 1", the TM counts the number of 1’s in binary representation
on its work tape. lg n is the number of bits in the binary representation
of n. The TM then computes lg n in binary representation. O
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Space Constructibility

o Intuitively, a space O(f (1)) TM should be more powerful than a
space O(g(n)) TM when g(n) € o(f(n)).
@ We would like to prove it by diagonalization.
e However, the difference may be very hard to compute.
» Thus diagonalization fails.

@ Space constructibility allows us to avoid the problem.
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Recall the Diagonalization method for proving the

halting problem

Program M Program T’
Program T O*B
Yes
Y || copy » O
M O
No
Question:
M > Program M — Halt 2

@ Halt: T enters ”Yes” = Not Halt

@ Not Halt: T enters "No” = Halt
More on Intractability
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Space Hierarchy Theorem

Theorem 4

For any space constructible function f : N — N, there is a language A
decidable in O(f (n)) space but not in o(f (n)) space.

Proof.

Consider language L = {(M)10* | M rejects (M)10* using < f(n)
space }.

Consider D = “On input w:

© Compute f(|w|) by space constructibility and mark off this much
tape. If D ever attempts to use more space, reject.

@ If wis not of the form (M)10* for some TM M, reject.
@ Simulate M on w. If the simulation takes more than 2/(") M-steps,
reject.

Q If M accepts, reject; if M rejects, accept.”
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Space Hierarchy Theorem

Proof (cont’d).

In Step 3, D simulates M in D’s tape alphabet. The simulation hence
introduces a constant factor of overhead (independent of |w|). That is,
if M runs in g(n) space, D runs in dg(n) space for some constant d.
Clearly, D is an O(f (1)) space TM. We next argue that L cannot be
decided in o(f (n)).

Suppose a TM M’ decides L in space g(n) for some g(n) € o(f(n)). Since
g(n) € o(f(n)), there is an ng that dg(n) < f(n) for every n > ny.
Consider (M')10™. Since dg(ng) < f(ng), M’ accepts (M')10™ if and
only if M’ rejects (M')10™. O
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Space Hierarchy Theorem

Corollary 5

Let f1,f> : N — Nwith f1(n) € o(f2(n)) and f, space constructible.
SPACE(f,(n)) C SPACE(f>(n)).

@ We can show n°‘ is space constructible for any ¢ € Q=0.

@ Observe that for any €1, ¢, € R=9 with ¢; < e, there are
C1,C € on that 0 < €1 < ¢1 < 2 < €. Therefore

Corollary 6
Forany e1,e; € Rwith0 < €1 < €3, SPACE(n“) C SPACE(n®).
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More Applications of Space Hierarchy Theorem

Corollary 7
NL C PSPACE.

Proof.
By Savitch’s theorem, NL C SPACE(lg? n). By space hierarchy theorem,
SPACE(lg*n) C SPACE(n). O

@ Recall that TQBF is PSPACE-complete. Hence TQBF ¢ NL.

Corollary 8
PSPACE C EXPSPACE = U SPACE(2"™).

@ So far, we know
NL C P C NP C PSPACE C EXPTIME C EXPSPACE.
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Time Constructibility

Definition 9

t : N — N with t(n) at least O(n1gn) is called time constructible if the
function that maps 1" to the binary representation of ¢(n) is
computable in time O(t(n)).

e That s, t(n) is time constructible if there is an O(t(n)) time TM that
always halts with the binary representation of ¢(n) on input 1".

Example 10

n+/n is time constructible.

Proof.

On input 1", a TM counts the number of 1’s in binary representation.
This takes time O(nlgn). |ny/n| in binary representatino can be
computed in O(n lgn) time since the input is now of length O(Ign). [
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Time Hierarchy Theorem

Theorem 11

For any time constructible function t : N — N, there is a language A decidable in O(t(n))
time but not in o(t(n)/lgt(n)) time.

Proof.
Consider
D = “On input w:

@ Compute t(Jw|) by time constructibility and store [#(n)/lgt(n)] in a binary

counter. If this counter ever reaches 0, reject.

@ If wis not of the form (M)10* for some TM M, reject.

© Simulate M on w and decrement the binary counter at each M-step.

© If M accepts, reject; if M rejects; accept.”
D simulates M with 3 tracks. Track 1 mimics M'’s tape; track 2 contains the current M
state and the transition function of M; and track 3 contains the binary counter.
Whenever M moves its tape head, D shifts the content on track 2 and 3 close to M’s

tape head. Since the length of the content on track 2 is independent of |w|, D’s
simulation needs a constant factor d time overhead.
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Time Hierarchy Theorem
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Proof.

The binary counter on track 3 need be decremented on every M-step. The length of
the binary counter is Ig(¢t(n) /1g t(n)) € O(lgt(n)). Hence decrementing the counter
needs lg f(n) time overhead. D simulates M by at most [t(n)/1gt(n)] M-steps.
Counting time overhead, D runs in time O(t(n)).

Suppose a TM M decides A = L(D) in time g(n) with g(n) € o(t(n)/1gt(n)). Not
counting the time for updating the binary counter, D simulates M in time dg(n). Since
g(n) € o(t(n)/1gt(n)), there is an ng that dg(n) < t(n)/lgt(n) for all n > ng. Consider
the input (M)10™. The initial binary counter is no less than ¢(n)/1g t(no) > dg(no).
Thus D can simulate M on (M)10™ with g(19) M-steps. But D accepts (M)10™ if and
only if M rejects (M)10™. L(M) # L(D). O
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Applications of Time Hierarchy Theorem

Corollary 12

Forty,tr : N — Nwith t1(n) € o(ta(n)/1g t2(n)) and t, time constructible.
TIME(t1(n)) € TIME(ty(n)).

Corollary 13
Forany e1,e; € Rwith0 < €1 < €3, TIME(n“) C TIME(n?).

Corollary 14
P C EXPTIME.
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Oracle Turing Machines

Definition 15

An oracle for a language A answers whether w € A for any string w.
An oracle Turing machine M# is a Turing machine that can query an

oracle A. When M* write a string w on a special oracle tape, it is
informed whether w € A in a single step.

Inner

state oracle
answer

—, twoway

Input/work tape

—> Oneway

query tape
(write-only)
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Oracle Computations

@ Let M be an oracle Turing machine (OTM)
@ Let x be any string in X*
@ Let B be an oracle (which is now a language).
@ M starts with input x.
© Whenever M writes a query word y on its query tape and enters a
query state gguery, y is automatically sent to oracle B.
© The oracle B returns its answer (YES/NO) by changing M’s inner
state from ¢, to either gy.s or g,,0, depending on whether y € B or
y & B, respectively.
©Q M resumes its computation, starting with Gyes OT Gio-

Definition 16
L(MB) = {x € ¥* | M accepts x with oracle B}.
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Oracle Turing Machines

Definition 17

For two languages A and B, we say that A is Turing reducible to B
(written as A <t B) if there is an OTM M such that

@ A = L(MP); that s, for every input x, x € A < MP accepts x via
making queries to the oracle B

Definition 18

Language A is polynomial-time Turing reducible to language B
(written as A g’; B if there is an OTM M such that

@ A = L(MP); that is, for every input x, x € A < MP accepts x via
making queries to the oracle B

@ M runs in polynomial time.

(NTU EE) More on Intractability Spring 2023 18 / 39




Polynomial-time Oracle Turing Machines

Definition 19

P4 = {L: L is decided by a polynomial time OTM with oracle A}
NP4 = {L: L is decided by a polynomial time ONTM with oracle A}

Example 20
NP C P5AT and coNP C PSAT,

Proof.
For any A € NP, use the polynomial reduction of A to SAT. O
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Oracle Turing Machines

@ Two Boolean formulae ¢ and v over xq, ..., x; are equivalent if
they have the same value on any assignments to xq, ..., x;.

o A formula is minimal if it is not equivalent to a smaller formula.
o Consider

NONMINFORMULA = {(¢) : ¢ is not a minimal Boolean formula}.

Example 21
NONMINFORMULA € NPSAT,

Proof.

“On input (¢):
@ Nondeterministically select a smaller formula 1.
@ Ask (¢ XOR ¢) € SAT.

@ If yes, accept; otherwise, reject.”

O]
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Polynomial-time Hierarchy

Meyer and Stockmeyer (1972, 1973) introduced a notion of the
polynomial-time hierarchy over NP.
The polynomial hierarchy consists of the following complexity classes:

for every index k > 1,

QO AP=P

@ =0 =NP, I = co-NP
_ pxf

Q@ Al =P%

P _ P P _ 3P
Q X, =NP™, 1L, =co-Xp
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Polynomial-time Hierarchy
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Polynomial-time Hierarchy

~“PSPACE

/
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Polynomial-time Hierarchy

We define the complexity class PH as follows:

PH = | J({ UILY)
k>1

e NP C PH C PSPACE
@ If P = NP, then P = PH.
e PPH — NPPH — PH.
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Another Characterization of Polynomial-time

Hierarchy

We have already seen, that deciding whether a formula is satisfiable
@ Jxy---xu(x1 Vo Vag) A+ A (Xg V X3)
» only existential quantifier - NP-complete
@ JxVapdxs...(x VA Vag) A+ A (Xg V x3)
» existential & universal quantifiers - PSPACE-complete

Definition 22

Consider language classes reducible to deciding the satisfiability of
iSAT : 3x1Vxp3xs...R(xq, X2, x3...)
IL;SAT : Vx13xpVx3...R(x1, X2, X3...)

with i alternating quantifiers and R(...) is a polynomial-time predicate. ’

YiSAT and II;SAT above define exactly the i-level of the
polynomial-time hierarchy using polynomial-time oracle TMs.
More on Intractability Spring 2023 25 /39




Alternating Turing Machines

@ An alternating Turing machine (ATM) M = (Q, X,I',6,40,F) is a
Turing machine with a non-deterministic transition function
§:Q x I — 2QxIX{LR} whose set of states, in addition to
accepting/rejecting states, is partitioned into existential (3 or V)
and universal (V or A) states.

@ A configuration C of an ATM M can reach acceptance if either of
the following is true:

» Cis existential and some branch can reach acceptance.
» Cis universal and all branches can reach acceptance.

M accepts a word w if the start configuration on w is accepting.
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Alternating Turing Machines
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Alternating Polynomial-time Hierarchy

Definition 23
Consider language classes

p . . . .
o AY:: ’Fhe language accepted by polynomial time ATM using at
most 7 alternations with the initial state an 3-state,

° AHf : the language accepted by polynomial time ATM using at
most i alternations with the initial state an V-state,

It turns out that AY; and AIl; above again define exactly the i-level of
the polynomial-time hierarchy using polynomial-time oracle TMs.
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More on Alternating Complexity Classes

We define
e APTime = J;5; ATime(n")
o AExpTime = |-, ATime(2"")
e ALogSpace = Ud;l ASpace(logn)
o APSpace = ;51 ASpace(n?)
e AExpSpace = ;54 ASpace(2™")

Theorem 24
L ¢ PTime C PSpace < ExpTime < ExpSpace

AlogSpace < APTime < APSpace < AExpTime

N
N
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Limits of the Diagonalization Method

@ We have seen many applications of the diagonalization methd.
» Particularly, the proofs of space and time hierarchy theorems.

@ Can we use the diagonalization method to show P L NP?
» Say, to construct an NTM that accepts (M)10" if and only if the
polynomial time TM M rejects (M)10".
@ We give a strong evdience to explain why it may not work.

@ The diagonalization method basically simulates a TM M by a TM
D. If M and D are given an oracle A, DA can simulate M4 as well.
@ Hence if the diagonalization method can prove P Z NP, it can also

prove P4 < NPA for any oracle A.

@ We will now give two oracles A and B such that P* # NP4 and
PP = NPP.
@ The diagonalization method does not suffice to prove P < NP.
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Limits of the Diagonalization Method

Theorem 25
There are oracles A and B such that P* # NP and P® = NP®.

Proof.

Let B be TQBE. Then NP™?®F C NPSPACE C PSPACE C PTOF,
For any oracle C, define
Le={1":3xeC[|x|=n]}.

Clearly, Lc € NP* for any C. We construct a language A such that L4 & P*.
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JA,NPA ¢ pA

Proof.

o Let M;, MZ, ... be an enumeration of oracle DTMs that run in
polynomial time. Assume for simplicity that M: has running time
n'. Since oracle machines query their oracle as a black box, can
plug in any oracle.

@ We will build an oracle A so that none of these machines can
decide L.

@ Inductive construction. We start with nothing, and at each stage
we declare a finite set of strings to be in the language of A or out
of it.

o Goal: At stage i, make sure that L(M#) and L, disagree on some
string.
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JA,NPA ¢ pA

Proof.
o Stagei

Let M4 have running time n' . Choose 7 larger than any string

declared for A, such that 2" > n'.
We are going to run M4 on 1". When M# queries A with g, we

Answer correctly if g has been declared,
and answer NO otherwise.

If M4 accepts 1", we declare all strings of length 1 to be NO-strings.
Then A has no YES-string of length n1, and 1" ¢ L. .

If M4 rejects 1", we find a string of length n that M4 did not query.
This exists, since 2" > n' . Declare this string to be YES.

@ Finally, declare all undeclared strings of length up to n arbitrarily.

Hence M; accepts 1" if and only if 1" & L. M; does not decide L4.

Ol
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JA,NPA ¢ pA

C o
M; M, P yes Answer correctly if q
has been declared
nt n2
QO no
Choosen, 2">n' M; n

¢ M; accept 1", declare all strings of length n to be NO-strings
¢ M;rejects 1", we find a string w length n not queried by M; and adds
wto A

(NTU EE) More on Intractability S 4 % 34 /39



Diagonalization - Cantor’s Argument

Recall Cantor’s Argument for showing 2° of a countable set
S = {s1, 52, ...} is not countable

Proof.
Suppose for a contradiction that 2° is countable.
@ Then the sets in 25 can be enumerated in a list S, S5, S3,... € S

@ Let us write this list as boolean matrix with rows representing the
sets S1, So, S3, ... columns representing a (countably infinite)
enumeration of S, and boolean entries encoding the
relationship.

@ For a contradiction, define a set S; by diagonalization to differ
from all other S; in the enumeration:

Jsl 52| 53| ...
S x
S X | ...
Sy | x| x

Sy X | % | ...
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Diagonalization - The Halting Problem

Proof.
Suppose for a contradiction that Halting is decidable.

@ Then set of all Turing machines can be enumerated in a list

M17M27M37
@ We are interested in their halting on inputs of the form (M;) for

some TM M

@ We can write it as a boolean matrix with rows representing the
TMs My, M3, M3, ... columns representing an enumeration of
strings (M), and boolean entries encoding if TM halts.

@ Using a decider for the halting problem, we can define a TM M,
by diagonalization to differ from all other M; in the enumeration:

| Mo | mo) | (M)

M x

x

M

Ms

x

M x
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Generalizing Diagonalization

To generalize diagonalization as a method for complexity classes, we
consider arbitrary resources (time, space, ...):

Definition 26

Given a class K of Turing machines (e.g., 2-tape deterministic TMs), R
is a resource (e.g., time or space) defined for all machines in K if
Ry(w) € N U {oo} for all M € K and all words w.

Then, any function f : N — N gives rises to a class of languages:

R(f) =
{L| thereis M € Kwith L(M) = L and Ryy(w) < f(Jw|) forallw € ¥*}
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Generalizing Diagonalization

Consider resources R; and R, for two classes of Turing machines K;
and K3, and two functions fi, f : N — N.

Definition 27

We say that R; (f1) allows diagonalization over Ry(f,) if there exists a
Turing machine D € K;j such that

(4] L(D) S Rl(fl)/ and

@ for each M € K; that is Ro-bounded by f», there exists a w such that
(M,w) € L(D) if and only if (M, w) ¢ L(M).

Example 28

Let Ry and Ry be DSPACE. f; = O(f(n)) and f, = O(g(n)) w1th
g(n) = o(f(n)) in the space hierarchy theorem. L(D) = {(M)10* | M
rejects (M)10* using < f(n) space }.
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Generalizing Diagonalization

Theorem 29
If Ry(f1) allows diagonalization over Ry(f2), then Ry (f1)\Rz2(f2) # 0.

Proof.
Let D be as in the Definition. We show L(D) & Ra(f2).

© Suppose for a contradiction that there M € K; that is Ry-bounded
by fo with L(D) = L(M).

@ We obtain a contradiction, since, by Definition, there is a word w
such that

(M,w) € L(D) = L(M) < (M, w) ¢ L(M)
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