Time/Space Hierarchy, Polynomial-time Hierarchy

4 0 F

 $2Q$

Recall

$P \subseteq NP \subseteq PSPACE = NSPACE$.

- Yet we have not proved any intractable problem.
	- \blacktriangleright A problem is intractable if it cannot be solved in polynomial time.
- The most difficult problem appears to be *TQBF* ∈ *PSPACE*.
- But we do not know if $P \stackrel{?}{=} PSPACE$.

つくい

Theorem 1

Suppose TM M decides language L in time $f(n)$ *. Then for any* $\epsilon > 0$ *, there exists TM M'* that decides L in time $\epsilon \cdot f(n) + n + 2$.

Proof Idea:

• compress input onto fresh tape:

4 0 8 4

 $2Q$

Linear Speedup (cont'd)

simulate *M*, *m* steps at a time

 -4 (L,R,R,L) steps to read relevant symbols, "remember" in state

 -2 (L,R or R,L) to make M's changes

• accounting:

- **P** part 1 (copying): $n + 2$ steps
- **Part 2 (simulation):** $6(f(n)/m)$
- \blacktriangleright set $m = 6/\epsilon$
- \blacktriangleright total: $\epsilon \cdot f(n) + n + 2$

4 0 8 4

つくい

Space Construcibility

Definition 2

 $f : \mathbb{N} \to \mathbb{N}$ with $f(n)$ at least $O(\lg n)$ is called space constructible if the function that maps 1^n to the binary representation of $f(n)$ is computable in space $O(f(n))$.

- That is, *f* is space constructible if there is an $O(f(n))$ space TM that always halts with the binary representation of $f(n)$ on input 1^n .
	- As usual, the $O(f(n))$ space TM has two tapes when $f(n) \in o(n)$.

Example 3

lg *n* is space constructible.

Proof.

On input 1ⁿ, the TM counts the number of 1's in binary representation on its work tape. lg *n* is the number of bits in the binary representation of *n*. The TM then computes lg *n* in binary rep[res](#page-3-0)[en](#page-5-0)[t](#page-3-0)[at](#page-4-0)[io](#page-5-0)[n](#page-4-0)[.](#page-14-0)

- Intuitively, a space $O(f(n))$ TM should be more powerful than a space $O(g(n))$ TM when $g(n) \in o(f(n))$.
- We would like to prove it by diagonalization.
- However, the difference may be very hard to compute.
	- \blacktriangleright Thus diagonalization fails.
- Space constructibility allows us to avoid the problem.

つくい

Recall the Diagonalization method for proving the halting problem

- Halt: *T* enters "Yes" ⇒ Not Halt
- Not Halt: *T* enters "No" \Rightarrow Halt

 $2Q$

Space Hierarchy Theorem

Theorem 4

For any space constructible function $f : \mathbb{N} \to \mathbb{N}$ *, there is a language A decidable in* $O(f(n))$ *space but not in* $o(f(n))$ *space.*

Proof.

Consider language $L = \{ \langle M \rangle 10^* | M \text{ rejects } \langle M \rangle 10^* \text{ using } \leq f(n) \}$ space }.

Consider *D* = "On input *w*:

- **1** Compute $f(|w|)$ by space constructibility and mark off this much tape. If *D* ever attempts to use more space, reject.
- 2 If *w* is not of the form $\langle M \rangle$ 10[∗] for some TM *M*, reject.
- **3** Simulate *M* on *w*. If the simulation takes more than $2^{f(n)}$ *M*-steps, reject.
- ⁴ If *M* accepts, reject; if *M* rejects, accept."

Proof (cont'd).

In Step [3,](#page-7-0) *D* simulates *M* in *D*'s tape alphabet. The simulation hence introduces a constant factor of overhead (independent of |*w*|). That is, if *M* runs in *g*(*n*) space, *D* runs in *dg*(*n*) space for some constant *d*. Clearly, *D* is an *O*(*f*(*n*)) space TM. We next argue that *L* cannot be decided in $o(f(n))$.

Suppose a TM *M'* decides *L* in space $g(n)$ for some $g(n) \in o(f(n))$. Since $g(n) \in o(f(n))$, there is an n_0 that $dg(n) < f(n)$ for every $n \geq n_0$. Consider $\langle M' \rangle 10^{n_0}$. Since $dg(n_0) < f(n_0)$, M' accepts $\langle M' \rangle 10^{n_0}$ if and only if M' rejects $\langle M' \rangle 10^{n_0}$.

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Corollary 5

Let $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ *with* $f_1(n) \in o(f_2(n))$ *and* f_2 *space constructible.* $SPACE(f_1(n)) \subseteq SPACE(f_2(n))$.

- We can show n^c is space constructible for any $c\in\mathbb{Q}^{\ge0}.$
- Observe that for any $\epsilon_1,\epsilon_2\in \mathbb{R}^{\geq 0}$ with $\epsilon_1<\epsilon_2$, there are $c_1, c_2 \in \mathbb{Q}^{\geq 0}$ that $0 \leq \epsilon_1 < c_1 < c_2 < \epsilon_2.$ Therefore

Corollary 6

For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ *with* $0 \le \epsilon_1 < \epsilon_2$, $SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2})$.

つくい

More Applications of Space Hierarchy Theorem

Corollary 7 $NL \subset PSPACE$.

Proof.

By Savitch's theorem*, NL* \subseteq *SPACE*(lg² *n*). By space hierarchy theorem*,* $SPACE(\lg^2 n) \subsetneq SPACE(n).$

Recall that *TQBF* is *PSPACE*-complete. Hence *TQBF* 6∈ *NL*.

Corollary 8

 $PSPACE \subsetneq EXPSPACE = \cup_k SPACE(2^{n^k}).$

So far, we know

NL \subset *[P](#page-15-0)* \subset *NP* \subset *PSPAC[E](#page-15-0)* \subset *EXPTI[ME](#page-9-0)* \subset *E[X](#page-11-0)P[S](#page-4-0)P[A](#page-3-0)[C](#page-4-0)E*.

(□) (_□)

 $2Q$

Time Constructibility

Definition 9

t : N → N with *t*(*n*) at least *O*(*n* lg *n*) is called time constructible if the function that maps 1^n to the binary representation of $t(n)$ is computable in time $O(t(n))$.

• That is, $t(n)$ is time constructible if there is an $O(t(n))$ time TM that always halts with the binary representation of $t(n)$ on input $1ⁿ$.

Example 10

n √ *n* is time constructible.

Proof.

On input $1ⁿ$, a TM counts the number of $1's$ in binary representation. √ This takes time $O(n \lg n)$. $\lfloor n \rfloor$ $\overline{n}\rfloor$ in binary representatino can be computed in $O(n \lg n)$ time since the input is now of length $O(\lg n)$. \Box

Time Hierarchy Theorem

Theorem 11

For any time constructible function $t : \mathbb{N} \to \mathbb{N}$ *, there is a language A decidable in* $O(t(n))$ *time but not in* $o(t(n)/\lg t(n))$ *time.*

Proof.

Consider

- $D =$ "On input *w*:
	- **1** Compute $t(|w|)$ by time constructibility and store $\lceil t(n)/ \lg t(n) \rceil$ in a binary counter. If this counter ever reaches 0, reject.
	- 2 If *w* is not of the form $\langle M \rangle$ 10[∗] for some TM *M*, reject.
	- ³ Simulate *M* on *w* and decrement the binary counter at each *M*-step.
	- ⁴ If *M* accepts, reject; if *M* rejects; accept."

D simulates *M* with 3 tracks. Track 1 mimics *M*'s tape; track 2 contains the current *M* state and the transition function of *M*; and track 3 contains the binary counter. Whenever *M* moves its tape head, *D* shifts the content on track 2 and 3 close to *M*'s tape head. Since the length of the content on track 2 is independent of |*w*|, *D*'s simulation needs a constant factor *d* time overhead.

Time Hierarchy Theorem

Proof.

The binary counter on track 3 need be decremented on every *M*-step. The length of the binary counter is $\lg(t(n)/\lg t(n)) \in O(\lg t(n))$. Hence decrementing the counter needs $\lg t(n)$ time overhead. *D* simulates *M* by at most $\lceil t(n)/ \lg t(n) \rceil$ *M*-steps. Counting time overhead, *D* runs in time $O(t(n))$. Suppose a TM *M* decides $A = L(D)$ in time $g(n)$ with $g(n) \in o(t(n)/\lg t(n))$. Not counting the time for updating the binary counter, *D* simulates *M* in time $dg(n)$. Since $g(n) \in o(t(n)/\lg t(n))$, there is an n_0 that $dg(n) \leq t(n)/\lg t(n)$ for all $n \geq n_0$. Consider the input $\langle M \rangle 10^{n_0}$. The initial binary counter is no less than $t(n_0)/\lg t(n_0) \geq dg(n_0)$. Thus *D* can simulate *M* on $\langle M \rangle 10^{n_0}$ with $g(n_0)$ *M*-steps. But *D* accepts $\langle M \rangle 10^{n_0}$ if and only if *M* rejects $\langle M \rangle 10^{n_0}$. $L(M) \neq L(D)$. П

 $2Q$

イロト イ押ト イヨト イヨト

Corollary 12

For $t_1, t_2 : \mathbb{N} \to \mathbb{N}$ *with* $t_1(n) \in o(t_2(n)/\lg t_2(n))$ *and* t_2 *time constructible.* $TIME(t_1(n)) \subseteq TIME(t_2(n))$.

Corollary 13

 $For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ with $0 \leq \epsilon_1 < \epsilon_2$, $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$.$

Corollary 14

 $P \subseteq EXPTIME$.

 Ω

メロトメ 伊 トメ ミ トメ ミ ト

Oracle Turing Machines

Definition 15

An oracle for a language *A* answers whether $w \in A$ for any string w . An oracle Turing machine *M^A* is a Turing machine that can query an oracle *A*. When M^A write a string w on a special oracle tape, it is informed whether $w \in A$ in a single step.

Oracle Computations

- Let *M* be an oracle Turing machine (OTM)
- Let *x* be any string in Σ^*
- Let *B* be an oracle (which is now a language).
	- ¹ M starts with input *x*.
	- ² Whenever *M* writes a query word *y* on its query tape and enters a query state *qquery*, *y* is automatically sent to oracle *B*.
	- ³ The oracle *B* returns its answer (YES/NO) by changing *M*'s inner state from q_{query} to either q_{yes} or q_{no} , depending on whether $y \in B$ or $y \notin B$, respectively.
	- ⁴ *M* resumes its computation, starting with *qyes* or *qno*.

Definition 16

 $L(M^B) = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ with oracle } B\}.$

つくへ

∢ ロ ▶ ④ ♥ ≯ ④ ⊉ ≯ ④ ₹ ₹ ≯ ↓

Oracle Turing Machines

Definition 17

For two languages *A* and *B*, we say that *A* is Turing reducible to *B* (written as $A \leq_T B$) if there is an OTM *M* such that

 \bullet *A* = *L*(*M^B*); that is, for every input *x*, *x* \in *A* \Leftrightarrow *M^B* accepts *x* via making queries to the oracle *B*

Definition 18

Language *A* is polynomial-time Turing reducible to language *B* (written as $A \leq_T^p$ T_T^{μ} *B* if there is an OTM *M* such that

- \bullet *A* = *L*(*M^B*); that is, for every input *x*, *x* \in *A* \Leftrightarrow *M^B* accepts *x* via making queries to the oracle *B*
- 2 *M* runs in polynomial time.

 $2Q$

Definition 19

 $P^A = \{L : L \text{ is decided by a polynomial time OTM with oracle } A\}$ $NP^{A} = \{L : L$ is decided by a polynomial time ONTM with oracle *A*}

Example 20

 $NP \subseteq P^{SAT}$ and $coNP \subseteq P^{SAT}$.

Proof.

For any $A \in NP$, use the polynomial reduction of A to *SAT*.

 Ω

イロトメ 倒 トメ ヨ トメ ヨ トー ヨ

Oracle Turing Machines

- Two Boolean formulae ϕ and ψ over x_1, \ldots, x_l are equivalent if they have the same value on any assignments to x_1, \ldots, x_l .
- A formula is minimal if it is not equivalent to a smaller formula.
- **o** Consider

NONMINFORMULA = $\{\langle \phi \rangle : \phi \text{ is not a minimal Boolean formula}\}.$

Example 21 *NONMINFORMULA* ∈ *NPSAT* .

Proof.

"On input $\langle \phi \rangle$:

- Nondeterministically select a smaller formula ψ .
- 2 Ask $\langle \phi$ *XOR* $\psi \rangle \in SAT$.
- ³ If yes, accept; otherwise, reject."

Meyer and Stockmeyer (1972, 1973) introduced a notion of the polynomial-time hierarchy over NP.

The polynomial hierarchy consists of the following complexity classes: for every index $k > 1$,

\n- $$
\Delta_1^P = P
$$
\n- $\Sigma_1^P = NP$, $\Pi_1^P = co-NP$
\n- $\Delta_{k+1}^P = P^{\Sigma_k^P}$
\n- $\Sigma_{k+1}^P = NP^{\Sigma_k^P}$, $\Pi_{k+1}^P = co\Sigma_{k+1}^P$
\n

つくい

→ イ君→ イ君→

 \leftarrow \Box \rightarrow \leftarrow \Box

Polynomial-time Hierarchy

Polynomial-time Hierarchy

4.0.3.4

B

おす悪き \mathcal{A} . . B 299

We define the complexity class *PH* as follows:

$$
PH = \bigcup_{k \ge 1} (\Sigma_k^P \cup \Pi_k^P)
$$

$$
\bullet\ NP\subseteq PH\subseteq PSPACE
$$

• If
$$
P = NP
$$
, then $P = PH$.

$$
\bullet \; P^{PH} = NP^{PH} = PH.
$$

4 0 8 4

 $2Q$

Another Characterization of Polynomial-time Hierarchy

We have already seen, that deciding whether a formula is satisfiable

- \bullet $\exists x_1 \cdots x_n(x_1 \vee \overline{x_2} \vee x_8) \wedge \cdots \wedge (\overline{x_6} \vee x_3)$
	- \triangleright only existential quantifier NP-complete
- \bullet ∃*x*₁∀*x*₂ ∃*x*₃...(*x*₁ ∨ *x*₂ ∨ *x*₈) ∧ · · · ∧ (*x*₆ ∨ *x*₃)
	- \triangleright existential & universal quantifiers PSPACE-complete

Definition 22

Consider language classes reducible to deciding the satisfiability of

Σ*iSAT* : ∃*x*1∀*x*2∃*x*3...*R*(*x*1, *x*2, *x*3...)

Π*iSAT* : ∀*x*1∃*x*2∀*x*3...*R*(*x*1, *x*2, *x*3...)

with *i* alternating quantifiers and *R*(...) is a polynomial-time predicate.

Σ*iSAT* and Π*iSAT* above define exactly the *i*-level of the polynomial-time hierarchy using polyno[mia](#page-23-0)[l-t](#page-25-0)[i](#page-23-0)[m](#page-24-0)[e](#page-25-0) [o](#page-14-0)[r](#page-15-0)[ac](#page-38-0)[l](#page-14-0)[e](#page-15-0) [T](#page-38-0)[M](#page-0-0)[s.](#page-38-0)

(NTU EE) [More on Intractability](#page-0-0) Spring 2023 25 / 39

 290

- An alternating Turing machine (ATM) $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a Turing machine with a non-deterministic transition function $\delta:Q\times\Gamma\to 2^{Q\times\Gamma\times\{L,R\}}$ whose set of states, in addition to accepting/rejecting states, is partitioned into existential (\exists or \vee) and universal (\forall or \wedge) states.
- A configuration *C* of an ATM *M* can reach acceptance if either of the following is true:
	- ▶ *C* is existential and some branch can reach acceptance.
	- ▶ *C* is universal and all branches can reach acceptance.

M accepts a word *w* if the start configuration on *w* is accepting.

つくへ

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

Alternating Turing Machines

Definition 23

Consider language classes

- $A\Sigma_i^p$ $\mathcal{C}_i^{\mathcal{L}}$: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∃-state,
- $A\Pi_i^p$ $\mathcal{C}_i^{\mathcal{L}}$: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∀-state,

It turns out that *A*Σ*ⁱ* and *A*Π*ⁱ* above again define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

つひへ

More on Alternating Complexity Classes

We define

- APTime = $\bigcup_{d\geq 1} ATime(n^d)$
- $A\text{ExpTime} = \bigcup_{d \geq 1} ATime(2^{n^d})$
- $\text{ALogSpace} = \bigcup_{d \geq 1} \text{ASpace}(\log n)$
- $\mathsf{APSpace} = \bigcup_{d \geq 1} \mathsf{ASpace}(n^d)$

• AExpSpace =
$$
\bigcup_{d\geq 1} ASpace(2^{n^d})
$$

Theorem 24

Limits of the Diagonalization Method

- We have seen many applications of the diagonalization methd.
	- \blacktriangleright Particularly, the proofs of space and time hierarchy theorems.
- Can we use the diagonalization method to show $P \stackrel{?}{=} NP?$
	- Say, to construct an NTM that accepts $\langle M \rangle 10^n$ if and only if the polynomial time TM *M* rejects $\langle M \rangle 10^n$.
- We give a strong evdience to explain why it may not work.
- The diagonalization method basically simulates a TM *M* by a TM *D*. If *M* and *D* are given an oracle *A*, *D^A* can simulate *M^A* as well.
- Hence if the diagonalization method can prove $P \stackrel{?}{=} NP$, it can also prove $P^A \stackrel{?}{=} NP^A$ for any oracle A .
- We will now give two oracles A and B such that $P^A \neq NP^A$ and $P^B = NP^B$.
- The diagonalization method does not suffice to prove $P \stackrel{?}{=} NP.$

 QQQ

Theorem 25

There are oracles A and B such that $P^A \neq NP^A$ *and* $P^B = NP^B$ *.*

Proof.

Let *B* be *TQBF*. Then $NP^{TQBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{TQBF}$. For any oracle *C*, define

 $L_C = \{1^n : \exists x \in C \mid |x| = n \}$.

Clearly, $L_C \in NP^C$ for any C . We construct a language A such that $L_A \not\in P^A$.

 QQQ

Proof.

- Let M_1^2, M_2^2, \dots be an enumeration of oracle DTMs that run in polynomial time. Assume for simplicity that $M_i^?$ has running time $n^{i}.$ Since oracle machines query their oracle as a black box*,* can plug in any oracle.
- We will build an oracle *A* so that none of these machines can decide *LA*.
- Inductive construction. We start with nothing, and at each stage we declare a finite set of strings to be in the language of *A* or out of it.
- Goal: At stage i , make sure that $L(M_i^A)$ and L_A disagree on some string.

つくい

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶.

Proof.

Stage *i*

- I Let M_i^A have running time n^i . Choose *n* larger than any string declared for *A*, such that $2^n > n^i$.
- \blacksquare We are going to run M_i^A on 1^n . When M_i^A queries A with q , we
	- \star Answer correctly if *q* has been declared,
		- and answer NO otherwise.
- If M_i^A accepts 1^{*n*}, we declare all strings of length *n* to be NO-strings. Then *A* has no YES-string of length *n*, and $1^n \notin L_A$.
- If M_i^A rejects 1^n , we find a string of length *n* that M_i^A did not query. This exists, since $2^n > n^i$. Declare this string to be YES.
- Finally, declare all undeclared strings of length up to *n* arbitrarily.

Hence M_i accepts 1^n if and only if $1^n \notin L_A$. M_i does not decide L_A .

つくい

イロト イ押ト イヨト イヨト

- \bullet M_i accept 1ⁿ, declare all strings of length n to be NO-strings
- \bullet M_i rejects 1ⁿ, we find a string w length n not queried by M_i and adds w to A

4 0 8 4

つくい

Diagonalization - Cantor's Argument

Recall Cantor's Argument for showing 2*^S* of a countable set $S = \{s_1, s_2, \ldots\}$ is not countable

Proof.

Suppose for a contradiction that 2*^S* is countable.

- Then the sets in 2^{*S*} can be enumerated in a list $S_1, S_2, S_3, ... \subseteq S$
- Let us write this list as boolean matrix with rows representing the sets S_1 , S_2 , S_3 , ... columns representing a (countably infinite) enumeration of *S*, and boolean entries encoding the \in relationship.
- For a contradiction, define a set S_d by diagonalization to differ from all other S_i in the enumeration:

Diagonalization - The Halting Problem

Proof.

Suppose for a contradiction that Halting is decidable.

- Then set of all Turing machines can be enumerated in a list *M*1, *M*2, *M*3, ...
- We are interested in their halting on inputs of the form $\langle M_i \rangle$ for some TM *M*
- We can write it as a boolean matrix with rows representing the TMs *M*1, *M*2, *M*3, ... columns representing an enumeration of strings $\langle M_i \rangle$, and boolean entries encoding if TM halts.
- Using a decider for the halting problem, we can define a TM *M^d* by diagonalization to differ from all other *Mⁱ* in the enumeration:

To generalize diagonalization as a method for complexity classes, we consider arbitrary resources (time, space, ...):

Definition 26

Given a class *K* of Turing machines (e.g., 2-tape deterministic TMs), R is a resource (e.g., time or space) defined for all machines in *K* if $R_M(w) \in N \cup \{\infty\}$ for all $M \in K$ and all words *w*. Then, any function $f : N \to N$ gives rises to a class of languages:

$$
R(f) =
$$

 ${L \mid \text{there is } M \in K \text{ with } L(M) = L \text{ and } R_M(w) \leq f(|w|) \text{ for all } w \in \Sigma^*}$

∢ ロ ▶ ④ ♥ ≯ ④ ⊉ ≯ ④ ₹ ₹ ≯ ↓

Generalizing Diagonalization

Consider resources R_1 and R_2 for two classes of Turing machines K_1 and K_2 , and two functions $f_1, f_2 : N \to N$.

Definition 27

We say that $R_1(f_1)$ allows diagonalization over $R_2(f_2)$ if there exists a Turing machine $D \in K_1$ such that

- \bullet $L(D) \in R_1(f_1)$, and
- for each $M \in K_2$ that is R_2 -bounded by f_2 , there exists a *w* such that $\langle M, w \rangle$ ∈ *L*(*D*) if and only if $\langle M, w \rangle$ ∉ *L*(*M*).

Example 28

Let R_1 and R_2 be *DSPACE*. $f_1 = O(f(n))$ and $f_2 = O(g(n))$ with $g(n) = o(f(n))$ in the space hierarchy theorem. $L(D) = \{ \langle M \rangle 10^* | M \}$ rejects $\langle M \rangle$ 10[∗] using $\leq f(n)$ space }.

 QQQ

イロト イ部 トイヨ トイヨ トーヨー

Theorem 29

If $R_1(f_1)$ *allows diagonalization over* $R_2(f_2)$ *, then* $R_1(f_1) \setminus R_2(f_2) \neq \emptyset$ *.*

Proof.

Let *D* be as in the Definition. We show $L(D) \notin R_2(f_2)$.

- **1** Suppose for a contradiction that there $M \in K_2$ that is R_2 -bounded by f_2 with $L(D) = L(M)$.
- ² We obtain a contradiction, since, by Definition, there is a word *w* such that

$$
\langle M, w \rangle \in L(D) = L(M) \Leftrightarrow \langle M, w \rangle \not\in L(M)
$$

(□) (_①

つくい