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Intractability

Recall
P ⊆ NP ⊆ PSPACE = NSPACE.

Yet we have not proved any intractable problem.
I A problem isintractable if it cannot be solved in polynomial time.

The most difficult problem appears to be TQBF ∈ PSPACE.

But we do not know if P ?
= PSPACE.
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Linear Speedup

Theorem 1
Suppose TM M decides language L in time f (n). Then for any ε > 0, there
exists TM M′ that decides L in time ε · f (n) + n + 2.

Proof Idea:

compress input onto fresh tape:
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Linear Speedup (cont’d)

simulate M, m steps at a time

accounting:
I part 1 (copying): n + 2 steps
I part 2 (simulation): 6(f (n)/m)
I set m = 6/ε
I total: ε · f (n) + n + 2
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Space Construcibility

Definition 2
f : N→ N with f (n) at least O(lg n) is called space constructible if the
function that maps 1n to the binary representation of f (n) is
computable in space O(f (n)).

That is, f is space constructible if there is an O(f (n)) space TM that
always halts with the binary representation of f (n) on input 1n.

I As usual, the O(f (n)) space TM has two tapes when f (n) ∈ o(n).

Example 3
lg n is space constructible.

Proof.
On input 1n, the TM counts the number of 1’s in binary representation
on its work tape. lg n is the number of bits in the binary representation
of n. The TM then computes lg n in binary representation.
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Space Constructibility

Intuitively, a space O(f (n)) TM should be more powerful than a
space O(g(n)) TM when g(n) ∈ o(f (n)).
We would like to prove it by diagonalization.
However, the difference may be very hard to compute.

I Thus diagonalization fails.

Space constructibility allows us to avoid the problem.
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Recall the Diagonalization method for proving the
halting problem

 

Yes 

No 

Program T 

P 

x 

Program T’

Copy y 

Program M

M Program M Halt ? 
Question:  

Halt: T enters ”Yes”⇒ Not Halt
Not Halt: T enters ”No”⇒ Halt
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Space Hierarchy Theorem

Theorem 4
For any space constructible function f : N→ N, there is a language A
decidable in O(f (n)) space but not in o(f (n)) space.

Proof.
Consider language L = {〈M〉10∗ |M rejects 〈M〉10∗ using ≤ f (n)
space }.
Consider D = “On input w:

1 Compute f (|w|) by space constructibility and mark off this much
tape. If D ever attempts to use more space, reject.

2 If w is not of the form 〈M〉10∗ for some TM M, reject.

3 Simulate M on w. If the simulation takes more than 2f (n) M-steps,
reject.

4 If M accepts, reject; if M rejects, accept.”
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Space Hierarchy Theorem

Proof (cont’d).
In Step 3, D simulates M in D’s tape alphabet. The simulation hence
introduces a constant factor of overhead (independent of |w|). That is,
if M runs in g(n) space, D runs in dg(n) space for some constant d.
Clearly, D is an O(f (n)) space TM. We next argue that L cannot be
decided in o(f (n)).
Suppose a TM M′ decides L in space g(n) for some g(n) ∈ o(f (n)). Since
g(n) ∈ o(f (n)), there is an n0 that dg(n) < f (n) for every n ≥ n0.
Consider 〈M′〉10n0 . Since dg(n0) < f (n0), M′ accepts 〈M′〉10n0 if and
only if M′ rejects 〈M′〉10n0 .
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Space Hierarchy Theorem

Corollary 5
Let f1, f2 : N→ N with f1(n) ∈ o(f2(n)) and f2 space constructible.
SPACE(f1(n)) ( SPACE(f2(n)).

We can show nc is space constructible for any c ∈ Q≥0.
Observe that for any ε1, ε2 ∈ R≥0 with ε1 < ε2, there are
c1, c2 ∈ Q≥0 that 0 ≤ ε1 < c1 < c2 < ε2. Therefore

Corollary 6
For any ε1, ε2 ∈ R with 0 ≤ ε1 < ε2, SPACE(nε1) ( SPACE(nε2).

(NTU EE) More on Intractability Spring 2023 10 / 39



More Applications of Space Hierarchy Theorem

Corollary 7
NL ( PSPACE.

Proof.
By Savitch’s theorem, NL ⊆ SPACE(lg2 n). By space hierarchy theorem,
SPACE(lg2 n) ( SPACE(n).

Recall that TQBF is PSPACE-complete. Hence TQBF 6∈ NL.

Corollary 8

PSPACE ( EXPSPACE = ∪kSPACE(2nk
).

So far, we know

NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.
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Time Constructibility

Definition 9
t : N→ N with t(n) at least O(n lg n) is called time constructible if the
function that maps 1n to the binary representation of t(n) is
computable in time O(t(n)).

That is, t(n) is time constructible if there is an O(t(n)) time TM that
always halts with the binary representation of t(n) on input 1n.

Example 10

n
√

n is time constructible.

Proof.
On input 1n, a TM counts the number of 1’s in binary representation.
This takes time O(n lg n). bn

√
nc in binary representatino can be

computed in O(n lg n) time since the input is now of length O(lg n).
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Time Hierarchy Theorem

Theorem 11
For any time constructible function t : N→ N, there is a language A decidable in O(t(n))
time but not in o(t(n)/ lg t(n)) time.

Proof.
Consider
D = “On input w:

1 Compute t(|w|) by time constructibility and store dt(n)/ lg t(n)e in a binary
counter. If this counter ever reaches 0, reject.

2 If w is not of the form 〈M〉10∗ for some TM M, reject.
3 Simulate M on w and decrement the binary counter at each M-step.

4 If M accepts, reject; if M rejects; accept.”

D simulates M with 3 tracks. Track 1 mimics M’s tape; track 2 contains the current M
state and the transition function of M; and track 3 contains the binary counter.
Whenever M moves its tape head, D shifts the content on track 2 and 3 close to M’s
tape head. Since the length of the content on track 2 is independent of |w|, D’s
simulation needs a constant factor d time overhead.
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Time Hierarchy Theorem

ai−1 ai ai+1

bi−1 bi bi+1

ci−1 ci ci+1

ci+1bi+1ai+1bi−1ai−1 cibiaici−1

Proof.
The binary counter on track 3 need be decremented on every M-step. The length of
the binary counter is lg(t(n)/ lg t(n)) ∈ O(lg t(n)). Hence decrementing the counter
needs lg t(n) time overhead. D simulates M by at most dt(n)/ lg t(n)eM-steps.
Counting time overhead, D runs in time O(t(n)).
Suppose a TM M decides A = L(D) in time g(n) with g(n) ∈ o(t(n)/ lg t(n)). Not
counting the time for updating the binary counter, D simulates M in time dg(n). Since
g(n) ∈ o(t(n)/ lg t(n)), there is an n0 that dg(n) ≤ t(n)/ lg t(n) for all n ≥ n0. Consider
the input 〈M〉10n0 . The initial binary counter is no less than t(n0)/ lg t(n0) ≥ dg(n0).
Thus D can simulate M on 〈M〉10n0 with g(n0) M-steps. But D accepts 〈M〉10n0 if and
only if M rejects 〈M〉10n0 . L(M) 6= L(D).
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Applications of Time Hierarchy Theorem

Corollary 12
For t1, t2 : N→ N with t1(n) ∈ o(t2(n)/ lg t2(n)) and t2 time constructible.
TIME(t1(n)) ( TIME(t2(n)).

Corollary 13
For any ε1, ε2 ∈ R with 0 ≤ ε1 < ε2, TIME(nε1) ( TIME(nε2).

Corollary 14
P ( EXPTIME.
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Oracle Turing Machines

Definition 15
An oracle for a language A answers whether w ∈ A for any string w.
An oracle Turing machine MA is a Turing machine that can query an
oracle A. When MA write a string w on a special oracle tape, it is
informed whether w ∈ A in a single step.
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Oracle Computations

Let M be an oracle Turing machine (OTM)
Let x be any string in Σ∗

Let B be an oracle (which is now a language).
1 M starts with input x.
2 Whenever M writes a query word y on its query tape and enters a

query state qquery, y is automatically sent to oracle B.
3 The oracle B returns its answer (YES/NO) by changing M’s inner

state from qquery to either qyes or qno, depending on whether y ∈ B or
y 6∈ B, respectively.

4 M resumes its computation, starting with qyes or qno.

Definition 16
L(MB) = {x ∈ Σ∗ |M accepts x with oracle B}.
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Oracle Turing Machines

Definition 17
For two languages A and B, we say that A is Turing reducible to B
(written as A ≤T B) if there is an OTM M such that

1 A = L(MB); that is, for every input x, x ∈ A⇔MB accepts x via
making queries to the oracle B

Definition 18
Language A is polynomial-time Turing reducible to language B
(written as A ≤p

T B if there is an OTM M such that
1 A = L(MB); that is, for every input x, x ∈ A⇔MB accepts x via

making queries to the oracle B
2 M runs in polynomial time.
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Polynomial-time Oracle Turing Machines

Definition 19
PA = {L : L is decided by a polynomial time OTM with oracle A}
NPA = {L : L is decided by a polynomial time ONTM with oracle A}

Example 20

NP ⊆ PSAT and coNP ⊆ PSAT.

Proof.
For any A ∈ NP, use the polynomial reduction of A to SAT.
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Oracle Turing Machines

Two Boolean formulae φ and ψ over x1, . . . , xl are equivalent if
they have the same value on any assignments to x1, . . . , xl.
A formula is minimal if it is not equivalent to a smaller formula.
Consider

NONMINFORMULA = {〈φ〉 : φ is not a minimal Boolean formula}.

Example 21

NONMINFORMULA ∈ NPSAT.

Proof.
“On input 〈φ〉:

1 Nondeterministically select a smaller formula ψ.
2 Ask 〈φ XOR ψ〉 ∈ SAT.
3 If yes, accept; otherwise, reject.”
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Polynomial-time Hierarchy

Meyer and Stockmeyer (1972, 1973) introduced a notion of the
polynomial-time hierarchy over NP.
The polynomial hierarchy consists of the following complexity classes:
for every index k ≥ 1,

1 ∆P
1 = P

2 ΣP
1 = NP, ΠP

1 = co-NP
3 ∆P

k+1 = PΣP
k

4 ΣP
k+1 = NPΣP

k , ΠP
k+1 = co-ΣP

k+1
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Polynomial-time Hierarchy
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Polynomial-time Hierarchy
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Polynomial-time Hierarchy

We define the complexity class PH as follows:

PH =
⋃
k≥1

(ΣP
k ∪ΠP

k )

NP ⊆ PH ⊆ PSPACE
If P = NP, then P = PH.
PPH = NPPH = PH.
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Another Characterization of Polynomial-time
Hierarchy

We have already seen, that deciding whether a formula is satisfiable
∃x1 · · · xn(x1 ∨ x̄2 ∨ x8) ∧ · · · ∧ (x̄6 ∨ x3)

I only existential quantifier – NP-complete
∃x1∀x2∃x3...(x1 ∨ x̄2 ∨ x8) ∧ · · · ∧ (x̄6 ∨ x3)

I existential & universal quantifiers – PSPACE-complete

Definition 22
Consider language classes reducible to deciding the satisfiability of

ΣiSAT : ∃x1∀x2∃x3...R(x1, x2, x3...)

ΠiSAT : ∀x1∃x2∀x3...R(x1, x2, x3...)

with i alternating quantifiers and R(...) is a polynomial-time predicate.

ΣiSAT and ΠiSAT above define exactly the i-level of the
polynomial-time hierarchy using polynomial-time oracle TMs.

(NTU EE) More on Intractability Spring 2023 25 / 39



Alternating Turing Machines

An alternating Turing machine (ATM) M = (Q,Σ,Γ, δ, q0,F) is a
Turing machine with a non-deterministic transition function
δ : Q× Γ→ 2Q×Γ×{L,R} whose set of states, in addition to
accepting/rejecting states, is partitioned into existential (∃ or ∨)
and universal (∀ or ∧) states.
A configuration C of an ATM M can reach acceptance if either of
the following is true:

I C is existential and some branch can reach acceptance.
I C is universal and all branches can reach acceptance.

M accepts a word w if the start configuration on w is accepting.
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Alternating Turing Machines
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Alternating Polynomial-time Hierarchy

Definition 23
Consider language classes

AΣ
p
i : the language accepted by polynomial time ATM using at

most i alternations with the initial state an ∃-state,
AΠ

p
i : the language accepted by polynomial time ATM using at

most i alternations with the initial state an ∀-state,

It turns out that AΣi and AΠi above again define exactly the i-level of
the polynomial-time hierarchy using polynomial-time oracle TMs.
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More on Alternating Complexity Classes

We define
APTime =

⋃
d≥1 ATime(nd)

AExpTime =
⋃

d≥1 ATime(2nd
)

ALogSpace =
⋃

d≥1 ASpace(log n)

APSpace =
⋃

d≥1 ASpace(nd)

AExpSpace =
⋃

d≥1 ASpace(2nd
)

Theorem 24
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Limits of the Diagonalization Method

We have seen many applications of the diagonalization methd.
I Particularly, the proofs of space and time hierarchy theorems.

Can we use the diagonalization method to show P ?
= NP?

I Say, to construct an NTM that accepts 〈M〉10n if and only if the
polynomial time TM M rejects 〈M〉10n.

We give a strong evdience to explain why it may not work.
The diagonalization method basically simulates a TM M by a TM
D. If M and D are given an oracle A, DA can simulate MA as well.

Hence if the diagonalization method can prove P ?
= NP, it can also

prove PA ?
= NPA for any oracle A.

We will now give two oracles A and B such that PA 6= NPA and
PB = NPB.

The diagonalization method does not suffice to prove P ?
= NP.
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Limits of the Diagonalization Method

Theorem 25
There are oracles A and B such that PA 6= NPA and PB = NPB.

Proof.
Let B be TQBF. Then NPTQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PTQBF.
For any oracle C, define

LC = {1n : ∃x ∈ C [ |x| = n ]}.
Clearly, LC ∈ NPC for any C. We construct a language A such that LA 6∈ PA.
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∃A,NPA 6∈ PA

Proof.
Let M?

1,M
?
2, ... be an enumeration of oracle DTMs that run in

polynomial time. Assume for simplicity that M?
i has running time

ni. Since oracle machines query their oracle as a black box, can
plug in any oracle.
We will build an oracle A so that none of these machines can
decide LA.
Inductive construction. We start with nothing, and at each stage
we declare a finite set of strings to be in the language of A or out
of it.
Goal: At stage i, make sure that L(MA

i ) and LA disagree on some
string.
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∃A,NPA 6∈ PA

Proof.
Stage i

I Let MA
i have running time ni . Choose n larger than any string

declared for A, such that 2n > ni.
I We are going to run MA

i on 1n. When MA
i queries A with q, we

F Answer correctly if q has been declared,
F and answer NO otherwise.

I If MA
i accepts 1n, we declare all strings of length n to be NO-strings.

Then A has no YES-string of length n, and 1n 6∈ LA. .
I If MA

i rejects 1n, we find a string of length n that MA
i did not query.

This exists, since 2n > ni . Declare this string to be YES.

Finally, declare all undeclared strings of length up to n arbitrarily.

Hence Mi accepts 1n if and only if 1n 6∈ LA. Mi does not decide LA.
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∃A,NPA 6∈ PA

 

 

 

 

 

 

 

Choose n, 2n > n i 

M1 M2 

Mi 

n1 n2 

ni

q? yes

no 

A 

Answer correctly if q 

has been declared 

 Mi accept 1n, declare all strings of length n to be NO-strings 
 Mi rejects 1n, we find a string w length n not queried by Mi and adds 

w to A 
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Diagonalization - Cantor’s Argument

Recall Cantor’s Argument for showing 2S of a countable set
S = {s1, s2, ...} is not countable

Proof.
Suppose for a contradiction that 2S is countable.

Then the sets in 2S can be enumerated in a list S1,S2,S3, ... ⊆ S
Let us write this list as boolean matrix with rows representing the
sets S1,S2,S3, ... columns representing a (countably infinite)
enumeration of S, and boolean entries encoding the ∈
relationship.
For a contradiction, define a set Sd by diagonalization to differ
from all other Si in the enumeration:
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Diagonalization - The Halting Problem

Proof.
Suppose for a contradiction that Halting is decidable.

Then set of all Turing machines can be enumerated in a list
M1,M2,M3, ...

We are interested in their halting on inputs of the form 〈Mi〉 for
some TM M
We can write it as a boolean matrix with rows representing the
TMs M1,M2,M3, ... columns representing an enumeration of
strings 〈Mi〉, and boolean entries encoding if TM halts.
Using a decider for the halting problem, we can define a TM Md
by diagonalization to differ from all other Mi in the enumeration:
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Generalizing Diagonalization

To generalize diagonalization as a method for complexity classes, we
consider arbitrary resources (time, space, ...):

Definition 26
Given a class K of Turing machines (e.g., 2-tape deterministic TMs), R
is a resource (e.g., time or space) defined for all machines in K if
RM(w) ∈ N ∪ {∞} for all M ∈ K and all words w.
Then, any function f : N → N gives rises to a class of languages:

R(f ) =

{L | there is M ∈ K with L(M) = L and RM(w) ≤ f (|w|) for all w ∈ Σ∗}
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Generalizing Diagonalization

Consider resources R1 and R2 for two classes of Turing machines K1
and K2, and two functions f1, f2 : N → N.

Definition 27
We say that R1(f1) allows diagonalization over R2(f2) if there exists a
Turing machine D ∈ K1 such that

L(D) ∈ R1(f1), and
for each M ∈ K2 that is R2-bounded by f2, there exists a w such that
〈M,w〉 ∈ L(D) if and only if 〈M,w〉 6∈ L(M).

Example 28
Let R1 and R2 be DSPACE. f1 = O(f (n)) and f2 = O(g(n)) with
g(n) = o(f (n)) in the space hierarchy theorem. L(D) = {〈M〉10∗ |M
rejects 〈M〉10∗ using ≤ f (n) space }.
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Generalizing Diagonalization

Theorem 29
If R1(f1) allows diagonalization over R2(f2), then R1(f1)\R2(f2) 6= ∅.

Proof.
Let D be as in the Definition. We show L(D) 6∈ R2(f2).

1 Suppose for a contradiction that there M ∈ K2 that is R2-bounded
by f2 with L(D) = L(M).

2 We obtain a contradiction, since, by Definition, there is a word w
such that

〈M,w〉 ∈ L(D) = L(M)⇔ 〈M,w〉 6∈ L(M)
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