Time/Space Hierarchy, Polynomial-time Hierarchy

Recall

$P \subseteq NP \subseteq PSPACE = NSPACE.$

- Yet we have not proved any intractable problem.
 - A problem isintractable if it cannot be solved in polynomial time.
- The most difficult problem appears to be $TQBF \in PSPACE$.
- But we do not know if $P \stackrel{?}{=} PSPACE$.

Theorem 1

Suppose TM M decides language L in time f(n). Then for any $\epsilon > 0$, there exists TM M' that decides L in time $\epsilon \cdot f(n) + n + 2$.

Proof Idea:

• compress input onto fresh tape:

Linear Speedup (cont'd)

• simulate *M*, *m* steps at a time

 4 (L,R,R,L) steps to read relevant symbols, "remember" in state

-2 (L,R or R,L) to make M's changes

- accounting:
 - part 1 (copying): n + 2 steps
 - part 2 (simulation): 6(f(n)/m)
 - set $m = 6/\epsilon$
 - total: $\epsilon \cdot f(n) + n + 2$

Space Construcibility

Definition 2

 $f : \mathbb{N} \to \mathbb{N}$ with f(n) at least $O(\lg n)$ is called <u>space constructible</u> if the function that maps 1^n to the binary representation of f(n) is computable in space O(f(n)).

- That is, *f* is space constructible if there is an O(f(n)) space TM that always halts with the binary representation of f(n) on input 1^n .
 - ► As usual, the O(f(n)) space TM has two tapes when $f(n) \in o(n)$.

Example 3

lg *n* is space constructible.

Proof.

On input 1^n , the TM counts the number of 1's in binary representation on its work tape. lg *n* is the number of bits in the binary representation of *n*. The TM then computes lg *n* in binary representation.

(NTU EE)

More on Intractability

- Intuitively, a space O(f(n)) TM should be more powerful than a space O(g(n)) TM when $g(n) \in o(f(n))$.
- We would like to prove it by diagonalization.
- However, the difference may be very hard to compute.
 - Thus diagonalization fails.
- Space constructibility allows us to avoid the problem.

Recall the Diagonalization method for proving the halting problem

- Halt: *T* enters "Yes" \Rightarrow Not Halt
- Not Halt: *T* enters "No" \Rightarrow Halt

(NTU EE)

Space Hierarchy Theorem

Theorem 4

For any space constructible function $f : \mathbb{N} \to \mathbb{N}$, there is a language A decidable in O(f(n)) space but not in o(f(n)) space.

Proof.

Consider language $L = \{ \langle M \rangle 10^* | M \text{ rejects } \langle M \rangle 10^* \text{ using } \leq f(n) \text{ space } \}.$

Consider D = "On input w:

- Compute *f*(|*w*|) by space constructibility and mark off this much tape. If *D* ever attempts to use more space, reject.
- **2** If *w* is not of the form $\langle M \rangle 10^*$ for some TM *M*, reject.
- Simulate *M* on *w*. If the simulation takes more than 2^{f(n)} *M*-steps, reject.
- If M accepts, reject; if M rejects, accept."

Proof (cont'd).

In Step 3, *D* simulates *M* in *D*'s tape alphabet. The simulation hence introduces a constant factor of **overhead** (independent of |w|). That is, if *M* runs in g(n) space, *D* runs in dg(n) space for some constant *d*. Clearly, *D* is an O(f(n)) space TM. We next argue that *L* cannot be decided in o(f(n)).

Suppose a TM *M*' decides *L* in space g(n) for some $g(n) \in o(f(n))$. Since $g(n) \in o(f(n))$, there is an n_0 that dg(n) < f(n) for every $n \ge n_0$. Consider $\langle M' \rangle 10^{n_0}$. Since $dg(n_0) < f(n_0)$, *M*' accepts $\langle M' \rangle 10^{n_0}$ if and only if *M*' rejects $\langle M' \rangle 10^{n_0}$.

Corollary 5

Let $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ with $f_1(n) \in o(f_2(n))$ and f_2 space constructible. SPACE $(f_1(n)) \subsetneq$ SPACE $(f_2(n))$.

- We can show n^c is space constructible for any $c \in \mathbb{Q}^{\geq 0}$.
- Observe that for any $\epsilon_1, \epsilon_2 \in \mathbb{R}^{\geq 0}$ with $\epsilon_1 < \epsilon_2$, there are $c_1, c_2 \in \mathbb{Q}^{\geq 0}$ that $0 \leq \epsilon_1 < c_1 < c_2 < \epsilon_2$. Therefore

Corollary 6

For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ *with* $0 \le \epsilon_1 < \epsilon_2$ *,* $SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2})$ *.*

/N1	TTT 1	
(IN	ΙU	EE,

More Applications of Space Hierarchy Theorem

Corollary 7 $NL \subsetneq PSPACE$.

Proof.

By Savitch's theorem, $NL \subseteq SPACE(\lg^2 n)$. By space hierarchy theorem, $SPACE(\lg^2 n) \subsetneq SPACE(n)$.

• Recall that *TQBF* is *PSPACE*-complete. Hence *TQBF* \notin *NL*.

Corollary 8

 $PSPACE \subsetneq EXPSPACE = \cup_k SPACE(2^{n^k}).$

• So far, we know

 $NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE.$

(NTU EE)

Time Constructibility

Definition 9

 $t : \mathbb{N} \to \mathbb{N}$ with t(n) at least $O(n \lg n)$ is called <u>time constructible</u> if the function that maps 1^n to the binary representation of t(n) is computable in time O(t(n)).

• That is, *t*(*n*) is time constructible if there is an *O*(*t*(*n*)) time TM that always halts with the binary representation of *t*(*n*) on input 1^{*n*}.

Example 10

 $n\sqrt{n}$ is time constructible.

Proof.

On input 1^{*n*}, a TM counts the number of 1's in binary representation. This takes time $O(n \lg n)$. $\lfloor n \sqrt{n} \rfloor$ in binary representatino can be computed in $O(n \lg n)$ time since the input is now of length $O(\lg n)$.

Time Hierarchy Theorem

Theorem 11

For any time constructible function $t : \mathbb{N} \to \mathbb{N}$, there is a language A decidable in O(t(n)) time but not in $o(t(n)/\lg t(n))$ time.

Proof.

Consider

- D = "On input w:
 - Compute t(|w|) by time constructibility and store [t(n)/lgt(n)] in a binary counter. If this counter ever reaches 0, reject.
 - 2 If *w* is not of the form $\langle M \rangle 10^*$ for some TM *M*, reject.
 - Simulate *M* on *w* and decrement the binary counter at each *M*-step.
 - If M accepts, reject; if M rejects; accept."

D simulates *M* with 3 tracks. Track 1 mimics *M*'s tape; track 2 contains the current *M* state and the transition function of *M*; and track 3 contains the binary counter. Whenever *M* moves its tape head, *D* shifts the content on track 2 and 3 close to *M*'s tape head. Since the length of the content on track 2 is independent of |w|, *D*'s simulation needs a constant factor *d* time overhead.

(NTU EE)

More on Intractability

Time Hierarchy Theorem

Proof.

The binary counter on track 3 need be decremented on every *M*-step. The length of the binary counter is $\lg(t(n)/\lg t(n)) \in O(\lg t(n))$. Hence decrementing the counter needs $\lg t(n)$ time overhead. *D* simulates *M* by at most $\lceil t(n)/\lg t(n) \rceil$ *M*-steps. Counting time overhead, *D* runs in time O(t(n)). Suppose a TM *M* decides A = L(D) in time g(n) with $g(n) \in o(t(n)/\lg t(n))$. Not counting the time for updating the binary counter, *D* simulates *M* in time dg(n). Since $g(n) \in o(t(n)/\lg t(n))$, there is an n_0 that $dg(n) \le t(n)/\lg t(n)$ for all $n \ge n_0$. Consider the input $\langle M \rangle 10^{n_0}$. The initial binary counter is no less than $t(n_0)/\lg t(n_0) \ge dg(n_0)$. Thus *D* can simulate *M* on $\langle M \rangle 10^{n_0}$ with $g(n_0)$ *M*-steps. But *D* accepts $\langle M \rangle 10^{n_0}$ if and only if *M* rejects $\langle M \rangle 10^{n_0}$. $L(M) \ne L(D)$.

イロト イロト イヨト イ

Corollary 12

For $t_1, t_2 : \mathbb{N} \to \mathbb{N}$ with $t_1(n) \in o(t_2(n)/\lg t_2(n))$ and t_2 time constructible. TIME $(t_1(n)) \subsetneq TIME(t_2(n))$.

Corollary 13

For any $\epsilon_1, \epsilon_2 \in \mathbb{R}$ *with* $0 \le \epsilon_1 < \epsilon_2$ *,* $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$ *.*

Corollary 14 $P \subsetneq EXPTIME$.

/ 3 1	-	1 10	-
		IВ	н.
	* *		,

< 口 > < 🗇

Oracle Turing Machines

Definition 15

An <u>oracle</u> for a language *A* answers whether $w \in A$ for any string *w*. An <u>oracle Turing machine</u> M^A is a Turing machine that can query an oracle *A*. When M^A write a string *w* on a special <u>oracle tape</u>, it is informed whether $w \in A$ in a single step.

Oracle Computations

- Let *M* be an oracle Turing machine (OTM)
- Let *x* be any string in Σ^*
- Let *B* be an oracle (which is now a language).
 - **1** M starts with input *x*.
 - Whenever *M* writes a query word *y* on its query tape and enters a query state *q_{query}*, *y* is automatically sent to oracle *B*.
 - Solution The oracle *B* returns its answer (YES/NO) by changing *M*'s inner state from *q_{query}* to either *q_{yes}* or *q_{no}*, depending on whether *y* ∈ *B* or *y* ∉ *B*, respectively.
 - If M resumes its computation, starting with q_{yes} or q_{no} .

Definition 16

 $L(M^B) = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ with oracle } B\}.$

Oracle Turing Machines

Definition 17

For two languages *A* and *B*, we say that *A* is Turing reducible to *B* (written as $A \leq_T B$) if there is an OTM *M* such that

• $A = L(M^B)$; that is, for every input $x, x \in A \Leftrightarrow M^B$ accepts x via making queries to the oracle B

Definition 18

Language *A* is polynomial-time Turing reducible to language *B* (written as $A \leq_T^p B$ if there is an OTM *M* such that

- $A = L(M^B)$; that is, for every input $x, x \in A \Leftrightarrow M^B$ accepts x via making queries to the oracle B
- 2 *M* runs in polynomial time.

Definition 19

 $P^{A} = \{L : L \text{ is decided by a polynomial time OTM with oracle } A\}$ $NP^{A} = \{L : L \text{ is decided by a polynomial time ONTM with oracle } A\}$

Example 20

 $NP \subseteq P^{SAT}$ and $coNP \subseteq P^{SAT}$.

Proof.

For any $A \in NP$, use the polynomial reduction of A to SAT.

(N)	TΤ	ΙF	E,
(+ •	10		ь,

▶ < 프 ▶ < 프 ▶</p>

< 口 > < 🗇

Oracle Turing Machines

- Two Boolean formulae φ and ψ over x₁,..., x_l are equivalent if they have the same value on any assignments to x₁,..., x_l.
- A formula is minimal if it is not equivalent to a smaller formula.
- Consider

NONMINFORMULA = { $\langle \phi \rangle$: ϕ is not a minimal Boolean formula}.

Example 21 $NONMINFORMULA \in NP^{SAT}$.

Proof.

"On input $\langle \phi \rangle$:

- Nondeterministically select a smaller formula ψ .
- **2** Ask $\langle \phi XOR \psi \rangle \in SAT$.
- If yes, accept; otherwise, reject."

Meyer and Stockmeyer (1972, 1973) introduced a notion of the polynomial-time hierarchy over NP.

The polynomial hierarchy consists of the following complexity classes: for every index $k \ge 1$,

•
$$\Delta_1^P = P$$

• $\Sigma_1^P = NP, \quad \Pi_1^P = co-NP$
• $\Delta_{k+1}^P = P^{\Sigma_k^P}$
• $\Sigma_{k+1}^P = NP^{\Sigma_k^P}, \quad \Pi_{k+1}^P = co-\Sigma_{k+1}^P$

Polynomial-time Hierarchy

Polynomial-time Hierarchy

э

< E

We define the complexity class *PH* as follows:

$$PH = \bigcup_{k \ge 1} (\Sigma_k^P \cup \Pi_k^P)$$

•
$$NP \subseteq PH \subseteq PSPACE$$

- If P = NP, then P = PH.
- $P^{PH} = NP^{PH} = PH$.

Another Characterization of Polynomial-time Hierarchy

We have already seen, that deciding whether a formula is satisfiable

- $\exists x_1 \cdots x_n (x_1 \lor \bar{x_2} \lor x_8) \land \cdots \land (\bar{x_6} \lor x_3)$
 - only existential quantifier NP-complete
- $\exists x_1 \forall x_2 \exists x_3 \dots (x_1 \lor \overline{x_2} \lor x_8) \land \dots \land (\overline{x_6} \lor x_3)$
 - existential & universal quantifiers PSPACE-complete

Definition 22

Consider language classes reducible to deciding the satisfiability of

 $\Sigma_i SAT : \exists x_1 \forall x_2 \exists x_3 \dots R(x_1, x_2, x_3 \dots)$

 $\Pi_i SAT : \forall x_1 \exists x_2 \forall x_3 \dots R(x_1, x_2, x_3 \dots)$

with *i* alternating quantifiers and R(...) is a polynomial-time predicate.

 $\Sigma_i SAT$ and $\Pi_i SAT$ above define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

(NTU EE)

More on Intractability

Spring 2023 25 / 39

- An alternating Turing machine (ATM) M = (Q, Σ, Γ, δ, q₀, F) is a Turing machine with a non-deterministic transition function δ : Q × Γ → 2^{Q×Γ×{L,R}} whose set of states, in addition to accepting/rejecting states, is partitioned into existential (∃ or ∨) and universal (∀ or ∧) states.
- A configuration *C* of an ATM *M* can reach acceptance if either of the following is true:
 - *C* is existential and some branch can reach acceptance.
 - *C* is universal and all branches can reach acceptance.

M accepts a word *w* if the start configuration on *w* is accepting.

Alternating Turing Machines

Definition 23

Consider language classes

- *A*Σ^p_i: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∃-state,
- AΠ^p_i: the language accepted by polynomial time ATM using at most *i* alternations with the initial state an ∀-state,

It turns out that $A\Sigma_i$ and $A\Pi_i$ above again define exactly the *i*-level of the polynomial-time hierarchy using polynomial-time oracle TMs.

More on Alternating Complexity Classes

We define

- APTime = $\bigcup_{d \ge 1} ATime(n^d)$
- AExpTime = $\bigcup_{d \ge 1} ATime(2^{n^d})$
- ALogSpace = $\bigcup_{d \ge 1} ASpace(\log n)$
- APSpace = $\bigcup_{d \ge 1} ASpace(n^d)$

• AExpSpace =
$$\bigcup_{d \ge 1} ASpace(2^{n^d})$$

Theorem 24

L	⊆	PTime	⊆	PSpace	⊆	ExpTime	⊆	ExpSpace	
		Ш		П		П		Ш	
		ALogSpace	⊆	APTime	⊆	APSpace	\subseteq	AExpTime	

_	
н.	

Limits of the Diagonalization Method

- We have seen many applications of the diagonalization methd.
 - Particularly, the proofs of space and time hierarchy theorems.
- Can we use the diagonalization method to show $P \stackrel{?}{=} NP$?
 - Say, to construct an NTM that accepts $\langle M \rangle 10^n$ if and only if the polynomial time TM *M* rejects $\langle M \rangle 10^n$.
- We give a strong evdience to explain why it may not work.
- The diagonalization method basically simulates a TM *M* by a TM *D*. If *M* and *D* are given an oracle *A*, *D*^{*A*} can simulate *M*^{*A*} as well.
- Hence if the diagonalization method can prove $P \stackrel{?}{=} NP$, it can also prove $P^A \stackrel{?}{=} NP^A$ for any oracle *A*.
- We will now give two oracles *A* and *B* such that $P^A \neq NP^A$ and $P^B = NP^B$.
- The diagonalization method does not suffice to prove $P \stackrel{?}{=} NP$.

Theorem 25

There are oracles A and B such that $P^A \neq NP^A$ and $P^B = NP^B$.

Proof.

Let *B* be *TQBF*. Then $NP^{TQBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{TQBF}$. For any oracle *C*, define

$$L_{C} = \{1^{n} : \exists x \in C [|x| = n]\}.$$

Clearly, $L_C \in NP^C$ for any *C*. We construct a language *A* such that $L_A \notin P^A$.

Proof.

- Let M[?]₁, M[?]₂, ... be an enumeration of oracle DTMs that run in polynomial time. Assume for simplicity that M[?]_i has running time nⁱ. Since oracle machines query their oracle as a black box, can plug in any oracle.
- We will build an oracle *A* so that none of these machines can decide *L*_{*A*}.
- Inductive construction. We start with nothing, and at each stage we declare a finite set of strings to be in the language of *A* or out of it.
- Goal: At stage *i*, make sure that $L(M_i^A)$ and L_A disagree on some string.

Proof.

• Stage *i*

- Let M_i^A have running time n^i . Choose *n* larger than any string declared for *A*, such that $2^n > n^i$.
- We are going to run M_i^A on 1^n . When M_i^A queries A with q, we
 - Answer correctly if *q* has been declared,
 - and answer NO otherwise.
- If M_i^A accepts 1^n , we declare all strings of length *n* to be NO-strings. Then *A* has no YES-string of length *n*, and $1^n \notin L_A$.
- If M_i^A rejects 1^n , we find a string of length n that M_i^A did not query. This exists, since $2^n > n^i$. Declare this string to be YES.
- Finally, declare all undeclared strings of length up to *n* arbitrarily.

Hence M_i accepts 1^n if and only if $1^n \notin L_A$. M_i does not decide L_A .

< □ > < □ > < □ > < □ >

- M_i accept 1ⁿ, declare all strings of length n to be NO-strings
- M_i rejects 1ⁿ, we find a string w length n not queried by M_i and adds w to A

1.		
		H H 1
111	10	

Diagonalization - Cantor's Argument

Recall Cantor's Argument for showing 2^S of a countable set $S = \{s_1, s_2, ...\}$ is not countable

Proof.

Suppose for a contradiction that 2^{*S*} is countable.

- Then the sets in 2^S can be enumerated in a list $S_1, S_2, S_3, ... \subseteq S$
- Let us write this list as boolean matrix with rows representing the sets S₁, S₂, S₃, ... columns representing a (countably infinite) enumeration of S, and boolean entries encoding the ∈ relationship.
- For a contradiction, define a set *S*_d by diagonalization to differ from all other *S*_i in the enumeration:

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
S_1	×			
S_2			×	
S_3	×	×		
1	÷	÷	÷	$\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}}}}}}}}}$
S_d		x	x	

More on Intractability

Diagonalization - The Halting Problem

Proof.

Suppose for a contradiction that Halting is decidable.

- Then set of all Turing machines can be enumerated in a list M_1, M_2, M_3, \dots
- We are interested in their halting on inputs of the form $\langle M_i \rangle$ for some TM *M*
- We can write it as a boolean matrix with rows representing the TMs $M_1, M_2, M_3, ...$ columns representing an enumeration of strings $\langle M_i \rangle$, and boolean entries encoding if TM halts.
- Using a decider for the halting problem, we can define a TM *M*_d by diagonalization to differ from all other *M*_i in the enumeration:

	$\langle \mathcal{M}_1 \rangle$	$\langle M_2 \rangle$	$\langle \mathcal{M}_3 \rangle$	
\mathcal{M}_1	×			
\mathcal{M}_2			×	
\mathcal{M}_3	×	×		
1	1	1	1	γ_{i_1}
\mathcal{M}_d		×	×	

To generalize diagonalization as a method for complexity classes, we consider arbitrary resources (time, space, ...):

Definition 26

Given a class *K* of Turing machines (e.g., 2-tape deterministic TMs), R is a resource (e.g., time or space) defined for all machines in *K* if $R_M(w) \in N \cup \{\infty\}$ for all $M \in K$ and all words *w*. Then, any function $f : N \to N$ gives rises to a class of languages:

$$R(f) =$$

{L | there is $M \in K$ with L(M) = L and $R_M(w) \le f(|w|)$ for all $w \in \Sigma^*$ }

/			-
		н н	H.
	10		_

▶ < 프 ▶ < 프 ▶</p>

Generalizing Diagonalization

Consider resources R_1 and R_2 for two classes of Turing machines K_1 and K_2 , and two functions $f_1, f_2 : N \to N$.

Definition 27

We say that $R_1(f_1)$ allows diagonalization over $R_2(f_2)$ if there exists a Turing machine $D \in K_1$ such that

- $L(D) \in R_1(f_1)$, and
- for each $M \in K_2$ that is R_2 -bounded by f_2 , there exists a w such that $\langle M, w \rangle \in L(D)$ if and only if $\langle M, w \rangle \notin L(M)$.

Example 28

Let R_1 and R_2 be *DSPACE*. $f_1 = O(f(n))$ and $f_2 = O(g(n))$ with g(n) = o(f(n)) in the space hierarchy theorem. $L(D) = \{ \langle M \rangle 10^* | M \text{ rejects } \langle M \rangle 10^* \text{ using } \leq f(n) \text{ space } \}.$

イロト イポト イヨト イヨト 一日

Theorem 29

If $R_1(f_1)$ *allows diagonalization over* $R_2(f_2)$ *, then* $R_1(f_1) \setminus R_2(f_2) \neq \emptyset$ *.*

Proof.

Let *D* be as in the Definition. We show $L(D) \notin R_2(f_2)$.

- Suppose for a contradiction that there $M \in K_2$ that is R_2 -bounded by f_2 with L(D) = L(M).
- We obtain a contradiction, since, by Definition, there is a word w such that

$$\langle M,w\rangle\in L(D)=L(M)\Leftrightarrow \langle M,w\rangle\not\in L(M)$$