
Theory of Computation
Time and Space Complexity Classes

(NTU EE) Time Complexity Spring 2023 1 / 62

Time for Deciding a Language

Let us consider A = {0n1n : n ≥ 0}.
How much time does a single-tape TM need to decide A?
Consider
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.
3 If 0’s or 1’s still remain, reject. Otherwise, accept.”

How much “time” does M1 need for an input w?

(NTU EE) Time Complexity Spring 2023 2 / 62

Time Complexity

Definition 1
Let M be a TM that halts on all inputs. The running time (or time
complexity) of M is the function f : N→ N where f (n) is the running
time of M on any input of length n.

If f (n) is the running time of M, we say M runs in time f (n) and M
is an f (n) time TM.
In worst-case analysis, the longest running time of all inputs of a
particular length is considered.
In average-case analysis, the average of all running time of inputs
of a particular length is considered instead.
We only consider worst-case analysis in the course.

(NTU EE) Time Complexity Spring 2023 3 / 62

Big-O and Small-O

Definition 2
Let f , g : N→ R+. f (n) = O(g(n)) if there are c,n0 ∈ Z+ such that for all
n ≥ n0,

f (n) ≤ c(g(n)).

g(n) is an upper bound (or an asymptotic upper bound) for f (n).
nc(c ∈ R+) is a polynomial bound.
2nd

(d ∈ R+) is an exponential bound.

Definition 3
Let f , g : N→ R+. f (n) = o (g (n)) if

lim
n→∞

f (n)

g(n)
= 0.

That is, for any c ∈ R, there is an n0 that f (n) < c(g) for all n ≥ n0.

(NTU EE) Time Complexity Spring 2023 4 / 62

Time Complexity of M1

Recall
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Let |w| = n.

I Step 1 takes O(n) (precisely, ≤ n).
I Step 2 has O(n) iterations (precisely, ≤ n/2).

F An iteration takes O(n) (precisely, ≤ n).
I Step 3 takes O(n) (precisely, ≤ n).

The TM M1 decides A = {0n1n : n ≥ 0} in time O(n2).
I O(n2) = O(n) + O(n)×O(n) + O(n).

(NTU EE) Time Complexity Spring 2023 5 / 62

Time Complexity Class

Definition 4
Let t : N→ R+. The time complexity class TIME(t(n)) is the collection
of all languages that are decided by a O(t(n)) time TM.

A = {0n1n : n ≥ 0} is decided by M1 in time O(n2). A ∈ TIME(n2).
Time complexity classes characterizes languages, not TM’s.

I We don’t say M1 ∈ TIME(n2).

A language may be decided by several TM’s.
Can A be decided more quickly asymptotically?

(NTU EE) Time Complexity Spring 2023 6 / 62

Models and Time Complexity

Consider the following TM:
M2 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan the tape and check if the total number of 0’s and 1’s is even. If
not, reject.

2 Scan the tape, cross every other 0 from the first 0, and cross every
other 1 from the first 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Analysis of M2.

I Step 1 takes O(n).
I Step 2 has O(lg n)(= log2(n)) iterations (why?). At each iteration,

F Step 1 takes O(n).
F Step 2 takes O(n).

I Step 3 takes O(n).
M2 decides A in time O(n lg n).

I O(n lg n) = O(n) + O(lg n)×O(n) + O(n).

(NTU EE) Time Complexity Spring 2023 7 / 62

Models and Time Complexity

Consider the following two-tape TM:
M3 = “On input string w:

1 Scan tape 1 and reject if a 0 appears after a 1.
2 Scan tape 1 and copy the 0’s onto tape 2.
3 Scan tape 1 and cross a 0 on tape 2 for a 1 on tape 1.
4 If all 0’s are crossed off before reading all 1’s, reject. If some 0’s are

left after reading all 1’s, reject. Otherwise, accept.”
Analysis of M3.

I Each step takes O(n).
For the same language A = {0n1n : n ≥ 0}.

I The TM M1 decides A in time O(n2), the TM M2 decides A in time
O(n lg n), and the two-tape M3 decides A in time O(n).

In computability theory, all reasonable variants of TM’s decide the
same language (Church-Turing thesis).
In complexity theory, different variants of TM’s may decide the
same in different time.

(NTU EE) Time Complexity Spring 2023 8 / 62

Complexity Relationship with Multitape TM’s

Theorem 5

Let t(n) be a function with t(n) ≥ n. Every t(n) time multitape Turing machine has an
equivalent O(t2(n)) time single-tape TM.

Proof.
We analyze the simulation of a k-tape TM M is by the TM S. Observe that each tape of
M has length at most t(n) (why?).
For each step of M, S has two passes:

The first pass gathers information (O(kt(n))).

The second pass updates information with at most k shifts (O(k2t(n))).

Hence S takes O(n) + O(k2t2(n)) (= O(n) + O(t(n))×O(k2t(n))). Since t(n) ≥ n, we
have S runs in time O(t2(n)) (k is independent of the input).

0 1 xy0

ab xyb b 1 # b b
•
00 b xy

•
a ##

SM

(NTU EE) Time Complexity Spring 2023 9 / 62

Time Complexity of Nondterministic TM’s

Definition 6
Let N be a nondeterministic TM that is a decider. The running time of
N is a function f : N→ N where f (n) is the maximum number of steps
among any branch of N’s computation on input of length n.

f (n)
... ...

accept

reject

reject

accept

f (n)

(NTU EE) Time Complexity Spring 2023 10 / 62

Complexity Relationship with NTM’s

Theorem 7

Let t(n) be a function with t(n) ≥ n. Every t(n) time single-tape NTM has
an equivalent 2O(t(n)) time single-tape TM.

Proof.
Let N be an NTM running in time t(n). Recall the simulation of N by a
3-tape TM D with the address tape alphabet Σb = {1,2, . . . ,b} (b is the
maximal number of choices allowed in N).
Since N runs in time t(n), the computation tree of N has O(bt(n)) nodes.
For each node, D simulates it from the start configuration and thus
takes time O(t(n)). Hence the simulation of N on the 3-tape D takes
2O(t(n))(= O(t(n))×O(bt(n))) time.
By Theorem 5, D can be simulated by a single-tape TM in time
(2O(t(n)))2 = 2O(t(n)).

(NTU EE) Time Complexity Spring 2023 11 / 62

The Class P

It turns out that reasonable deterministic variants of TM’s can be
simulated by a TM with a polynomial time overhead.

I multitape TM’s, TM’s with random access memory, etc.
The polynomial time complexity class is rather robust.

I That is, it remains the same with different computational models.

Definition 8
P is the class of languages decidable in polynomial time on a
determinsitic single-tape TM. That is,

P =
⋃

k

TIME(nk).

We are interested in intrinsic characters of computation and hence
ignore the difference among variants of TM’s in this course.
Solving a problem in time O(n) and O(n100) certainly makes lots
of difference in practice.

(NTU EE) Time Complexity Spring 2023 12 / 62

The Class NP

Definition 9
A verifier for a language A is an algorithm V where

A = {w : V accepts 〈w, c〉 for some c}.

c is a certificate or proof of membership in A. A polynomial time
verifier runs in polynomial time in the length of w (not 〈w, c〉). A
language A is polynomially verifiable if it has a polynomial time
verifier.

Note that a certificate has a length polynomial in |w|.
I Otherwise, V cannot run in polynomial time in |w|.

Definition 10
NP is the class of languages that have polynomial time verifiers.

(NTU EE) Time Complexity Spring 2023 13 / 62

Hamiltonian Paths

A Hamiltonian path in a directed graph G is a path that goes
through every node exactly once. Consider

HAMPATH =
{〈G, s, t〉 : G is a directed graph with a Hamiltonian path

from s to t}.

HAMPATH ∈ NP.
I Verifying whether c is a Hamiltonian path from s to t can be done in

polynomial time.
I A certificate for 〈G, s, t〉 ∈ HAMPATH is a Hamiltonian path from s

to t.

Finding a Hamiltonian path from s to t seems harder.

(NTU EE) Time Complexity Spring 2023 14 / 62

NP and NTM’s

Theorem 11
A language is in NP if and only if it is decided by a nondeterministic polynomial time Turing
machine.

Proof.
Let V be a verifier for a language A running in time nk. Consider
N = “On input w of length n:

1 Nondeterministically select string c of length ≤ nk.
2 Run V on 〈w, c〉.
3 If V accepts, accept; otherwise, reject.”

Conversely, let the NTM N decide A and c the address of an accepting configuration in
the computation tree of N. Consider
V = “On input 〈w, c〉:

1 Simulate N on w from the start configuration by c.
2 If the configuration with address c is accepting, accept; otherwise, reject.”

(NTU EE) Time Complexity Spring 2023 15 / 62

The Nondeterministic Time Complexity Class

Definition 12
NTIME (t (n)) = { L : L is a language decided by a O (t (n)) time NTM
}.

Corollary 13

NP =
⋃

k

NTIME(nk).

Recall that class TIME(t(n)) and

P =
⋃

k

TIME(nk).

(NTU EE) Time Complexity Spring 2023 16 / 62

The Class coNP

Definition 14
coNP = {L : L ∈ NP}.

HAMPATH ∈ coNP since HAMPATH = HAMPATH ∈ NP.
I HAMPATH does not appear to be polynomial time verifiable.
I What is a certificate showing there is no Hamiltonian path?

We do not know if coNP is different from NP.
Recall

I P is the class of languages which membership can be decided
quickly.

I NP is the class of languages which membership can be verified
quickly.

L ∈ P implies L ∈ NP for every language L.

(NTU EE) Time Complexity Spring 2023 17 / 62

P vs NP

P = NPPNP

Figure: Possible Relation between P and NP

To the best of our knowledge, we only know

NP ⊆ EXPTIME =
⋃

k

TIME(2nk
). (Theorem 7)

Particularly, we do no know if P ?
= NP.

(NTU EE) Time Complexity Spring 2023 18 / 62

Satisfiability

Let B = {0,1} be the truth values.
A Boolean variable takes values from B.
Recall the Boolean operations

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 = 1
1 = 0

A Boolean formula is an expression constructed from Boolean
variables and opearations.

I φ = (x ∧ y) ∨ (x ∧ z) is a Boolean formula.
A Boolean formula is satisfiable if an assignments of 0’s and 1’s to
Boolean variables makes the formula evaluate to 1.

I φ is satisfiable by taking {x 7→ 0, y 7→ 1, z 7→ 0}.

(NTU EE) Time Complexity Spring 2023 19 / 62

The Satisfiability Problem

The satisfiability problem is to test whether a Boolean formula is
satisfiable.
Consider

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}.

Theorem 15 (Cook-Levin)
SAT ∈ P if and only if P = NP.

(NTU EE) Time Complexity Spring 2023 20 / 62

Polynomial Time Reducibility

Definition 16
f : Σ∗ → Σ∗ is a polynomial time computable function if a polynomial
time TM M halts with only f (w) on its tape upon any input w.

Definition 17
A language A is polynomial time mapping reducible (polynomial time
reducible, or polynomial time many-one reducible) to a language B
(written A ≤P B) if there is a polynomial time computable function
f : Σ∗ → Σ∗ that

w ∈ A if and only if f (w) ∈ B for every w.

f is called the polynomial time reduction of A to B.

Recall the definitions of computable functions and mapping
reducibility.

(NTU EE) Time Complexity Spring 2023 21 / 62

Properties about Polynomial Time Reducibility

Theorem 18
If A ≤P B and B ∈ P, A ∈ P.

Proof.
Let the TM M decide B and f a polynomial time reduction of A to B.
Consider
N = “On input w:

1 Compute f (w).
2 Run M on f (w).”

Since the composition of two polynomials is again a polynomial, N
runs in polynomial time.

(NTU EE) Time Complexity Spring 2023 22 / 62

The 3SAT Problem

A literal is a Boolean variable or its negation.
A clause is a disjunction (∨) of literals.

I x1 ∨ x2 ∨ x3 ∨ x4 is a clause.
A Boolean formula is in conjunctive normal form (or a
CNF-formula) if it is a conjunction (∧) of clauses.

I (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x6) is a CNF-formula.

In a satisfiable CNF-formula, each clause must contain at least one
literal assigned to 1.
A Boolean formula is a 3CNF-formula if it is a CNF-formula
whose clauses have three literals.

I (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) is a 3CNF-formula.

Consider

3SAT = {〈φ〉 : φ is a satisfiable 3CNF-formula}.

(NTU EE) Time Complexity Spring 2023 23 / 62

3SAT ≤P CLIQUE

Theorem 19

3SAT ≤P CLIQUE.

Proof.
Given a 3CNF-formula φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck), we
would like to find a graph G and a number k such that 〈φ〉 ∈ 3SAT if and only if
〈G, k〉 ∈ CLIQUE. We need gadgets to simulate Boolean variables and clauses in φ.

For each clause ai ∨ bi ∨ ci, add three corresponding nodes to G.

I G has 3k nodes.

For each pair of nodes in G, add an edge except when

I the pair of nodes correspond to literals in a clause.
I the pair of nodes correspond to complementary literals.

We next show that φ is satisfiable if and only if G has a k-clique.

(NTU EE) Time Complexity Spring 2023 24 / 62

3SAT ≤P CLIQUE

x2

x2

x1

x1

x2

x1 x2x2

x1

(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Proof.
Suppose φ has a satisfying assignment. Each clause has at least one literal assigned to
1. We pick a node corresponding to true literal from each clause. Any pair of the
chosen nodes do not belong to the same clause. Since a literal and its complement
cannot be 1 simultaneously, any pair of the chosen nodes are not complementary.
Hence there is an edge between any pair of the chosen nodes. We have a k-clique.
Conversely, suppose there is a k-clique. Since there is no edge between any two nodes
in a clause, the k-clique must have one node from each of the k clauses. Moreover,
there is no edge between complementary literals. Either a literal or its complement
appears in the k-clique but not both. φ is satisfied by the assignment making literals in
the clique true.
It is easy to see that G can be constructed from φ in polynomial time.

(NTU EE) Time Complexity Spring 2023 25 / 62

NP-Completeness

Definition 20
A language B is NP-complete if

B is in NP; and
every A in NP is polynomial time reducible to B.

Theorem 21
If B is NP-complete and B ∈ P, then P = NP.

Theorem 22

If C ∈ NP, B is NP-complete, and B ≤P C, then C is NP-complete.

Proof.
Since B is NP-complete, there is a polynomial time reduction f of A to
B for any A ∈ NP. Since B ≤P C, there is a polynomial time reduction g
of B to C. g ◦ f is a polynomial time reduction of A to C.

(NTU EE) Time Complexity Spring 2023 26 / 62

Cook-Levin Theorem

Theorem 23

SAT is NP-complete.

Proof.
For any Boolean formula φ, an NTM nondeterministically choose a truth assignment.
It checks whether the assignment satisfies φ. If so, accept; otherwise, reject. Hence
SAT ∈ NP.
Let A ∈ NP and the NTM N decide A in nk time. For any input w, a tableau for N on w
is an nk × nk table whose rows are the configurations along a branch of the
computation of N on w. A tableau of size nk × nk has nk × nk cells. We assume each
configuration starts and ends with a # symbol. A tableau is accepting if any of its
rows is an accepting configuration.
Each accepting tableau for N on w corresponds to an accepting computation of N on
w. We therefore construct a Boolean formula φ such that φ is satisfiable if and only if
there is an accepting tableau for N on w.

(NTU EE) Time Complexity Spring 2023 27 / 62

Cook-Levin Theorem

q0 w0 w1 wj wn xyxy

nk

nk

#
#
#

#

#
#
#

#

window

Proof (cont’d).
Let C = Q ∪ Γ ∪ {#}where Q and Γ are the states and the tape alphabet of N. For
1 ≤ i, j ≤ nk and s ∈ C, the Boolean variable xi,j,s denotes the content of the cell cell[i, j].
That is, xi,j,s is 1 if and only if cell[i, j] = s. To force each cell to contain exactly one
symbol from C, consider

φcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s6=t

(xi,j,s ∨ xi,j,t)

 .
(NTU EE) Time Complexity Spring 2023 28 / 62

Cook-Levin Theorem

Proof (cont’d).
To force the tableau to begin with the start configuration, consider

φstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3,xy ∧ · · · ∧ x1,nk−1,xy ∧ x1,nk,#.

To force an accepting configuration to appear in the tableau, consider

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept .

To force the configuration at row i yields the configuration at row i + 1, consider a
window of 2× 3 cells. For example, assume δ(q1,a) = {(q1,b,R)} and
δ(q1,b) = {(q2,c, L), (q2,a,R)}. The following windows are valid:

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b
b a
b a

a b a
a b q2

b b b
c b b

(NTU EE) Time Complexity Spring 2023 29 / 62

Cook-Levin Theorem

Proof.
Since C is finite, there are only a finite number of valid windows. For any window W

c1 c2 c3

c4 c5 c6
, consider

ψW = xi,j−1,c1 ∧ xi,j,c2 ∧ xi,j+1,c3 ∧ xi+1,j−1,c4 ∧ xi+1,j,c5 ∧ xi+1,j+1,c6

To force every window in the tableau to be valid, consider

φmove =
∧

1≤i≤nk,1≤j<nk

(∨
W is a valid

ψW

)
.

Finally, consider the following Boolean formula:

φ = φcell ∧ φstart ∧ φaccept ∧ φmove.

|φcell| = O(n2k), |φstart| = O(nk), |φaccept| = O(n2k), and |φmove| = O(n2k). Hence
|φ| = O(n2k). Moreover, φ can be constructed from N in time polynomial in n.

(NTU EE) Time Complexity Spring 2023 30 / 62

3SAT is NP-Complete

Corollary 24
3SAT is NP-complete.

Proof.
We convert the Boolean formula φ in the proof of Theorem 23 into a 3CNF-formula.
We begin by converting φ into a CNF-formula.
Observe that the conjunction of CNF-formulae is again a CNF-formula. Note that φcell,
φstart, and φaccept are already in CNF (why?). φmove is of the following form:

∧
1≤i≤nk,1≤j<nk

(∨
W is valid

(l1 ∧ l2 ∧ l3 ∧ l4 ∧ l5 ∧ l6)

)

By the law of distribution, φmove can be converted into a CNF-formula. Note that the
conversion may increase the size of φmove. Yet the size is independent of |w|. Hence
the size of the CNF-formula φ still polynomial in |w|.
To a clause of k literals into clauses of 3 literals, consider l1 7→ (l1 ∨ l1 ∨ l1),
l1 ∨ l2 7→ (l1 ∨ l2 ∨ l2), and
l1 ∨ l2 ∨ · · · lp 7→ (l1 ∨ l2 ∨ z1) ∧ (z1 ∨ l3 ∨ z2) ∧ · · · ∧ (zp−3 ∨ lp−1 ∨ lp).

(NTU EE) Time Complexity Spring 2023 31 / 62

More NP-Complete Problems

To find more NP-complete problems, we apply Theorem 22.
Concretely, to show C is NP-complete, do

I prove C is in NP; and
I find a polynomial time reduction of an NP-complete problem (say,

3SAT) to C.

In Theorem 19, we have shown 3SAT ≤P CLIQUE. Therefore

Corollary 25
CLIQUE is NP-complete.

(NTU EE) Time Complexity Spring 2023 32 / 62

Space Complexity

Definition 26
Let M be a TM that halts on all inputs. The space complexity of M is
f : N→ N where f (n) is the maximum number of tape cells that M
scans on any input of length n.
If the space complexity of M is f (n), we say M runs in space f (n).

Definition 27
If N is an NTM wherein all branches of its computation halts on all
inputs. The space complexity of N is f : N→ N where f (n) is the
maximum number of tape cells that N scans on any branch of its
computation for any input of length n.
If the space complexity of N is f (n), we say N runs in space f (n).

(NTU EE) Time Complexity Spring 2023 33 / 62

Space Complexity Classes

Definition 28
Let f : N→ R+. The space complexity classes, SPACE(f (n)) and
NSPACE(f (n)), are

SPACE(f (n)) = {L : L is decided by an O(f (n)) space TM}
NSPACE(f (n)) = {L : L is decided by an O(f (n)) space NTM}

(NTU EE) Time Complexity Spring 2023 34 / 62

SAT ∈ SPACE(n)

Example 29
Give a TM that decides SAT in space O(n).

Proof.
Consider
M1 = “On input 〈φ〉where φ is a Boolean formula:

1 For each truth assignment to x1, x2, . . . , xm of φ, do
1 Evaluate φ on the truth assignment.

2 If φ ever eavluates to 1, accept; otherwise, reject.”
M1 runs in space O(n) since it only needs to store the current truth
assignment for m variables and m ∈ O(n).

(NTU EE) Time Complexity Spring 2023 35 / 62

Savitch’s Theorem

Theorem 30 (Savitch)
For f : N→ R+ with f (n) ≥ n, NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.
Let N be an NTM deciding A in space f (n). Assume N has a unique accepting
configuration caccept (how?). We construct a TM M deciding A in space O(f 2(n)). Let w
be an input to N, c1, c2 configurations of N on w, and t ∈ N. Consider
CANYIELD = “On input c1, c2, and t:

1 If t = 1, test whether c1 = c2, or c1 yields c2 in N. If either succeeds, accept;
otherwise, reject.

2 If t > 1, for each configuration cm of N on w do

1 Run CANYIELD(c1, cm,
t
2).

2 Run CANYIELD(cm, c2,
t
2).

3 If both accept, accept.
3 Reject.”

Observe that CANYIELD needs to store the step number, c1, c2, and t for recursion.

(NTU EE) Time Complexity Spring 2023 36 / 62

Savitch’s Theorem

Proof (cont’d).
We select a constant d so that N has at most 2df(n) configurations where n = |w|.
M = “On input w:

1 Run CANYIELD(cstart, caccept, 2df(n)).”

Since t = 2df(n), the depth of recusion is O(lg 2df(n)) = O(f (n)). Moreover, CANYIELD
can store its step number, c1, c2, t in space O(f (n)). Thus M runs in space
O(f (n)× f (n)) = O(f 2(n)).
A technical problem for M is to compute f (n) in space O(f (n)). This can be avoided as
follows. Instead of computing f (n), M tries f (n) = 1, 2, 3, For each f (n) = i, M calls
CANYIELD as before but also checks if N reaches a configuration of length i + 1 from
cstart. If N reaches caccept, M accepts as before. If N reaches a configuration of length
i + 1 but fails to reach caccept, M continues with f (n) = i + 1. Otherwise, all
configurations of N have length ≤ f (n). N still fails to reach caccept in 2df(n) time. Hence
M rejects.

(NTU EE) Time Complexity Spring 2023 37 / 62

The Class PSPACE

Definition 31
PSPACE is the class of languages decidable by TM’s in polynomial
space. That is,

PSPACE =
⋃

k

SPACE(nk).

Consider the class of langauges decidable by NTM’s in
polynomial space NPSPACE =

⋃
k NSPACE(nk).

By Savitch’s Theorem, NSPACE(nk) ⊆ SPACE(n2k). Clearly,
SPACE(nk) ⊆ NSPACE(nk). Hence NPSPACE = PSPACE.
Recall SAT ∈ SPACE(n) and ALLNFA ∈ coNSPACE(n). By Savitch’s
Theorem, ALLNFA ∈ NSPACE(n) ⊆ SPACE(n2). Hence
ALLNFA ∈ SPACE(n2) (why?). SAT,ALLNFA ∈ PSPACE.

(NTU EE) Time Complexity Spring 2023 38 / 62

P, NP, PSPACE, and EXPTIME

P ⊆ PSPACE
I A TM running in time t(n) uses space t(n) (provided t(n) ≥ n).

Similarly, NP ⊆ NPSPACE and thus NP ⊆ PSPACE.
PSPACE ⊆ EXPTIME = ∪kTIME(2nk

)
I A TM running in space f (n) has at most f (n)2O(f (n)) different

configurations (provided f (n) ≥ n).
F A configuration contains the current state, the location of tape head,

and the tape contents.
In summary, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

I We will show P 6= EXPTIME.

P NP EXPTIMEPSPACE
NPSPACE

(NTU EE) Time Complexity Spring 2023 39 / 62

PSPACE-Completeness

Definition 32
A language B is PSPACE-complete if it satisfies

B ∈ PSPACE; and
A ≤P B for every A ∈ PSPACE.

If B only satisfies the second condition, we say it is PSPACE-hard.

We do not define “polynomial space reduction” nor use it.
Intuitively, a complete problem is most difficult in the class.
If we can solve a complete problem, we can solve all problems in
the same class easily.
Polynomial space reduction is not easy at all.

I Recall SAT ∈ SPACE(n).

(NTU EE) Time Complexity Spring 2023 40 / 62

TQBF

Recall the universal quantifier ∀ and the existential quantifier ∃.
When we use quantifiers, we should specify a universe.

I ∀x∃y[x < y ∧ y < x + 1] is false if Z is the universe.
I ∀x∃y[x < y ∧ y < x + 1] is true if is the universe.

A quantified Boolean formula is a quantified Boolean formula
over the universe B.
Any formula with quantifiers can be converted to a formula
begins with quantifiers.

I ∀x[x ≥ 0 =⇒ ∃y[y2 = x]] is equivalent to ∀x∃y[x ≥ 0 =⇒ y2 = x].
I This is called prenex normal form.

We always consider formulae in prenex normal form.
If all variables are quantified in a formula, we say the formula is
fully quantified (or a sentence).
Consider

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.

(NTU EE) Time Complexity Spring 2023 41 / 62

TQBF is PSPACE-Complete

Theorem 33

TQBF is PSPACE-complete.

Proof.
We first show TQBF ∈ PSPACE. Consider
T = “On input 〈φ〉where φ is a fully quantified Boolean formula:

1 If φ has no quantifier, it is a Boolean formula without variables. If φ evaluates to
1, accept; otherwise, reject.

2 If φ is ∃xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts either,
accept; otherwise, reject.

3 If φ is ∀xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts both, accept;
otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the
value of one variable. Hence T runs in space O(n).

(NTU EE) Time Complexity Spring 2023 42 / 62

TQBF is PSPACE-Complete

Proof (cont’d).
Let M be a TM deciding A in space nk. For any string w, we construct a quantified
Boolean formula φ such that M accepts w if and only if φ is true. More precisely, let
c1, c2 be collections of variables representing two configurations, and t > 0, we
construct a formula φc1,c2,t such that φc1,c2,t ∧ c1 = c1 ∧ c2 = c2 is true if and only if M
can go from the configuration c1 to the configuration c2 in ≤ t steps.
To construct φc1,c2,1, we check if c1 = c2, or the configuration represented by c1 yields
the configuration represented by c2 in M. We use the technique in the proof of
Cook-Levin Theorem. That is, we construct a Boolean formula stating that all
windows on the rows c1, c2 are valid. Observe that |φc1,c2,1| ∈ O(nk). For t > 1, let

φc1,c2,t = ∃m∀c3∀c4

[
((c3 = c1 ∧ c4 = m) ∨ (c3 = m ∧ c4 = c2)) =⇒ φc3,c4,

t
2

]
Note that |φc1,c2,t| = γnk + |φc3,c4,

t
2
| for some constant γ.

Assume M has a unique accepting configuration caccept. Choose a constant d so that M
has at most 2dnk

configurations on w. Then φ
cstart,caccept,2dnk is true if and only if M

accepts w. Moreover, the depth of recursion is O(lg 2dnk
) = O(nk). Each level increases

the size of φc1,c2,t by O(nk). Hence |φ
cstart,caccept,2dnk | ∈ O(n2k).

(NTU EE) Time Complexity Spring 2023 43 / 62

TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!

(NTU EE) Time Complexity Spring 2023 44 / 62

TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!

(NTU EE) Time Complexity Spring 2023 44 / 62

TM’s with Sublinear Space

0 01 1 0110

control
b ba a a

read-only

read-write

Figure: Schematics for TM’s using Sublinear Space

For sublinear space, we consider TM’s with two tapes.
I a read-only input tape containing the input string; and
I a read-write work tape.

The input head cannot move outside the portion of the tape
containing the input.
The cells scanned on the work tape contribute to the space
complexity.

(NTU EE) Time Complexity Spring 2023 45 / 62

Space Complexity Classes L and NL

Definition 34
L (= SPACE(log n)) is the class of languages decidable by a TM in
logarithmic space.
NL (= NSPACE(log n)) is the class of languages decidable by an NTM
in logarithmic space.

Example 35

A = {0k1k : k ≥ 0} ∈ L.

Proof.
Consider
M = “On input w:

1 Check if w is of the form 0∗1∗. If not, reject.
2 Count the number of 0’s and 1’s on the work tape.
3 If they are equal, accept; otherwise, reject.”

(NTU EE) Time Complexity Spring 2023 46 / 62

PATH is in NL

Example 36
Recall PATH = {〈G, s, t〉 : G is a directed graph with a path from s to t}.
Show PATH ∈ NL.

Proof.
Consider
N = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Repeat m times (m is the number of nodes in G)
1 Nondeterministically select the next node for the path. If the next

node is t, accept.
2 Reject.

N only needs to store the current node on the work tape. Hence N runs
in space O(lg n).

We do not know if PATH ∈ L.
(NTU EE) Time Complexity Spring 2023 47 / 62

Configurations of TM’s with Sublinear Space

Definition 37
Let M be a TM with a separate read-only input tape and w an input
string. A configuration of M on w consists of a state, the contents of
work tape, and locations of the two tape heads.

Note that the input w is no longer a part of the configuration.
If M runs in space f (n) and |w| = n, the number of configurations
of M on w is n2O(f (n)).

I Suppose M has q states and g tape symbols. The number of
configurations is at most qnf (n)gf (n) ∈ n2O(f (n)).

Note that when f (n) ≥ lg n, n2O(f (n)) = 2O(f (n)).

(NTU EE) Time Complexity Spring 2023 48 / 62

Savitch’s Theorem Revisited

Recall that we assume f (n) ≥ n in the theorem.
We can in fact relax the assumption to f (n) ≥ lg n.
The proof is identical except that we are simulating an NTM N
with a read-only input tape.
When f (n) ≥ lg n, the depth of recursion is lg(n2O(f (n))) =

lg n + O(f (n)) = O(f (n)). At each level, lg(n2O(f (n))) = O(f (n))
space is needed.
Hence NSPACE(f (n)) ⊆ SPACE(f 2(n)) when f (n) ≥ lg n.

(NTU EE) Time Complexity Spring 2023 49 / 62

Log Space Reducibility

Definition 38
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read-write work tape. The work tape
may contain O(lg n) symbols.

Definition 39
f : Σ∗ → Σ∗is a log space computable function if there is a log space
transducer that halts with f (w) in its work tape on every input w.

Definition 40
A language A is log space reducible to a language B (written A ≤L B) if
there is a log space computable function f such that w ∈ A if and only
if f (w) ∈ B for every w.

(NTU EE) Time Complexity Spring 2023 50 / 62

Properties about Log Space Reducibility

Theorem 41
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2023 51 / 62

Properties about Log Space Reducibility

Theorem 41
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2023 51 / 62

Properties about Log Space Reducibility

We know that polynomial-time reductions are transitive:
If A ≤p B and B ≤p C, then A ≤p C
We also crucially used the following similar property:
If A ≤p B and B ∈ P, then A ∈ P
If A ≤p B and B ∈ NP, then A ∈ NP
Do we have similar results under ≤L?
Difficulty:

Total space used O(log |x|+ log |x|c) = O(log |x|). Problem?
We have to store intermediate result f (x) of size |x|c.

(NTU EE) Time Complexity Spring 2023 52 / 62

Transitivity of ≤L

Goal: To compute the string g(f (x)), given x
Imagine that we have computed f (x), and its on Tape 1
The tape-head for Tape 1 is at the start position.
Now, given this imaginary input string, start computing g(f (x))
on Tape 2, just like before
We know that the work tape Tape 2 needs log |f (x)| space
At each step:

I Read one bit of f (x) from Tape 1 from tape-head position
I Read one bit of work-tape from tape-head position
I Move Tape 1, Tape 2 heads by transition function
I Write one bit on Tape 2, maybe write one bit on Output tape

Read one bit of f (x) from Tape 1 from tape-head position
I Don’t have f (x) lying around on the imaginary Tape 1
I Instead, store position of Tape 1 head: O(log |f (x)|) space
I Need to read f (x)i: compute using log |x| space
I Increment or decrement the pointer for Tape 1 head

(NTU EE) Time Complexity Spring 2023 53 / 62

Transitivity of ≤L

(NTU EE) Time Complexity Spring 2023 54 / 62

NL-Completeness

Definition 42
A language B is NL-complete if

B ∈ NL; and
A ≤L B for every A ∈ NL.

Note that we require A ≤L B instead of A ≤P B.
We will show NL ⊆ P (Corollary 46).
Hence every two problems in NL (except ∅ and Σ∗) are
polynomial time reducible to each other (why?).

Corollary 43
If any NL-complete language is in L, then L = NL.

(NTU EE) Time Complexity Spring 2023 55 / 62

NL-Completeness

Theorem 44
PATH is NL-complete.

Proof.
Let an NTM M decide A in O(lg n) space. We assume M has a unique accepting
configuration. Given w, we construct 〈G, s, t〉 in log space such that M accepts w if and
only if G has a path from s to t.
Nodes of G are configurations of M on w. For configurations c1 and c2, the edge (c1, c2)
is in G if c1 yields c2 in M. s and t are the start and accepting configurations of M on w
respectively.
Clearly, M accepts w if and only if G has a path from s to t. It remains to show that G
can be computed by a log space transducer. Observe that a configuration of M on w
can be represented in c lg n space for some c. The transducer simply enumerates all
string of legnth c lg n and outputs those that are configurations of M on w. The edges
(c1, c2)’s are computed similarly. The transducer only needs to read the tape contents
under the head locations in c1 to decide whether c1 yields c2 in M.

(NTU EE) Time Complexity Spring 2023 56 / 62

NL ⊆ P

Corollary 45

NL ⊆ P.

Proof.
A TM using space f (n) has at most n2O(f (n)) configurations and hence
runs in time n2O(f (n)). A log space transducer therefore runs in
polynomial time. Hence any problem in NL is polynomial time
reducible to PATH. The result follows by PATH ∈ P.

The polynomial time reduction in the proof of Theorem 34 can be
computed in log space.
Hence TQBF is PSPACE-complete with respect to log space
reducibility.

(NTU EE) Time Complexity Spring 2023 57 / 62

NL = coNL

Theorem 46 (Immerman + Szelepcsényi)
NL = coNL.

Proof.
We will give an NTM M deciding PATH in space O(lg n). Hence PATH ∈ NL. Recall
that PATH is NL-complete. For any A ∈ NL, we have A ≤L PATH. Hence A ≤L PATH.
Since PATH ∈ NL, A ∈ NL. That is, A = A ∈ coNL. We have NL ⊆ coNL. For any
B ∈ coNL, we have B ∈ NL. Hence B ≤L PATH. Thus B = B ≤L PATH. Since
PATH ∈ NL, we have B ∈ NL. We have coNL ⊆ NL.

(NTU EE) Time Complexity Spring 2023 58 / 62

NL = coNL

Proof (cont’d).
[H] On 〈G, s, t〉 c0 = 1 G has m nodes i = 0, . . . ,m− 1 ci+1 = 1 *ci+1 counts the nodes reached
from s in ≤ i + 1 steps node v 6= s in G d = 0 *d recounts the nodes reached from s in ≤ i steps
node u in G Nondeterministically continue Nondeterministically follow a path of length ≤ i
from s Reject if the path does not end at u d = d + 1 (u, v) is an edge in G ci+1 = ci+1 + 1
break d 6= ciReject *check if the result is correct cm = number of nodes reached from s

(NTU EE) Time Complexity Spring 2023 59 / 62

NL = coNL

Proof (cont’d).
[H] d = 0 *d recounts the nodes reached from s node u in G Nondeterministically continue
Nondeterministically follow a path of length ≤ m from s Reject if the path does not end at u
u = tReject *do not count t d = d + 1 d 6= cmReject Accept The NTM M counts the nodes
reached from s in the first phrase. The variable ci is the number of nodes reached from
s in ≤ i steps. Initially, c0 = 1. To compute ci+1 from ci, M goes through each node
v 6= s in G. For each v, M tries to find all nodes reached from s in ≤ i steps. For each
such node u, M increments d. It also increments ci+1 if u points to v. If d = ci, M has
found all node reached from s in ≤ i steps. Hence ci+1 is correct. M proceeds to
compute ci+2.
At the second phrase, M counts nodes reached from s but excluding t. If s reaches the
same set of nodes, t is not reachable from s. M accepts.
M needs to store u, v, ci, ci+1, d, i and a pointer to the head of a path. M runs in O(lg n)
space.

(NTU EE) Time Complexity Spring 2023 60 / 62

L,NL,P, and PSPACE

The relationship between different complexity classes now
becomes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

We will prove NL (PSPACE in the next chapter.
Hence at least on inclusion is propcer.

I But we do not know which one.

(NTU EE) Time Complexity Spring 2023 61 / 62

	Measuring Complexity
	The Class P
	The Class NP
	NP-Completeness
	Additional NP-Complete Problems
	Basic Definitions
	Savitch's Theorem
	The Class PSPACE
	PSPACE-Completeness
	NL-Completeness
	NL = coNL

