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Time for Deciding a Language

Let us consider A = {0n1n : n ≥ 0}.
How much time does a single-tape TM need to decide A?
Consider
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.
3 If 0’s or 1’s still remain, reject. Otherwise, accept.”

How much “time” does M1 need for an input w?
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Time Complexity

Definition 1
Let M be a TM that halts on all inputs. The running time (or time
complexity) of M is the function f : N→ N where f (n) is the running
time of M on any input of length n.

If f (n) is the running time of M, we say M runs in time f (n) and M
is an f (n) time TM.
In worst-case analysis, the longest running time of all inputs of a
particular length is considered.
In average-case analysis, the average of all running time of inputs
of a particular length is considered instead.
We only consider worst-case analysis in the course.
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Big-O and Small-O

Definition 2
Let f , g : N→ R+. f (n) = O(g(n)) if there are c,n0 ∈ Z+ such that for all
n ≥ n0,

f (n) ≤ c(g(n)).

g(n) is an upper bound (or an asymptotic upper bound) for f (n).
nc(c ∈ R+) is a polynomial bound.
2nd

(d ∈ R+) is an exponential bound.

Definition 3
Let f , g : N→ R+. f (n) = o (g (n)) if

lim
n→∞

f (n)

g(n)
= 0.

That is, for any c ∈ R, there is an n0 that f (n) < c(g) for all n ≥ n0.
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Time Complexity of M1

Recall
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Let |w| = n.

I Step 1 takes O(n) (precisely, ≤ n).
I Step 2 has O(n) iterations (precisely, ≤ n/2).

F An iteration takes O(n) (precisely, ≤ n).
I Step 3 takes O(n) (precisely, ≤ n).

The TM M1 decides A = {0n1n : n ≥ 0} in time O(n2).
I O(n2) = O(n) + O(n)×O(n) + O(n).
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Time Complexity Class

Definition 4
Let t : N→ R+. The time complexity class TIME(t(n)) is the collection
of all languages that are decided by a O(t(n)) time TM.

A = {0n1n : n ≥ 0} is decided by M1 in time O(n2). A ∈ TIME(n2).
Time complexity classes characterizes languages, not TM’s.

I We don’t say M1 ∈ TIME(n2).

A language may be decided by several TM’s.
Can A be decided more quickly asymptotically?
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Models and Time Complexity

Consider the following TM:
M2 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan the tape and check if the total number of 0’s and 1’s is even. If
not, reject.

2 Scan the tape, cross every other 0 from the first 0, and cross every
other 1 from the first 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Analysis of M2.

I Step 1 takes O(n).
I Step 2 has O(lg n)(= log2(n)) iterations (why?). At each iteration,

F Step 1 takes O(n).
F Step 2 takes O(n).

I Step 3 takes O(n).
M2 decides A in time O(n lg n).

I O(n lg n) = O(n) + O(lg n)×O(n) + O(n).
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Models and Time Complexity

Consider the following two-tape TM:
M3 = “On input string w:

1 Scan tape 1 and reject if a 0 appears after a 1.
2 Scan tape 1 and copy the 0’s onto tape 2.
3 Scan tape 1 and cross a 0 on tape 2 for a 1 on tape 1.
4 If all 0’s are crossed off before reading all 1’s, reject. If some 0’s are

left after reading all 1’s, reject. Otherwise, accept.”
Analysis of M3.

I Each step takes O(n).
For the same language A = {0n1n : n ≥ 0}.

I The TM M1 decides A in time O(n2), the TM M2 decides A in time
O(n lg n), and the two-tape M3 decides A in time O(n).

In computability theory, all reasonable variants of TM’s decide the
same language (Church-Turing thesis).
In complexity theory, different variants of TM’s may decide the
same in different time.
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Complexity Relationship with Multitape TM’s

Theorem 5

Let t(n) be a function with t(n) ≥ n. Every t(n) time multitape Turing machine has an
equivalent O(t2(n)) time single-tape TM.

Proof.
We analyze the simulation of a k-tape TM M is by the TM S. Observe that each tape of
M has length at most t(n) (why?).
For each step of M, S has two passes:

The first pass gathers information (O(kt(n))).

The second pass updates information with at most k shifts (O(k2t(n))).

Hence S takes O(n) + O(k2t2(n)) (= O(n) + O(t(n))×O(k2t(n))). Since t(n) ≥ n, we
have S runs in time O(t2(n)) (k is independent of the input).

0 1 xy0

ab xyb b 1 # b b
•
00 b xy

•
a ##

SM
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Time Complexity of Nondterministic TM’s

Definition 6
Let N be a nondeterministic TM that is a decider. The running time of
N is a function f : N→ N where f (n) is the maximum number of steps
among any branch of N’s computation on input of length n.

f (n)
... ...

accept

reject

reject

accept

f (n)
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Complexity Relationship with NTM’s

Theorem 7

Let t(n) be a function with t(n) ≥ n. Every t(n) time single-tape NTM has
an equivalent 2O(t(n)) time single-tape TM.

Proof.
Let N be an NTM running in time t(n). Recall the simulation of N by a
3-tape TM D with the address tape alphabet Σb = {1,2, . . . ,b} (b is the
maximal number of choices allowed in N).
Since N runs in time t(n), the computation tree of N has O(bt(n)) nodes.
For each node, D simulates it from the start configuration and thus
takes time O(t(n)). Hence the simulation of N on the 3-tape D takes
2O(t(n))(= O(t(n))×O(bt(n))) time.
By Theorem 5, D can be simulated by a single-tape TM in time
(2O(t(n)))2 = 2O(t(n)).
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The Class P

It turns out that reasonable deterministic variants of TM’s can be
simulated by a TM with a polynomial time overhead.

I multitape TM’s, TM’s with random access memory, etc.
The polynomial time complexity class is rather robust.

I That is, it remains the same with different computational models.

Definition 8
P is the class of languages decidable in polynomial time on a
determinsitic single-tape TM. That is,

P =
⋃

k

TIME(nk).

We are interested in intrinsic characters of computation and hence
ignore the difference among variants of TM’s in this course.
Solving a problem in time O(n) and O(n100) certainly makes lots
of difference in practice.
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The Class NP

Definition 9
A verifier for a language A is an algorithm V where

A = {w : V accepts 〈w, c〉 for some c}.

c is a certificate or proof of membership in A. A polynomial time
verifier runs in polynomial time in the length of w (not 〈w, c〉). A
language A is polynomially verifiable if it has a polynomial time
verifier.

Note that a certificate has a length polynomial in |w|.
I Otherwise, V cannot run in polynomial time in |w|.

Definition 10
NP is the class of languages that have polynomial time verifiers.
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Hamiltonian Paths

A Hamiltonian path in a directed graph G is a path that goes
through every node exactly once. Consider

HAMPATH =
{〈G, s, t〉 : G is a directed graph with a Hamiltonian path

from s to t}.

HAMPATH ∈ NP.
I Verifying whether c is a Hamiltonian path from s to t can be done in

polynomial time.
I A certificate for 〈G, s, t〉 ∈ HAMPATH is a Hamiltonian path from s

to t.

Finding a Hamiltonian path from s to t seems harder.
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NP and NTM’s

Theorem 11
A language is in NP if and only if it is decided by a nondeterministic polynomial time Turing
machine.

Proof.
Let V be a verifier for a language A running in time nk. Consider
N = “On input w of length n:

1 Nondeterministically select string c of length ≤ nk.
2 Run V on 〈w, c〉.
3 If V accepts, accept; otherwise, reject.”

Conversely, let the NTM N decide A and c the address of an accepting configuration in
the computation tree of N. Consider
V = “On input 〈w, c〉:

1 Simulate N on w from the start configuration by c.
2 If the configuration with address c is accepting, accept; otherwise, reject.”
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The Nondeterministic Time Complexity Class

Definition 12
NTIME (t (n)) = { L : L is a language decided by a O (t (n)) time NTM
}.

Corollary 13

NP =
⋃

k

NTIME(nk).

Recall that class TIME(t(n)) and

P =
⋃

k

TIME(nk).
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The Class coNP

Definition 14
coNP = {L : L ∈ NP}.

HAMPATH ∈ coNP since HAMPATH = HAMPATH ∈ NP.
I HAMPATH does not appear to be polynomial time verifiable.
I What is a certificate showing there is no Hamiltonian path?

We do not know if coNP is different from NP.
Recall

I P is the class of languages which membership can be decided
quickly.

I NP is the class of languages which membership can be verified
quickly.

L ∈ P implies L ∈ NP for every language L.
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P vs NP

P = NPPNP

Figure: Possible Relation between P and NP

To the best of our knowledge, we only know

NP ⊆ EXPTIME =
⋃

k

TIME(2nk
). (Theorem 7)

Particularly, we do no know if P ?
= NP.
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Satisfiability

Let B = {0,1} be the truth values.
A Boolean variable takes values from B.
Recall the Boolean operations

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 = 1
1 = 0

A Boolean formula is an expression constructed from Boolean
variables and opearations.

I φ = (x ∧ y) ∨ (x ∧ z) is a Boolean formula.
A Boolean formula is satisfiable if an assignments of 0’s and 1’s to
Boolean variables makes the formula evaluate to 1.

I φ is satisfiable by taking {x 7→ 0, y 7→ 1, z 7→ 0}.
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The Satisfiability Problem

The satisfiability problem is to test whether a Boolean formula is
satisfiable.
Consider

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}.

Theorem 15 (Cook-Levin)
SAT ∈ P if and only if P = NP.
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Polynomial Time Reducibility

Definition 16
f : Σ∗ → Σ∗ is a polynomial time computable function if a polynomial
time TM M halts with only f (w) on its tape upon any input w.

Definition 17
A language A is polynomial time mapping reducible (polynomial time
reducible, or polynomial time many-one reducible) to a language B
(written A ≤P B) if there is a polynomial time computable function
f : Σ∗ → Σ∗ that

w ∈ A if and only if f (w) ∈ B for every w.

f is called the polynomial time reduction of A to B.

Recall the definitions of computable functions and mapping
reducibility.
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Properties about Polynomial Time Reducibility

Theorem 18
If A ≤P B and B ∈ P, A ∈ P.

Proof.
Let the TM M decide B and f a polynomial time reduction of A to B.
Consider
N = “On input w:

1 Compute f (w).
2 Run M on f (w).”

Since the composition of two polynomials is again a polynomial, N
runs in polynomial time.
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The 3SAT Problem

A literal is a Boolean variable or its negation.
A clause is a disjunction (∨) of literals.

I x1 ∨ x2 ∨ x3 ∨ x4 is a clause.
A Boolean formula is in conjunctive normal form (or a
CNF-formula) if it is a conjunction (∧) of clauses.

I (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x6) is a CNF-formula.

In a satisfiable CNF-formula, each clause must contain at least one
literal assigned to 1.
A Boolean formula is a 3CNF-formula if it is a CNF-formula
whose clauses have three literals.

I (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) is a 3CNF-formula.

Consider

3SAT = {〈φ〉 : φ is a satisfiable 3CNF-formula}.
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3SAT ≤P CLIQUE

Theorem 19

3SAT ≤P CLIQUE.

Proof.
Given a 3CNF-formula φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck), we
would like to find a graph G and a number k such that 〈φ〉 ∈ 3SAT if and only if
〈G, k〉 ∈ CLIQUE. We need gadgets to simulate Boolean variables and clauses in φ.

For each clause ai ∨ bi ∨ ci, add three corresponding nodes to G.

I G has 3k nodes.

For each pair of nodes in G, add an edge except when

I the pair of nodes correspond to literals in a clause.
I the pair of nodes correspond to complementary literals.

We next show that φ is satisfiable if and only if G has a k-clique.
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3SAT ≤P CLIQUE

x2

x2

x1

x1

x2

x1 x2x2

x1

(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Proof.
Suppose φ has a satisfying assignment. Each clause has at least one literal assigned to
1. We pick a node corresponding to true literal from each clause. Any pair of the
chosen nodes do not belong to the same clause. Since a literal and its complement
cannot be 1 simultaneously, any pair of the chosen nodes are not complementary.
Hence there is an edge between any pair of the chosen nodes. We have a k-clique.
Conversely, suppose there is a k-clique. Since there is no edge between any two nodes
in a clause, the k-clique must have one node from each of the k clauses. Moreover,
there is no edge between complementary literals. Either a literal or its complement
appears in the k-clique but not both. φ is satisfied by the assignment making literals in
the clique true.
It is easy to see that G can be constructed from φ in polynomial time.
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NP-Completeness

Definition 20
A language B is NP-complete if

B is in NP; and
every A in NP is polynomial time reducible to B.

Theorem 21
If B is NP-complete and B ∈ P, then P = NP.

Theorem 22

If C ∈ NP, B is NP-complete, and B ≤P C, then C is NP-complete.

Proof.
Since B is NP-complete, there is a polynomial time reduction f of A to
B for any A ∈ NP. Since B ≤P C, there is a polynomial time reduction g
of B to C. g ◦ f is a polynomial time reduction of A to C.
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Cook-Levin Theorem

Theorem 23

SAT is NP-complete.

Proof.
For any Boolean formula φ, an NTM nondeterministically choose a truth assignment.
It checks whether the assignment satisfies φ. If so, accept; otherwise, reject. Hence
SAT ∈ NP.
Let A ∈ NP and the NTM N decide A in nk time. For any input w, a tableau for N on w
is an nk × nk table whose rows are the configurations along a branch of the
computation of N on w. A tableau of size nk × nk has nk × nk cells. We assume each
configuration starts and ends with a # symbol. A tableau is accepting if any of its
rows is an accepting configuration.
Each accepting tableau for N on w corresponds to an accepting computation of N on
w. We therefore construct a Boolean formula φ such that φ is satisfiable if and only if
there is an accepting tableau for N on w.
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Cook-Levin Theorem

q0 w0 w1 wj wn xyxy

nk

nk

#
#
#

#

#
#
#

#

window

Proof (cont’d).
Let C = Q ∪ Γ ∪ {#}where Q and Γ are the states and the tape alphabet of N. For
1 ≤ i, j ≤ nk and s ∈ C, the Boolean variable xi,j,s denotes the content of the cell cell[i, j].
That is, xi,j,s is 1 if and only if cell[i, j] = s. To force each cell to contain exactly one
symbol from C, consider

φcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s6=t

(xi,j,s ∨ xi,j,t)

 .
(NTU EE) Time Complexity Spring 2023 28 / 62



Cook-Levin Theorem

Proof (cont’d).
To force the tableau to begin with the start configuration, consider

φstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3,xy ∧ · · · ∧ x1,nk−1,xy ∧ x1,nk,#.

To force an accepting configuration to appear in the tableau, consider

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept .

To force the configuration at row i yields the configuration at row i + 1, consider a
window of 2× 3 cells. For example, assume δ(q1,a) = {(q1,b,R)} and
δ(q1,b) = {(q2,c, L), (q2,a,R)}. The following windows are valid:

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b
# b a
# b a

a b a
a b q2

b b b
c b b
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Cook-Levin Theorem

Proof.
Since C is finite, there are only a finite number of valid windows. For any window W

c1 c2 c3

c4 c5 c6
, consider

ψW = xi,j−1,c1 ∧ xi,j,c2 ∧ xi,j+1,c3 ∧ xi+1,j−1,c4 ∧ xi+1,j,c5 ∧ xi+1,j+1,c6

To force every window in the tableau to be valid, consider

φmove =
∧

1≤i≤nk,1≤j<nk

( ∨
W is a valid

ψW

)
.

Finally, consider the following Boolean formula:

φ = φcell ∧ φstart ∧ φaccept ∧ φmove.

|φcell| = O(n2k), |φstart| = O(nk), |φaccept| = O(n2k), and |φmove| = O(n2k). Hence
|φ| = O(n2k). Moreover, φ can be constructed from N in time polynomial in n.
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3SAT is NP-Complete

Corollary 24
3SAT is NP-complete.

Proof.
We convert the Boolean formula φ in the proof of Theorem 23 into a 3CNF-formula.
We begin by converting φ into a CNF-formula.
Observe that the conjunction of CNF-formulae is again a CNF-formula. Note that φcell,
φstart, and φaccept are already in CNF (why?). φmove is of the following form:

∧
1≤i≤nk,1≤j<nk

( ∨
W is valid

(l1 ∧ l2 ∧ l3 ∧ l4 ∧ l5 ∧ l6)

)

By the law of distribution, φmove can be converted into a CNF-formula. Note that the
conversion may increase the size of φmove. Yet the size is independent of |w|. Hence
the size of the CNF-formula φ still polynomial in |w|.
To a clause of k literals into clauses of 3 literals, consider l1 7→ (l1 ∨ l1 ∨ l1),
l1 ∨ l2 7→ (l1 ∨ l2 ∨ l2), and
l1 ∨ l2 ∨ · · · lp 7→ (l1 ∨ l2 ∨ z1) ∧ (z1 ∨ l3 ∨ z2) ∧ · · · ∧ (zp−3 ∨ lp−1 ∨ lp).
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More NP-Complete Problems

To find more NP-complete problems, we apply Theorem 22.
Concretely, to show C is NP-complete, do

I prove C is in NP; and
I find a polynomial time reduction of an NP-complete problem (say,

3SAT) to C.

In Theorem 19, we have shown 3SAT ≤P CLIQUE. Therefore

Corollary 25
CLIQUE is NP-complete.
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Space Complexity

Definition 26
Let M be a TM that halts on all inputs. The space complexity of M is
f : N→ N where f (n) is the maximum number of tape cells that M
scans on any input of length n.
If the space complexity of M is f (n), we say M runs in space f (n).

Definition 27
If N is an NTM wherein all branches of its computation halts on all
inputs. The space complexity of N is f : N→ N where f (n) is the
maximum number of tape cells that N scans on any branch of its
computation for any input of length n.
If the space complexity of N is f (n), we say N runs in space f (n).
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Space Complexity Classes

Definition 28
Let f : N→ R+. The space complexity classes, SPACE(f (n)) and
NSPACE(f (n)), are

SPACE(f (n)) = {L : L is decided by an O(f (n)) space TM}
NSPACE(f (n)) = {L : L is decided by an O(f (n)) space NTM}
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SAT ∈ SPACE(n)

Example 29
Give a TM that decides SAT in space O(n).

Proof.
Consider
M1 = “On input 〈φ〉where φ is a Boolean formula:

1 For each truth assignment to x1, x2, . . . , xm of φ, do
1 Evaluate φ on the truth assignment.

2 If φ ever eavluates to 1, accept; otherwise, reject.”
M1 runs in space O(n) since it only needs to store the current truth
assignment for m variables and m ∈ O(n).
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Savitch’s Theorem

Theorem 30 (Savitch)
For f : N→ R+ with f (n) ≥ n, NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.
Let N be an NTM deciding A in space f (n). Assume N has a unique accepting
configuration caccept (how?). We construct a TM M deciding A in space O(f 2(n)). Let w
be an input to N, c1, c2 configurations of N on w, and t ∈ N. Consider
CANYIELD = “On input c1, c2, and t:

1 If t = 1, test whether c1 = c2, or c1 yields c2 in N. If either succeeds, accept;
otherwise, reject.

2 If t > 1, for each configuration cm of N on w do

1 Run CANYIELD(c1, cm,
t
2 ).

2 Run CANYIELD(cm, c2,
t
2 ).

3 If both accept, accept.
3 Reject.”

Observe that CANYIELD needs to store the step number, c1, c2, and t for recursion.
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Savitch’s Theorem

Proof (cont’d).
We select a constant d so that N has at most 2df(n) configurations where n = |w|.
M = “On input w:

1 Run CANYIELD(cstart, caccept, 2df(n)).”

Since t = 2df(n), the depth of recusion is O(lg 2df(n)) = O(f (n)). Moreover, CANYIELD
can store its step number, c1, c2, t in space O(f (n)). Thus M runs in space
O(f (n)× f (n)) = O(f 2(n)).
A technical problem for M is to compute f (n) in space O(f (n)). This can be avoided as
follows. Instead of computing f (n), M tries f (n) = 1, 2, 3, . . .. For each f (n) = i, M calls
CANYIELD as before but also checks if N reaches a configuration of length i + 1 from
cstart. If N reaches caccept, M accepts as before. If N reaches a configuration of length
i + 1 but fails to reach caccept, M continues with f (n) = i + 1. Otherwise, all
configurations of N have length ≤ f (n). N still fails to reach caccept in 2df(n) time. Hence
M rejects.
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The Class PSPACE

Definition 31
PSPACE is the class of languages decidable by TM’s in polynomial
space. That is,

PSPACE =
⋃

k

SPACE(nk).

Consider the class of langauges decidable by NTM’s in
polynomial space NPSPACE =

⋃
k NSPACE(nk).

By Savitch’s Theorem, NSPACE(nk) ⊆ SPACE(n2k). Clearly,
SPACE(nk) ⊆ NSPACE(nk). Hence NPSPACE = PSPACE.
Recall SAT ∈ SPACE(n) and ALLNFA ∈ coNSPACE(n). By Savitch’s
Theorem, ALLNFA ∈ NSPACE(n) ⊆ SPACE(n2). Hence
ALLNFA ∈ SPACE(n2) (why?). SAT,ALLNFA ∈ PSPACE.
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P, NP, PSPACE, and EXPTIME

P ⊆ PSPACE
I A TM running in time t(n) uses space t(n) (provided t(n) ≥ n).

Similarly, NP ⊆ NPSPACE and thus NP ⊆ PSPACE.
PSPACE ⊆ EXPTIME = ∪kTIME(2nk

)
I A TM running in space f (n) has at most f (n)2O(f (n)) different

configurations (provided f (n) ≥ n).
F A configuration contains the current state, the location of tape head,

and the tape contents.
In summary, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

I We will show P 6= EXPTIME.

P NP EXPTIMEPSPACE
NPSPACE
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PSPACE-Completeness

Definition 32
A language B is PSPACE-complete if it satisfies

B ∈ PSPACE; and
A ≤P B for every A ∈ PSPACE.

If B only satisfies the second condition, we say it is PSPACE-hard.

We do not define “polynomial space reduction” nor use it.
Intuitively, a complete problem is most difficult in the class.
If we can solve a complete problem, we can solve all problems in
the same class easily.
Polynomial space reduction is not easy at all.

I Recall SAT ∈ SPACE(n).
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TQBF

Recall the universal quantifier ∀ and the existential quantifier ∃.
When we use quantifiers, we should specify a universe.

I ∀x∃y[x < y ∧ y < x + 1] is false if Z is the universe.
I ∀x∃y[x < y ∧ y < x + 1] is true if is the universe.

A quantified Boolean formula is a quantified Boolean formula
over the universe B.
Any formula with quantifiers can be converted to a formula
begins with quantifiers.

I ∀x[x ≥ 0 =⇒ ∃y[y2 = x]] is equivalent to ∀x∃y[x ≥ 0 =⇒ y2 = x].
I This is called prenex normal form.

We always consider formulae in prenex normal form.
If all variables are quantified in a formula, we say the formula is
fully quantified (or a sentence).
Consider

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.
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TQBF is PSPACE-Complete

Theorem 33

TQBF is PSPACE-complete.

Proof.
We first show TQBF ∈ PSPACE. Consider
T = “On input 〈φ〉where φ is a fully quantified Boolean formula:

1 If φ has no quantifier, it is a Boolean formula without variables. If φ evaluates to
1, accept; otherwise, reject.

2 If φ is ∃xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts either,
accept; otherwise, reject.

3 If φ is ∀xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts both, accept;
otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the
value of one variable. Hence T runs in space O(n).
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TQBF is PSPACE-Complete

Proof (cont’d).
Let M be a TM deciding A in space nk. For any string w, we construct a quantified
Boolean formula φ such that M accepts w if and only if φ is true. More precisely, let
c1, c2 be collections of variables representing two configurations, and t > 0, we
construct a formula φc1,c2,t such that φc1,c2,t ∧ c1 = c1 ∧ c2 = c2 is true if and only if M
can go from the configuration c1 to the configuration c2 in ≤ t steps.
To construct φc1,c2,1, we check if c1 = c2, or the configuration represented by c1 yields
the configuration represented by c2 in M. We use the technique in the proof of
Cook-Levin Theorem. That is, we construct a Boolean formula stating that all
windows on the rows c1, c2 are valid. Observe that |φc1,c2,1| ∈ O(nk). For t > 1, let

φc1,c2,t = ∃m∀c3∀c4

[
((c3 = c1 ∧ c4 = m) ∨ (c3 = m ∧ c4 = c2)) =⇒ φc3,c4,

t
2

]
Note that |φc1,c2,t| = γnk + |φc3,c4,

t
2
| for some constant γ.

Assume M has a unique accepting configuration caccept. Choose a constant d so that M
has at most 2dnk

configurations on w. Then φ
cstart,caccept,2dnk is true if and only if M

accepts w. Moreover, the depth of recursion is O(lg 2dnk
) = O(nk). Each level increases

the size of φc1,c2,t by O(nk). Hence |φ
cstart,caccept,2dnk | ∈ O(n2k).
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TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!
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TM’s with Sublinear Space
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Figure: Schematics for TM’s using Sublinear Space

For sublinear space, we consider TM’s with two tapes.
I a read-only input tape containing the input string; and
I a read-write work tape.

The input head cannot move outside the portion of the tape
containing the input.
The cells scanned on the work tape contribute to the space
complexity.
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Space Complexity Classes L and NL

Definition 34
L (= SPACE(log n)) is the class of languages decidable by a TM in
logarithmic space.
NL (= NSPACE(log n)) is the class of languages decidable by an NTM
in logarithmic space.

Example 35

A = {0k1k : k ≥ 0} ∈ L.

Proof.
Consider
M = “On input w:

1 Check if w is of the form 0∗1∗. If not, reject.
2 Count the number of 0’s and 1’s on the work tape.
3 If they are equal, accept; otherwise, reject.”
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PATH is in NL

Example 36
Recall PATH = {〈G, s, t〉 : G is a directed graph with a path from s to t}.
Show PATH ∈ NL.

Proof.
Consider
N = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Repeat m times (m is the number of nodes in G)
1 Nondeterministically select the next node for the path. If the next

node is t, accept.
2 Reject.

N only needs to store the current node on the work tape. Hence N runs
in space O(lg n).

We do not know if PATH ∈ L.
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Configurations of TM’s with Sublinear Space

Definition 37
Let M be a TM with a separate read-only input tape and w an input
string. A configuration of M on w consists of a state, the contents of
work tape, and locations of the two tape heads.

Note that the input w is no longer a part of the configuration.
If M runs in space f (n) and |w| = n, the number of configurations
of M on w is n2O(f (n)).

I Suppose M has q states and g tape symbols. The number of
configurations is at most qnf (n)gf (n) ∈ n2O(f (n)).

Note that when f (n) ≥ lg n, n2O(f (n)) = 2O(f (n)).
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Savitch’s Theorem Revisited

Recall that we assume f (n) ≥ n in the theorem.
We can in fact relax the assumption to f (n) ≥ lg n.
The proof is identical except that we are simulating an NTM N
with a read-only input tape.
When f (n) ≥ lg n, the depth of recursion is lg(n2O(f (n))) =

lg n + O(f (n)) = O(f (n)). At each level, lg(n2O(f (n))) = O(f (n))
space is needed.
Hence NSPACE(f (n)) ⊆ SPACE(f 2(n)) when f (n) ≥ lg n.
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Log Space Reducibility

Definition 38
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read-write work tape. The work tape
may contain O(lg n) symbols.

Definition 39
f : Σ∗ → Σ∗is a log space computable function if there is a log space
transducer that halts with f (w) in its work tape on every input w.

Definition 40
A language A is log space reducible to a language B (written A ≤L B) if
there is a log space computable function f such that w ∈ A if and only
if f (w) ∈ B for every w.
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Properties about Log Space Reducibility

Theorem 41
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2023 51 / 62



Properties about Log Space Reducibility

Theorem 41
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

(NTU EE) Time Complexity Spring 2023 51 / 62



Properties about Log Space Reducibility

We know that polynomial-time reductions are transitive:
If A ≤p B and B ≤p C, then A ≤p C
We also crucially used the following similar property:
If A ≤p B and B ∈ P, then A ∈ P
If A ≤p B and B ∈ NP, then A ∈ NP
Do we have similar results under ≤L?
Difficulty:

Total space used O(log |x|+ log |x|c) = O(log |x|). Problem?
We have to store intermediate result f (x) of size |x|c.
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Transitivity of ≤L

Goal: To compute the string g(f (x)), given x
Imagine that we have computed f (x), and its on Tape 1
The tape-head for Tape 1 is at the start position.
Now, given this imaginary input string, start computing g(f (x))
on Tape 2, just like before
We know that the work tape Tape 2 needs log |f (x)| space
At each step:

I Read one bit of f (x) from Tape 1 from tape-head position
I Read one bit of work-tape from tape-head position
I Move Tape 1, Tape 2 heads by transition function
I Write one bit on Tape 2, maybe write one bit on Output tape

Read one bit of f (x) from Tape 1 from tape-head position
I Don’t have f (x) lying around on the imaginary Tape 1
I Instead, store position of Tape 1 head: O(log |f (x)|) space
I Need to read f (x)i: compute using log |x| space
I Increment or decrement the pointer for Tape 1 head
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Transitivity of ≤L
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NL-Completeness

Definition 42
A language B is NL-complete if

B ∈ NL; and
A ≤L B for every A ∈ NL.

Note that we require A ≤L B instead of A ≤P B.
We will show NL ⊆ P (Corollary 46).
Hence every two problems in NL (except ∅ and Σ∗) are
polynomial time reducible to each other (why?).

Corollary 43
If any NL-complete language is in L, then L = NL.
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NL-Completeness

Theorem 44
PATH is NL-complete.

Proof.
Let an NTM M decide A in O(lg n) space. We assume M has a unique accepting
configuration. Given w, we construct 〈G, s, t〉 in log space such that M accepts w if and
only if G has a path from s to t.
Nodes of G are configurations of M on w. For configurations c1 and c2, the edge (c1, c2)
is in G if c1 yields c2 in M. s and t are the start and accepting configurations of M on w
respectively.
Clearly, M accepts w if and only if G has a path from s to t. It remains to show that G
can be computed by a log space transducer. Observe that a configuration of M on w
can be represented in c lg n space for some c. The transducer simply enumerates all
string of legnth c lg n and outputs those that are configurations of M on w. The edges
(c1, c2)’s are computed similarly. The transducer only needs to read the tape contents
under the head locations in c1 to decide whether c1 yields c2 in M.
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NL ⊆ P

Corollary 45

NL ⊆ P.

Proof.
A TM using space f (n) has at most n2O(f (n)) configurations and hence
runs in time n2O(f (n)). A log space transducer therefore runs in
polynomial time. Hence any problem in NL is polynomial time
reducible to PATH. The result follows by PATH ∈ P.

The polynomial time reduction in the proof of Theorem 34 can be
computed in log space.
Hence TQBF is PSPACE-complete with respect to log space
reducibility.
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NL = coNL

Theorem 46 (Immerman + Szelepcsényi)
NL = coNL.

Proof.
We will give an NTM M deciding PATH in space O(lg n). Hence PATH ∈ NL. Recall
that PATH is NL-complete. For any A ∈ NL, we have A ≤L PATH. Hence A ≤L PATH.
Since PATH ∈ NL, A ∈ NL. That is, A = A ∈ coNL. We have NL ⊆ coNL. For any
B ∈ coNL, we have B ∈ NL. Hence B ≤L PATH. Thus B = B ≤L PATH. Since
PATH ∈ NL, we have B ∈ NL. We have coNL ⊆ NL.
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NL = coNL

Proof (cont’d).
[H] On 〈G, s, t〉 c0 = 1 G has m nodes i = 0, . . . ,m− 1 ci+1 = 1 *ci+1 counts the nodes reached
from s in ≤ i + 1 steps node v 6= s in G d = 0 *d recounts the nodes reached from s in ≤ i steps
node u in G Nondeterministically continue Nondeterministically follow a path of length ≤ i
from s Reject if the path does not end at u d = d + 1 (u, v) is an edge in G ci+1 = ci+1 + 1
break d 6= ciReject *check if the result is correct cm = number of nodes reached from s
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NL = coNL

Proof (cont’d).
[H] d = 0 *d recounts the nodes reached from s node u in G Nondeterministically continue
Nondeterministically follow a path of length ≤ m from s Reject if the path does not end at u
u = tReject *do not count t d = d + 1 d 6= cmReject Accept The NTM M counts the nodes
reached from s in the first phrase. The variable ci is the number of nodes reached from
s in ≤ i steps. Initially, c0 = 1. To compute ci+1 from ci, M goes through each node
v 6= s in G. For each v, M tries to find all nodes reached from s in ≤ i steps. For each
such node u, M increments d. It also increments ci+1 if u points to v. If d = ci, M has
found all node reached from s in ≤ i steps. Hence ci+1 is correct. M proceeds to
compute ci+2.
At the second phrase, M counts nodes reached from s but excluding t. If s reaches the
same set of nodes, t is not reachable from s. M accepts.
M needs to store u, v, ci, ci+1, d, i and a pointer to the head of a path. M runs in O(lg n)
space.
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L,NL,P, and PSPACE

The relationship between different complexity classes now
becomes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

We will prove NL ( PSPACE in the next chapter.
Hence at least on inclusion is propcer.

I But we do not know which one.
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