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Reducibility

In mathematics, many problems are solved by “reduction.”
Recall the reduction from Eulerian path to Eulerian cycle.

I Suppose EC(G) returns true iff G has a Eulerian cycle.
I Let s, t be nodes of a graph G.
I To check if there is a Eulerian path from s to t in G.
I Construct a graph G′ that is identical to G except an additional edge

between s and t.
I If EC(G′) returns true, there is a Eulerian path from s to t.
I If EC(G′) returns false, there is no Eulerian path from s to t.

Instead of inventing a new algorithm for finding Eulerian paths,
we use EC(G) as a subroutine.
We say the Eulerian path problem is reduced to the Eulerian cycle
problem.
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Reducibility

Let us say A and B are two problems and A is reduced to B.
If we solve B, we solve A as well.

I If we solve the Eulerian cycle problem, we solve the Eulerian path
problem.

If we can’t solve A, we can’t solve B.
To show a problem P is not decidable, it suffices to reduce ATM to
P.
We will give examples in this chapter.
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The Halting Problem for Turing Machines

The halting problem is to test whether a TM M halts on a string w.
As usual, we first give a language-theoretic formulation.

HALTTM = {〈M,w〉 : M is a TM and M halts on the input w}.

Theorem 1
HALTTM is undecidable.

Proof.
We would like to reduce the acceptance problem to the halting
problem. Suppose a TM R decides HALTTM. Consider
S = “On input 〈M,w〉where M is a TM and w is a string:

1 Run TM R on the input 〈M,w〉.
2 If R rejects, reject.
3 If R accepts, simulate M on w until it halts.
4 If M accepts, accept; if M rejects, reject.”

(NTU EE) Decidability Spring 2023 4 / 37



Emptiness Problem for Turing Machines

Consider ETM = {〈M〉 : M is a TM and L(M) = ∅}.

Theorem 2
ETM is undecidable.

Proof.
We reduce the acceptance problem to the emptiness problem. Let the
TM R decides ETM. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M〉 to construct
M1 = “On input x:

1 If x 6= w, reject.
2 If x = w, run M on the input x. If M accepts x, accept.”

2 Run R on the input 〈M1〉.
3 If R accepts, reject; otherwise, accept.”
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Regularity Problem for Turing Machines

Consider

REGULARTM = {〈M〉 : M is a TM and L(M) is regular}.

Theorem 3
REGULARTM is undecidable.

Proof.
Let R be a TM deciding REGULARTM. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M〉 to construct
M2 = “On input x:

1 If x is of the form 0n1n, accept.
2 Otherwise, run M on the input w. If M accepts w, accepts.”

2 Run R on the input 〈M2〉.
3 If R accepts, accept; otherwise, reject.”
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Rice’s Theorem

Theorem 4
Let P be a language consisting of TM descriptions such that

1 P is not trivial (P 6= ∅ and there is a TM M with 〈M〉 6∈ P);
2 If L(M1) = L(M2), 〈M1〉 ∈ P iff 〈M2〉 ∈ P.

Then P is undecidable.

Proof.
Let R be a TM deciding P. Let T∅ be a TM with L(T∅) = ∅. WLOG, assume 〈T∅〉 6∈ P.
Moreover, pick a TM T with 〈T〉 ∈ P. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M〉 to construct

Mw = “On input x:

1 Run M on w. If M halts and rejects, reject.
2 If M accepts w, run T on x.”

2 Run R on 〈Mw〉.
3 If R accepts, accept; otherwise, reject.”
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Language Equivalence Problem for Turing Machines

Consider

EQTM = {〈M1,M2〉 : M1 and M2 are TM’s with L(M1) = L(M2)}.

Theorem 5

EQTM is undecidable.

Proof.
We reduce the emptiness problem to the language equivalence
problem this time. Let the TM R decide EQTM and TM M1 with
L(M1) = ∅. Consider
S = “On input 〈M〉where M is a TM:

1 Run R on 〈M,M1〉.
2 If R accepts, accept; otherwise, reject.”
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Computation History

Definition 6
Let M be a TM and w an input string. An accepting computation
history for M on w is a sequence of configurations C1,C2, . . . ,Cl where

C1 is the start configuration of M on w;
Cl is an accepting configuration of M; and
Ci yields Ci+1 in M for 1 ≤ i < l.

A rejecting computation history for M on w is similar, except Cl is a
rejecting configuration.

Note that a computation history is a finite sequence.
A deterministic Turing machine has at most one computation
history on any given input.
A nondeterminsitic Turing machine may have several
computation histories on an input.
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Languages Associated with Computation Histories

Suppose α ` β is a single step of a TM M. We consider the following
cases (examples):

left move right move
α abcdqefgh abcdqefgh
β abcq′de′fgh abcde′q′fgh

Notice that in α and β, at most 3 positions may change.
Consider accepting computation α0 ` α1 ` α2 ` α3 ` · · · ` αn

CS: α0#α1#α2#α3# · · ·#αn

CSR: α0#αR
1 #α2#αR

3 # · · ·#αn

CSR is the intersection of two CFL Lodd and Leven, where
Lodd = {α0#αR

1 #α2#αR
3 # · · ·#αn | αi ` αi+1, i is odd}

Leven = {α0#αR
1 #α2#αR

3 # · · ·#αn | αi ` αi+1, i is even}
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Linear Bounded Automaton

control

0 01 1 0110

Figure: Schematic of Linear Bounded Automata

Definition 7
A linear bounded automaton is a Turing machine whose tape head is
not allowed to move off the portion of its input. If an LBA tries to
move its head off the input, the head stays.

With a larger tape alphabet than its input alphabet, an LBA is able
to increase its memory up to a constant factor.
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Acceptance Problem for Linear Bounded Automata

Consider

ALBA = {〈M,w〉 : M is an LBA and M accepts w}.

Lemma 8
Let M be an LBA with q states and g tape symbols. There are exactly qngn

different configurations of M for a tape of length n.

An LBA has only a finite number of different configurations on an
input.
Many langauges can be decided by LBA’s.

I For instance, ADFA,ACFG,EDFA, and ECFG.

Every context-free langauges can be decided by LBA’s.
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Acceptance Problem for Linear Bounded Automata

Theorem 9
ALBA is decidable.

Proof.
Consider
L = “On input 〈M,w〉where M is an LBA and w a string:

1 Simulate M on w for qngn steps or until it halts. (q, n, and g are
obtained from 〈M〉 and w.)

2 If M does not halt in qngn steps, reject.
3 If M accepts w, accept; if M rejects w, reject.”

The acceptance problem for LBA’s is decidable. What about the
emptiness problem for LBA’s?

ELBA = {〈M〉 : M is an LBA with L(M) = ∅}.
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Emptiness Problem for Linear Bounded Automata

Theorem 10
ELBA is undecidable.

Proof.
We reduce the acceptance problem for TM’s to the emptiness problem
for LBA. Let R be a TM deciding ELBA. Consider
S = “On input 〈M,w〉where M is a TM and w a string:

1 Use 〈M〉 to construct the following LBA:
B = “On input 〈C1,C2, . . . ,Cl〉where Ci’s are configurations of M:

1 If C1 is not the start configuration of M on w, reject.
2 If Cl is not an accepting configuration, reject.
3 For each 1 ≤ i < l, if Ci does not yield Ci+1, reject.
4 Otherwise, accept.”

2 Run R on 〈B〉.
3 If R rejects, accept; otherwise, reject.”
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Context Sensitive Grammars

A context sensitive grammar (CSG) is a grammar where all
productions are of the form

αAβ → αγβ, α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+,

During derivation non-terminal A will be replaced by γ only
when it is present in context of α and β.
This definition shows clearly one aspect of this type of grammar;
it is noncontracting, in the sense that the length of successive
sentential forms can never decrease.
The production S→ ε is also allowed if S is the start symbol and it
does not appear on the right side of any production.
A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = L(G).
An alternative definition of CSG:

u→ v, |u| ≤ |v|,u, v ∈ (N ∪ Σ)+,
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An Example

{anbncn | n ≥ 1} is a CSL.
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More on CSLs

CSLs are closed under
Union
Intersection
Complement
Immerman-Szelepcsenyi theorem (1987).
Concatenation
Kleene closure

Theorem 11
A language is context-sensitive iff it can be accepted by a linear-bounded
automaton.
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Universality of Context-Free Grammars

Consider a problem related to the emptiness problem for CFL’s

ALLCFG = {〈G〉 : G is a CFG and L(G) = Σ∗}.

Let x be a string. Write xR for the string x in reverse order.
I For example, 100R = 001, levelR = level.
I Another example,

乾隆： 客上天然居 居然天上客
紀曉嵐： 人過大鐘寺 寺鐘大過人

Let C1,C2, . . . ,Cl be the accepting configuration of M on input w.
Consider the following string in the next theorem:

#〈C1〉#〈C2〉R# · · ·#〈C2k−1〉#〈C2k〉R# · · ·#〈Cl〉#
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Universality of Context-Free Grammars

Theorem 12
ALLCFG is undecidable.

Proof.
We reduce the acceptance problem for TM’s to the universalty problem. We construct
a nondeterministic PDA D that accepts all strings if and only if M does not accept w.
The input and stack alphabets of D contain symbols to encode M’s configurations.
D = “On input #x1#x2# · · ·#xl#:

1 Do one of the following branches nondeterministically:

I If x1 6= 〈C1〉where C1 is the start configuration of M on w, accept.
I If xl 6= 〈Cl〉where Cl is a rejecting configuration of M, accept.
I Choose odd i nondeterministically. If xi 6= 〈C〉, xR

i+1 6= 〈C′〉, or C
does not yield C′ (C,C′ are configurations of M), then accept.”

I Choose even i nondeterministically. If xR
i 6= 〈C〉, xi+1 6= 〈C′〉, or C

does not yield C′ (C,C′ are configurations of M), then accept.”
M accepts w iff the accepting computation history of M on w is not in L(D) iff
CFG(D) 6∈ ALLCFG.
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Post Correspondence Problem (PCP)

A domino is a pair of strings:
[

t
b

]
A match is a sequence of dominos

[
t1
b1

] [
t2

b2

]
· · ·

[
tk
bk

]
such

that t1t2 · · · tk = b1b2 · · · bk.
The Post correspondence problem is to test whether there is a
match for a given set of dominos.

PCP = {〈P〉 : P is an instance of the PCP with a match}

Consider

P =

{[
b
ca

]
,

[
a
ab

]
,

[
ca
a

]
,

[
abc
c

]}
A match in P:[

a
ab

] [
b
ca

] [
ca
a

] [
a
ab

] [
abc
c

]
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The Modified Post Correspondence Problem

The modified Post correspondence problem is a PCP where a
match starts with the first domino. That is,

MPCP = {〈P〉 : P is an instance of the PCP with a match
starting with the first domino}

Theorem 13

PCP is undecidable.

Proof idea.
We reduce the acceptance problem for TM’s to PCP. Given a TM M and
a string w, we first construct an MPCP P′ such that 〈P′〉 ∈MPCP if and
only if M accepts w. The MPCP P′ encodes an accepting computation
history of M on w. Finally, we reduce MPCP P′ to PCP P.
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The Post Correspondence Problem

Proof.
Let the TM R decide MPCP. Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be the given TM and
w = w1w2 · · ·wn the input. The set P′ of dominos has[

#

#q0w1w2 · · ·wn#

]
as the first domino. Begin with the start configuration

(bottom).

#

# q0 w1 w2 · · · wn #
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The Post Correspondence Problem

Proof (cont’d).[
qa
br

]
if δ(q, a) = (r, b,R) with q 6= qreject. Reads a at state q (top); writes b and

moves right (bottom).[
cqa
rcb

]
if δ(q, a) = (r, b, L) with q 6= qreject. Reads a at state q (top); writes b and

moves left (bottom).[
a
a

]
if a ∈ Γ. Keeps other symbols intact.

#

# q0 0 1 0 0 #

0 1 0 0

2 q7

q0

1 0 0

δ(q0,0) = (q7,2,R)

(NTU EE) Decidability Spring 2023 23 / 37



The Post Correspondence Problem

Proof (cont’d).[
#

#

]
and

[
#

xy#

]
Matches previous # (top) with a new # (bottom). Adds xy

when M moves out of the right end.

#

# q0 0 1 0 0 #

0 1 0 0 #

2 q7

q0

1 0 0 #
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The Post Correspondence Problem

Proof (cont’d).[
aqaccept

qaccept

]
and

[
qaccepta
qaccept

]
if a ∈ Γ. Eats up tape symbols around qaccept.[

qaccept##

#

]
. Completes the match.

#

# 2 qaccept 0 0 #

0 0

2 1

2

qaccept 0 #

1 #

1

qaccept

· · ·

#

#

qaccept #

· · ·

qaccept # #

#
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The Post Correspondence Problem

Proof (cont’d).
So far, we have reduced the acceptance problem of TM’s to MPCP. To complete the
proof, we need to reduce MPCP to PCP.
Let u = u1u2 · · · un. Define

?u = ∗ u1 ∗ u2 ∗ · · · ∗ un

u? = u1 ∗ u2 ∗ · · · ∗ un ∗
?u? = ∗ u1 ∗ u2 ∗ · · · ∗ un ∗

Given a MPCP P′: {[
t1

b1

]
,

[
t2

b2

]
, . . . ,

[
tk

bk

]}
Construct a PCP P: {[

?t1

?b1?

]
,

[
?t2

b2?

]
, . . . ,

[
?tk

bk?

]
,

[
∗♦
♦

]}

Any match in P must start with the domino
[

?t1

?b1?

]
.
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Computable Functions

Definition 14
f : Σ∗ → Σ∗ is computable if some Turing machine M, on input w, halts
with f (w) on its tape.

Usual arithmetic operations on integers are computable functions.
For instance, the addition operation is a computable function
mapping 〈m,n〉 to 〈m + n〉where m,n are integers.
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Mapping Reducibility

Definition 15
A language A is mapping reducible (or many-one reducible) to a
languate B (written A ≤m B) if there is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B, for every w ∈ Σ∗.

f is called the reduction of A to B.
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Properties of Reducibility

Theorem 16

If A ≤m B and B is decidable, A is decidable.

Proof.
Let the TM M decide B and f the reduction of A to B. Consider
N = “On input w:

1 Construct f (w).
2 Run M on f (w).
3 If M accepts, accept; otherwise reject.

Corollary 17
If A ≤m B and A is undecidable, then B is undecidable.
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Examples

Example 18
Give a mapping reduction of ATM to HALTTM.

Proof.
We need to show a computable function f such that 〈M,w〉 ∈ ATM if
and only if 〈M′,w′〉 ∈ HALTTM whenever 〈M′,w′〉 = f (〈M,w〉).
Consider
F = “On input 〈M,w〉:

1 Use 〈M〉 and w to construct
M′ = “On input x:

1 Run M on x.
2 If M accepts, accept.
3 If M rejects, loop.”

2 Output 〈M′,w〉.”
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Examples

Example 19
Give a mapping reduction of ATM to RegularTM = {〈M〉 | L(M) is
regular}.
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Examples

Example 20
Give a mapping reduction from ETM to EQTM.

Proof.
The proof of Theorem 5 gives such a reduction. The reduction maps
the input 〈M〉 to 〈M,M1〉where M1 is a TM with L(M1) = ∅.
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Transitivity of Mapping Reductions

Lemma 21
If A ≤m B and B ≤m C, A ≤m C.

Proof.
Let f and g be the reductions of A to B and B to C respectively. g ◦ f is a
reduction of A to C.

Example 22
Give a mapping reduction from ATM to PCP.

Proof.
The proof of Theorem 13 gives such a reduction. We first show
ATM ≤m MPCP. Then we show MPCP ≤m PCP.
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More Properties about Mapping Reductions

Theorem 23
If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof.
Similar to the proof of Theorem 16 except that M and N are TM’s, not
deciders.

Corollary 24
If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.
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More Properties about Mapping Reductions

Observe that A ≤m B if and only if A ≤m B.
I The same reduction applies to A and B as well.

Recall that ATM is not Turing-recognizable.
In order to show B is not Turing-recognizable, it suffices to show
ATM ≤m B.

I ATM ≤m B implies ATM ≤m B. That is, ATM ≤m B.
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Equivalence Problem for TM’s (revisited)

Theorem 25
EQTM is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.
We first show ATM ≤m EQTM. Consider
F = “On input 〈M,w〉where M is a TM and w a string:

1 Construct
M1 = “On input x:

1 Reject.”
M2 = “On input x:

1 Run M on w. If M accepts, accept.”
2 Output 〈M1,M2〉.”
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Equivalence Problem for TM’s (revisited)

Proof (cont’d).
Next we show ATM ≤m EQTM. Consider
G = “On input 〈M,w〉where M is a TM and w a string:

1 Construct
M1 = “On input x:

1 Accept.”
M2 = “On input x:

1 Run M on w.
2 If M accepts w, accept.”

2 Output 〈M1,M2〉.”
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