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Schematic of Turing Machines

control

0 01 1 0110 xy xy xy · · ·

Figure: Schematic of Turing Machines

A Turing machine has a finite set of control states.
A Turing machine reads and writes symbols on an infinite tape.
A Turing machine starts with an input on the left end of the tape.
A Turing machine moves its read-write head in both directions.
A Turing machine outputs accept or reject by entering its
accepting or rejecting states respectively.

I A Turing machine need not read all input symbols.
I A Turing machine may not accept nor reject an input.
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Turing Machines

Consider B = {w#w : w ∈ {0,1}∗}.
M1 = “On input string w:

1 Record the first uncrossed symbol from the left and cross it. If the
first uncrossed symbol is #, go to step 6.

2 Move the read-write head to the symbol #. If there is no such
symbol, reject.

3 Move to the first uncrossed symbol to the right.
4 Compare with the symbol recorded at step 1. If they are not equal,

reject.
5 Cross the current symbol and go to step 1.
6 Check if all symbols to the right of # are crossed. If so, accept;

otherwise, reject.”
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Turing Machines – Formal Definition

Definition 1
A Turing machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where

Q is the finite set of states;
Σ is the finite input alphabet not containing the blank symbol xy;
Γ is the finite tape alphabet with xy ∈ Γ and Σ ⊆ Γ;
δ : Q× Γ→ Q× Γ× {L,R} is the transition function;
q0 ∈ Q is the start state;
qaccept ∈ Q is the accept state; and
qreject ∈ Q is the reject state with qreject 6= qaccept.

We only consider deterministic Turing machines.
Initially, a Turing machine receives its input w = w1w2 · · ·wn ∈ Σ∗

on the leftmost n cells of the tape.
Other cells on the tape contain the blank symbol xy.
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Computation of Turing Machines

A configuration of a Turing machine contains its current states,
current tape contents, and current head location.
Let q ∈ Q and u, v ∈ Γ. We write uqv to denote the configuration
where the current state is q, the current tape contents is uv, and the
current head location is the first symbol of v.

I When we say “the current tape contents is uv,” we mean an infinite
tape contains uvxyxy · · · xy · · · .

Consider the configuration 001q21101. The Turing machine
I is at the state q2;
I has the tape contents 0011101; and
I has its head location at the second 1 from the left.

q2

· · ·0 010 1 1 1 xyxyxyxy
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Computation of Turing Machines

Let C1 and C2 be configurations. We say C1 yields C2 if the Turing
machine can go from C1 to C2 in one step.
Formally, let a, b, c ∈ Γ, u, v ∈ Γ∗, and qi, qj ∈ Q.

uaqibv yields uqjacv if γ(qi, b) = (qj, c,L)
qibv yields qjcv if γ(qi, b) = (qj, c,L)

uaqibv yields uacqjv if γ(qi, b) = (qj, c,R)

Note the special case when the current head location is the
leftmost cell of the tape.

I A Turing machine updates the leftmost cell without moving its
head.

Recall that uaqi is in fact uaqixy.
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Accept, Reject, and Halting

The start configuration of M on input w is q0w.
An accepting configuration of M is a configuration whose state is
qaccept.
A rejecting configuration of M is a configuration whose state is
qreject.
Accepting and rejecting configurations are halting configurations
and do not yield further configurations.

I That is, a Turing machine accepts or rejects as soon as it reaches an
accepting or rejecting configuration.
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Recognizable Languages

A Turing machine M accepts an input w if there is a sequence of
configurations C1,C2, . . . ,Ck such that

I C1 is the start configuration of M on input w;
I each Ci yields Ci+1; and
I Ck is an accepting configuration.

The language of M or the language recognized by M (written
L(M)) is thus

L(M) = {w : M accepts w}.

Definition 2
A language is Turing-recognizable or recursively enumerable if some
Turing machine recognizes it.
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Decidable Languages

When a Turing machine is processing an input, there are three
outcomes: accept, reject, or loop.

I “Loop” means it never enters a halting configuration.

A deterministic finite automaton or deterministic pushdown
automaton have only two outcomes: accept or reject.
For a nondeterministic finite automaton or nondeterminsitic
pushdown automaton, it can also loop.

I “Loop” means it does not finish reading the input (ε-transitions).

A Turing machine that halts on all inputs is called a decider.
When a decider recognizes a language, we say it decides the
language.

Definition 3
A language is Turing-decidable (decidable, or recursive) if some
Turing machine decides it.
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Turing Machines – Example

We now formally define M1 = (Q,Σ,Γ, δ, q1, qaccept, qreject) which
decides B = {w#w : w ∈ {0,1}∗}.
Q = {q1, . . . , q14, qaccept, qreject};
Σ = {0,1,#} and Γ = {0,1,#,x, xy}.

#→ R

0,1→ R x→ R

0,1→ R x→ R

0,1,x→ L 0,1→ L

#→ L

#→ R

xy→ R

#→ R

x→ R

0→ x,L

q1

q2 q4

q8 qaccept

q3 q5

q6 q7

1→ x,R

0→ x,R

x→ R

1→ x,L

qreject

Figure: Turing Machine M1
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Turing Machines whose Heads can Stay

Recall that the transition function of a Turing machine indicate
whether its read-write head moves left or right.
Consider a new Turing machine whose head can stay.
Hence we have δ : Q× Γ→ Q× Γ× {L,R,S}.
Is the new Turing machine more powerful?
Of course not, we can always simulate S by an R and then an L.
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Multitape Turing Machines

A multitape Turing machine has several tapes.
Initially, the input appears on the tape 1.
If a multitape Turing machine has k tapes, its transition function
now becomes

δ : Q× Γk → Q× Γk × {L,R}k

δ(qi, a1, . . . , ak) = (qj, b1, . . . , bk, d1, . . . , dk) means that if the
machine is in state qi and reads ai from tape i for 1 ≤ i ≤ k, it goes
to state qj, writes bi to tape i for 1 ≤ i ≤ k, and moves the tape head
i towards the direction di for 1 ≤ i ≤ k.
Are multitape Turing machines more powerful than signel-tape
Turing machines?
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Multitape Turing Machines

Theorem 4
Every multitape Turing machine has an equivalent single-tape Turing
machine.

Proof.
We use a special new symbol # to separate contents of k tapes.
Moreover, k marks are used to record locations of the k virtual heads.
S = “On input w = w1w2 · · ·wn :

1 Write w in the correct format: #
•

w1w2 · · ·wn#
•
xy#

•
xy# · · ·#.

2 Scan the tape and record all symbols under virtual heads. Then
update the symbols and virtual heads by the transition function of
the k-tape Turing machine.

3 If S moves a virtual head to the right onto a #, S writes a blank
symbol and shifts the tape contents from this cell to the rightmost
# one cell to the right. Then S resumes simulation.”
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Multitape Turing Machines

0 1 xy0

ab xyb b 1 # b b
•
00 b xy

•
a ##

SM

A “mark” is in fact a different tape symbol.
I Say the tape alphabet of the multitape TM M is {0,1,a,b, xy}.
I Then S has the tape alphabet {#,0,1,a,b, xy,

•
0,

•
1,

•
a,

•
b,

•
xy}.

Corollary 5
A language is Turing-Recognizable if and only if some multitape Turing
machine recognizes it.
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Turing Machines with 2-way Infinite Tape

Theorem 6
A TM with a 2-way infinite tape can be simulated by one with a 1-way
infinite tape.
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Nondeterministic Turing Machines

A nondeterministic Turing machine has its transition function of
type δ : Q× Γ→ P(Q× Γ× {L,R}).
Is nondeterministic Turing machines more powerful than
deterministic Turing machines?

I Recall that nondeterminism does not increase the expressive power
in finite automata.

I Yet nondeterminism does increase the expressive power in
pushdown automata.
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Nondeterministic Turing Machines

Theorem 7
Every nondeterministic Turing machine has an equivalent deterministic
Turing machine.

Proof.
Nondeterministic computation can be seen as a tree. The root is the
start configuration. The children of a tree node are all possible
configurations yielded by the node. By ordering children of a node, we
associate an address with each node. For instance, ε is the root; 1 is the
first child of the root; 21 is the first child of the second child of the root.
We simulate an NTM N with a 3-tape DTM D. Tape 1 contains the
input; tape 2 is the working space; and tape 3 records the address of
the current configuration.
Let b be the maximal number of choices allowed in N. Define
Σb = {1,2, . . . ,b}. We now describe the Turing machine D.
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Nondeterministic Turing Machines

Proof.
1 Initially, tape 1 contains the input w; tape 2 and 3 are empty.

2 Copy tape 1 to tape 2.
3 Simulate N from the start state on tape 2 according to the address

on tape 3.
I When compute the next configuration, choose the transition by the

next symbol on tape 3.
I If no more symbol is on tape 3, the choice is invalid, or a rejecting

configuration is yielded, go to step 4.
I If an accepting configuration is yielded, accept the input.

4 Replace the string on tape 3 with the next string lexicographically
and go to step 2.

Observe the D simulates N by breadth.
I Can we simulate by depth?
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Nondeterministic Turing Machines

Corollary 8
A language is Turing-recognizable if and only if some nondeterministic
Turing machine recognizes it.

A nondeterministic Turing machine is a decider if all branches
halt on all inputs.
If the NTM N is a decider, a slight modification of the proof makes
D always halt. (How?)

Corollary 9
A language is decidable if and only if some nondeterministic Turing machine
decides it.
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Schematic of Enumerators

0 01 1 0110 xy xy xy · · ·

control

Figure: Schematic of Enumerators

An enumerator is a Turing machine with a printer.
An enumerator starts with a blank input tape.
An enumerator outputs a string by sending it to the printer.
The language enumerated by an enumerator is the set of strings
printed by the enumerator.

I Since an enumerator may not halt, it may output an infinite
number of strings.

I An enumerator may output the same string several times.
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Enumerators

Theorem 10
A language is Turing-recognizable if and only if some enumerator enumerates
it.

Proof.
Let E be an enumerator. Consider the following TM M:
M = “On input w :

1 Run E and compare any output string with w.
2 Accept if E ever outputs w.”

Conversely, let M be a TM recognizing A. Consider
E = “Ignore the input.

1 Repeat for i = 1, 2, . . .
1 Let s1, s2, . . . , si be the first i strings in Σ∗ (say, lexicographically).
2 Run M for i steps on each of s1, s2, . . . , si.
3 If M accepts sj for 1 ≤ j ≤ i, output sj.
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Enumerators

Theorem 11
A language is Turing-decidable if and only if some enumerator enumerates it
in lexicographical order.

Proof.
Let E be an enumerator. Consider the following TM M:
M = “On input w :

1 Run E and compare each generated output string with w.
2 Accept if E ever outputs w; reject if E outputs a w′ with w < w′”

Conversely, let M be a TM deciding A, and assume that Σ = {0, 1}.
E = “Ignore the input.

1 Repeat for w = ε, 0, 1, 00, 01, 10, 11, 000, . . .
1 Run M on w;
2 If M accepts w, output sj;
3 If M rejects w, exit
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Algorithms

Let us suppose we lived before the invention of computers.
I say, circa 300 BC, around the time of Euclid.

Consider the following problem:
Given two positive integers a and b, find the largest integer r such
that r divides a and r divides b.
How do we “find” such an integer?
Euclid’s method is in fact an algorithm.
Keep in mind that the concept of algorithms has been in
mathematics long before the advent of computer science.
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Hilbert’s Problems

Mathematician David Hilbert listed 23 problems in 1900.
I These problems are challenges for mathematicians in 20th century.

His 10th problem is to devise “a process according to which it can
be determined by a finite number of operations,” that tests
whether a polynomial has an integral root.

I In other words, Hilbert wants to find an algorithm to test whether a
polynomial has an integral root.

If such an algorithm exists, we just need to invent it.
What if there is no such algorithm?

I How can we argue Hilbert’s 10th problem has no solution?
We need a precise definition of algorithms!
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Church-Turing Thesis

In 1936, two papers came up with definitions of algorithms.
Alonzo Church used λ-calculus to define algorithms.

I If you don’t know λ-calculus, take Programming Languages.
Alan Turing used Turing machines to define algorithms.

I If you don’t know TM now, please consider dropping this course.

It turns out that both definitions are equivalent!
The connection between the informal concept of algorithms and
the formal definitions is called the Church-Turing thesis.
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Hilbert’s 10th Problem

In 1970, Yuri Matijasevic̆ showed that Hilbert’s 10th problem is
not solvable.

I That is, there is no algorithm for testing whether a polynomial has
an integral root.

Define D = {p : p is a polynomial with an integral root}.
Consider the following TM:
M = “The input is a polynomial p over variables x1, x2, . . . , xk

1 Evaluate p on an enumeration of k-tuple of integers.
2 If p ever evaluates to 0, accept.”

M recognizes D but does not decide D.
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Encodings of Turing Machines

To represent a Turing machine

M = (Q, {0, 1},Γ, δ, q1,B,F)

as a binary string, we must first assign integers to the states, tape
symbols, and directions L and R:

Assume the states are q1, q2, ..., qr for some r. The start state is q1,
and the only accepting state is q2.
Assume the tape symbols are X1,X2, ...,Xs for some s. Then:
0 = X1, 1 = X2, and B = X3.
L = D1 and R = D2.
Encode the transition rule δ(qi,Xj) = (qk,Xl,Dm) by
0i10j10k10l10m. Note that there are no two consecutive 1s.
Encode an entire Turing machine by concatenating, in any order,
the codes Ci of its transition rules, separated by
11 : C111C211 · · ·Cn−111Cn.
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Example

M = ({q1, q2, q3}, {0, 1}, {0, 1,B}, δ, q1,B, {q2}) where δ is defined by:
δ(q1, 1) = (q3, 0,R), δ(q3, 0) = (q1, 1,R), δ(q3, 1) = (q2, 0,R), and
δ(q3,B) = (q3, 1,L).

Codes for the transition rules:
0100100010100 0001010100100
00010010010100 0001000100010010
Code for M: 010010001010011000101010010011
00010010010100110001000100010010

Given a Turing machine M with code wi , we can now associate an
integer to it: M is the ith Turing machine, referred to as Mi. Many
integers do no correspond to any Turing machine at all. Examples:
11001 and 001110.
If wi is not a valid TM code, then we shall take Mi to be the Turing
machine (with one state and no transitions) that immediately halts on
any input. Hence L(Mi) = ∅ if wi is not a valid TM code.
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Relationship among Languages

regular

Turing-recognizable

decidable

context-free

Figure: Relationship among Different Languages
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Acceptance Problem for TM’s

Consider

ATM = {〈M,w〉 : M is a TM and M accepts w}

Consider the following TM:
U = “On input 〈M,w〉where M is a TM and w is a string:

1 Simulate M on the input w.
2 If M enters its accept state, accept; if M enters its reject state, reject.”

Does U decide ATM? Why not?
The TM U is called the universal Turing machine.
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Counting Arguments

Recall that |N| = |Z| = |Σ∗| = ℵ0 (Σ is finite).
Also recall that |P(Σ∗)| > ℵ0.

I Consult your textbook or my notes on discrete mathematics if you
are not sure.

Corollary 12
Some languages are not Turing-recognizable.

Proof.
The set of all Turing machines is countable since each TM M has an
encoding 〈M〉 in Σ∗.
The set of all languages over Σ is P(Σ∗) and hence is uncountable.
Hence some languages are not Turing-recognizable.

There are in fact uncountably many languages that cannot be
recognized by Turing machines.
Can we find a concrete example?
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Undecidability of the Acceptance Problem for TM’s

Theorem 13
ATM = {〈M,w〉 : M is a TM and M accepts w} is not a decidable language.

Proof.
Suppose there is a TM H deciding ATM. That is,

H(〈M,w〉) =
{

accept if M accepts w
reject if M does not accept w

Consider the following TM:
D = “On input 〈M〉 where M is a TM:

1 Run H on the input 〈M, 〈M〉〉.
2 If H accepts, reject. If H rejects, accept.”

Consider

D(〈D〉) =
{

accept if D does not accept 〈D〉
reject if D accepts 〈D〉

A contradiction.
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A Turing-unrecognizable Language

A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language.

Theorem 14

A language is decidable if and only if it is Turing-recognizable and
co-Turing-recognizable.

Proof.

If A is decidable, then A and A are both recognizable. Since A = A, A is
Turing-recognizable and co-Turing-recognizable.
Now suppose A and A are Turing-recognizable by M1 and M2
respectively. Consider
M = “On input w:

1 Run both M1 and M2 on the input w in parallel.
2 If M1 accepts, accept; if M2 accepts; reject.”
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A Turing-unrecognizable Language

Corollary 15

ATM is not Turing-recognizable.

Proof.
ATM is Turing-recognizable. If ATM is Turing-recognizable, ATM is both
Turing-recognizable and co-Turing-recognizable. By Theorem 14, ATM
is decidable. A contradiction.
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