Turing Machines Recursive/Recursively Enumerable Languages

(* '	~	-	-

Schematic of Turing Machines

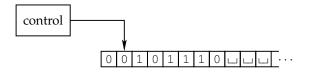


Figure: Schematic of Turing Machines

- A Turing machine has a finite set of control states.
- A Turing machine reads and writes symbols on an infinite tape.
- A Turing machine starts with an input on the left end of the tape.
- A Turing machine moves its read-write head in both directions.
- A Turing machine outputs accept or reject by entering its accepting or rejecting states respectively.
 - A Turing machine need not read all input symbols.
 - A Turing machine may not accept nor reject an input.

- Consider $B = \{ w \# w : w \in \{0, 1\}^* \}.$
- $M_1 =$ "On input string w:
 - Record the first uncrossed symbol from the left and cross it. If the first uncrossed symbol is #, go to step 6.
 - Over the read-write head to the symbol #. If there is no such symbol, reject.
 - Move to the first uncrossed symbol to the right.
 - Compare with the symbol recorded at step 1. If they are not equal, reject.
 - Solution Cross the current symbol and go to step 1.
 - Check if all symbols to the right of # are crossed. If so, accept; otherwise, reject."

< 口 > < 🗇

> < 프 > < 프 >

Turing Machines – Formal Definition

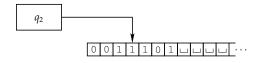
Definition 1

- A <u>Turing machine</u> is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where
 - *Q* is the finite set of <u>states;</u>
 - Σ is the finite <u>input alphabet</u> not containing the <u>blank symbol</u> \Box ;
 - Γ is the finite <u>tape alphabet</u> with $\Box \in \Gamma$ and $\Sigma \subseteq \Gamma$;
 - $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the <u>transition function</u>;
 - $q_0 \in Q$ is the <u>start</u> state;
 - $q_{\text{accept}} \in Q$ is the <u>accept</u> state; and
 - $q_{\text{reject}} \in Q$ is the <u>reject</u> state with $q_{\text{reject}} \neq q_{\text{accept}}$.
 - We only consider deterministic Turing machines.
 - Initially, a Turing machine receives its input $w = w_1 w_2 \cdots w_n \in \Sigma^*$ on the leftmost *n* cells of the tape.
 - Other cells on the tape contain the blank symbol

```
(NTU EE)
```

Computation of Turing Machines

- A <u>configuration</u> of a Turing machine contains its current states, current tape contents, and current head location.
- Let $q \in Q$ and $u, v \in \Gamma$. We write *uqv* to denote the configuration where the current state is q, the current tape contents is *uv*, and the current head location is the first symbol of *v*.
- Consider the configuration $001q_21101$. The Turing machine
 - is at the state q₂;
 - has the tape contents 0011101; and
 - ▶ has its head location at the second 1 from the left.



Computation of Turing Machines

- Let *C*₁ and *C*₂ be configurations. We say *C*₁ <u>yields</u> *C*₂ if the Turing machine can go from *C*₁ to *C*₂ in one step.
- Formally, let $a, b, c \in \Gamma$, $u, v \in \Gamma^*$, and $q_i, q_j \in Q$.

 $\begin{array}{ll} uaq_ibv \ \underline{\text{yields}} \ uq_jacv & \text{if } \gamma(q_i,b) = (q_j,c,L) \\ q_ibv \ \underline{\text{yields}} \ q_jcv & \text{if } \gamma(q_i,b) = (q_j,c,L) \\ uaq_ibv \ \underline{\text{yields}} \ uacq_jv & \text{if } \gamma(q_i,b) = (q_j,c,R) \end{array}$

- Note the special case when the current head location is the leftmost cell of the tape.
 - A Turing machine updates the leftmost cell without moving its head.
- Recall that uaq_i is in fact $uaq_i \sqcup$.

- The start configuration of M on input w is q_0w .
- An accepting configuration of M is a configuration whose state is q_{accept} .
- A <u>rejecting configuration</u> of *M* is a configuration whose state is q_{reject} .
- Accepting and rejecting configurations are <u>halting configurations</u> and do not yield further configurations.
 - That is, a Turing machine accepts or rejects as soon as it reaches an accepting or rejecting configuration.

- A Turing machine *M* accepts an input *w* if there is a sequence of configurations *C*₁, *C*₂, ..., *C*_k such that
 - ► *C*¹ is the start configuration of *M* on input *w*;
 - each C_i yields C_{i+1} ; and
 - ► *C_k* is an accepting configuration.
- The language of *M* or the language recognized by *M* (written L(M)) is thus

$$L(M) = \{w : M \text{ accepts } w\}.$$

Definition 2

A language is <u>Turing-recognizable</u> or <u>recursively enumerable</u> if some Turing machine recognizes it.

(N)	(TT)	ĒΤ	T7	$\overline{\mathbf{D}}$
(N	11	U	E	E)

Decidable Languages

- When a Turing machine is processing an input, there are three outcomes: accept, reject, or loop.
 - "Loop" means it never enters a halting configuration.
- A deterministic finite automaton or deterministic pushdown automaton have only two outcomes: accept or reject.
- For a nondeterministic finite automaton or nondeterministic pushdown automaton, it can also loop.
 - "Loop" means it does not finish reading the input (ϵ -transitions).
- A Turing machine that halts on all inputs is called a decider.
- When a decider recognizes a language, we say it <u>decides</u> the language.

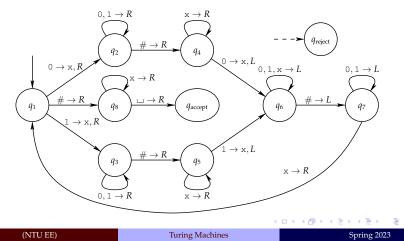
Definition 3

A language is <u>Turing-decidable</u> (<u>decidable</u>, or <u>recursive</u>) if some Turing machine decides it.

(NTU EE)

Turing Machines – Example

- We now formally define M₁ = (Q, Σ, Γ, δ, q₁, q_{accept}, q_{reject}) which decides B = {w#w : w ∈ {0, 1}*}.
- $Q = \{q_1, ..., q_{14}, q_{\text{accept}}, q_{\text{reject}}\};$
- $\Sigma = \{0, 1, \#\}$ and $\Gamma = \{0, 1, \#, x, \sqcup\}$.



10 / 34

- Recall that the transition function of a Turing machine indicate whether its read-write head moves left or right.
- Consider a new Turing machine whose head can stay.
- Hence we have $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$.
- Is the new Turing machine more powerful?
- Of course not, we can always simulate *S* by an *R* and then an *L*.

- A multitape Turing machine has several tapes.
- Initially, the input appears on the tape 1.
- If a multitape Turing machine has *k* tapes, its transition function now becomes

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

- $\delta(q_i, a_1, \dots, a_k) = (q_j, b_1, \dots, b_k, d_1, \dots, d_k)$ means that if the machine is in state q_i and reads a_i from tape i for $1 \le i \le k$, it goes to state q_j , writes b_i to tape i for $1 \le i \le k$, and moves the tape head i towards the direction d_i for $1 \le i \le k$.
- Are multitape Turing machines more powerful than signel-tape Turing machines?

▶ < 프 > < 프 > ...

Multitape Turing Machines

Theorem 4

Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof.

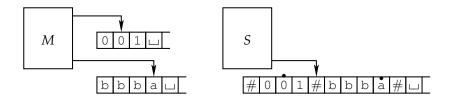
We use a special new symbol # to separate contents of k tapes. Moreover, k marks are used to record locations of the k virtual heads. S = "On input $w = w_1 w_2 \cdots w_n$:

- Write *w* in the correct format: $\#w_1^*w_2\cdots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \# \cdots \#$.
- Scan the tape and record all symbols under virtual heads. Then update the symbols and virtual heads by the transition function of the *k*-tape Turing machine.
- If S moves a virtual head to the right onto a #, S writes a blank symbol and shifts the tape contents from this cell to the rightmost # one cell to the right. Then S resumes simulation."

(NTU EE)

Turing Machines

Multitape Turing Machines



• A "mark" is in fact a different tape symbol.

- ► Say the tape alphabet of the multitape TM *M* is {0, 1, a, b, ⊥}.
- ▶ Then *S* has the tape alphabet $\{\#, 0, 1, a, b, \sqcup, 0, 1, a, b, \bigcup\}$.

Corollary 5

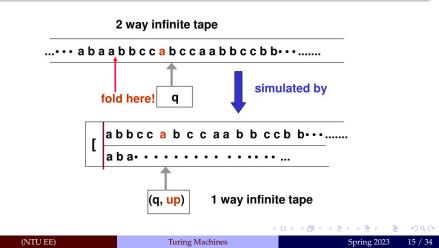
A language is Turing-Recognizable if and only if some multitape Turing machine recognizes it.

'N	т	ΤT	F	E,
(± 4	+	U	ь.	ь,

Turing Machines with 2-way Infinite Tape

Theorem 6

A TM with a 2-way infinite tape can be simulated by one with a 1-way infinite tape.



- A nondeterministic Turing machine has its transition function of type δ : Q × Γ → P(Q × Γ × {L, R}).
- Is nondeterministic Turing machines more powerful than deterministic Turing machines?
 - Recall that nondeterminism does not increase the expressive power in finite automata.
 - Yet nondeterminism does increase the expressive power in pushdown automata.

Nondeterministic Turing Machines

Theorem 7

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof.

Nondeterministic computation can be seen as a tree. The root is the start configuration. The children of a tree node are all possible configurations yielded by the node. By ordering children of a node, we associate an address with each node. For instance, ϵ is the root; 1 is the first child of the root; 21 is the first child of the second child of the root. We simulate an NTM *N* with a 3-tape DTM *D*. Tape 1 contains the input; tape 2 is the working space; and tape 3 records the address of the current configuration.

Let *b* be the maximal number of choices allowed in *N*. Define $\Sigma_b = \{1, 2, ..., b\}$. We now describe the Turing machine *D*.

Nondeterministic Turing Machines

Proof.

- Initially, tape 1 contains the input *w*; tape 2 and 3 are empty.
- Opy tape 1 to tape 2.
- Simulate *N* from the start state on tape 2 according to the address on tape 3.
 - When compute the next configuration, choose the transition by the next symbol on tape 3.
 - If no more symbol is on tape 3, the choice is invalid, or a rejecting configuration is yielded, go to step 4.
 - If an accepting configuration is yielded, accept the input.
- Replace the string on tape 3 with the next string lexicographically and go to step 2.
 - Observe the *D* simulates *N* by breadth.
 - Can we simulate by depth?

< ロト < 同

Corollary 8

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

- A nondeterministic Turing machine is a <u>decider</u> if all branches halt on all inputs.
- If the NTM *N* is a decider, a slight modification of the proof makes *D* always halt. (How?)

Corollary 9

A language is decidable if and only if some nondeterministic Turing machine decides it.

		EE)	U	NΤ	(
--	--	-----	---	----	---

Schematic of Enumerators

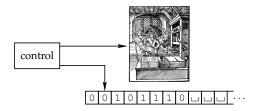


Figure: Schematic of Enumerators

- An enumerator is a Turing machine with a printer.
- An enumerator starts with a blank input tape.
- An enumerator outputs a string by sending it to the printer.
- The language <u>enumerated</u> by an enumerator is the set of strings printed by the <u>enumerator</u>.
 - Since an enumerator may not halt, it may output an infinite number of strings.
 - An enumerator may output the same string several times.

Enumerators

Theorem 10

A language is Turing-recognizable if and only if some enumerator enumerates it.

Proof.

```
Let E be an enumerator. Consider the following TM M: M = "On input w :
```

- Run *E* and compare any output string with *w*.
- Accept if *E* ever outputs *w*."
- Conversely, let *M* be a TM recognizing *A*. Consider
- E = "Ignore the input.
 - Repeat for i = 1, 2, ...
 - Let s_1, s_2, \ldots, s_i be the first *i* strings in Σ^* (say, lexicographically).
 - **2** Run *M* for *i* steps on each of s_1, s_2, \ldots, s_i .
 - So If *M* accepts s_j for $1 \le j \le i$, output s_j .

Enumerators

Theorem 11

A language is Turing-decidable if and only if some enumerator enumerates it in lexicographical order.

Proof.

Let *E* be an enumerator. Consider the following TM *M*: M ="On input *w* :

- Run *E* and compare each generated output string with *w*.
- ② Accept if *E* ever outputs *w*; reject if *E* outputs a *w*' with w < w'''

Conversely, let *M* be a TM deciding *A*, and assume that $\Sigma = \{0, 1\}$. *E* = "Ignore the input.

- **O** Repeat for $w = \epsilon, 0, 1, 00, 01, 10, 11, 000, \dots$
 - Run M on w;
 - If *M* accepts *w*, output *s_j*;
 - \bigcirc If *M* rejects *w*, exit

Turing Machines

- Let us suppose we lived before the invention of computers.
 - say, circa 300 BC, around the time of Euclid.
- Consider the following problem: Given two positive integers *a* and *b*, find the largest integer *r* such that *r* divides *a* and *r* divides *b*.
- How do we "find" such an integer?
- Euclid's method is in fact an algorithm.
- Keep in mind that the concept of algorithms has been in mathematics long before the advent of computer science.

Hilbert's Problems

- Mathematician David Hilbert listed 23 problems in 1900.
 - These problems are challenges for mathematicians in 20th century.
- His 10th problem is to devise "a process according to which it can be determined by a finite number of operations," that tests whether a polynomial has an integral root.
 - In other words, Hilbert wants to find an algorithm to test whether a polynomial has an integral root.
- If such an algorithm exists, we just need to invent it.
- What if there is no such algorithm?
 - How can we argue Hilbert's 10th problem has no solution?
- We need a precise definition of algorithms!

(NTU EE)

Church-Turing Thesis

- In 1936, two papers came up with definitions of algorithms.
- Alonzo Church used λ -calculus to define algorithms.
 - If you don't know λ -calculus, take Programming Languages.
- Alan Turing used Turing machines to define algorithms.
 - If you don't know TM now, please consider dropping this course.
- It turns out that both definitions are equivalent!
- The connection between the informal concept of algorithms and the formal definitions is called the Church-Turing thesis.

- In 1970, Yuri Matijasevič showed that Hilbert's 10th problem is not solvable.
 - That is, there is no algorithm for testing whether a polynomial has an integral root.
- Define *D* = {*p* : *p* is a polynomial with an integral root}.
- Consider the following TM:
 - M = "The input is a polynomial *p* over variables x_1, x_2, \ldots, x_k
 - Evaluate *p* on an enumeration of *k*-tuple of integers.
 - If p ever evaluates to 0, accept."
- *M* recognizes *D* but does not decide *D*.

Encodings of Turing Machines

To represent a Turing machine

$$M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, F)$$

as a binary string, we must first assign integers to the states, tape symbols, and directions *L* and *R*:

- Assume the states are *q*₁, *q*₂, ..., *q*_{*r*} for some *r*. The start state is *q*₁, and the only accepting state is *q*₂.
- Assume the tape symbols are $X_1, X_2, ..., X_s$ for some s. Then: $0 = X_1, 1 = X_2$, and $B = X_3$.
- $L = D_1$ and $R = D_2$.
- Encode the transition rule $\delta(q_i, X_j) = (q_k, X_l, D_m)$ by $0^i 10^j 10^k 10^l 10^m$. Note that there are no two consecutive 1s.
- Encode an entire Turing machine by concatenating, in any order, the codes Ci of its transition rules, separated by $11: C_1 11 C_2 11 \cdots C_{n-1} 11 C_n$.

Example

$$\begin{split} M &= (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q2\}) \text{ where } \delta \text{ is defined by: } \\ \delta(q_1, 1) &= (q_3, 0, R), \delta(q_3, 0) = (q_1, 1, R), \delta(q_3, 1) = (q_2, 0, R), \text{ and } \\ \delta(q_3, B) &= (q_3, 1, L). \end{split}$$

- Code for M: 0100100010100<u>11</u>00010100100<u>11</u> 00010010010100<u>11</u>0001000100010010

Given a Turing machine M with code w_i , we can now associate an integer to it: M is the *i*th Turing machine, referred to as M_i . Many integers do no correspond to any Turing machine at all. Examples: 11001 and 001110.

If w_i is not a valid TM code, then we shall take Mi to be the Turing machine (with one state and no transitions) that immediately halts on any input. Hence $L(M_i) = \emptyset$ if w_i is not a valid TM code.

Relationship among Languages

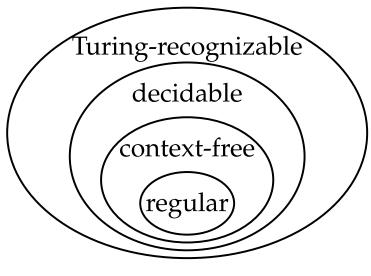


Figure: Relationship among Different Languages

(NTU EE)

Turing Machines

Consider

 $A_{\text{TM}} = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

- Consider the following TM:
 - U = "On input $\langle M, w \rangle$ where *M* is a TM and *w* is a string:
 - Simulate *M* on the input *w*.
 - If M enters its accept state, accept; if M enters its reject state, reject."
- Does *U* decide *A*_{TM}? Why not?
- The TM *U* is called the universal Turing machine.

Counting Arguments

- Recall that $|\mathbb{N}| = |\mathbb{Z}| = |\Sigma^*| = \aleph_0$ (Σ is finite).
- Also recall that $|\mathcal{P}(\Sigma^*)| > \aleph_0$.
 - Consult your textbook or my notes on discrete mathematics if you are not sure.

Corollary 12

Some languages are not Turing-recognizable.

Proof.

The set of all Turing machines is countable since each TM *M* has an encoding $\langle M \rangle$ in Σ^* . The set of all languages over Σ is $\mathcal{P}(\Sigma^*)$ and hence is uncountable. Hence some languages are not Turing-recognizable.

- There are in fact uncountably many languages that cannot be recognized by Turing machines.
- Can we find a concrete example?

(NTU EE)

Turing Machines

イロト イポト イヨト イヨト

Undecidability of the Acceptance Problem for TM's

Theorem 13

 $A_{TM} = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \} \text{ is not a decidable language.}$

Proof.

Suppose there is a TM H deciding A_{TM} . That is,

 $H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$

Consider the following TM:

D = "On input $\langle M \rangle$ where *M* is a TM:

1 Run *H* on the input $\langle M, \langle M \rangle \rangle$.

If H accepts, reject. If H rejects, accept."

Consider

$$D(\langle D \rangle) = \begin{cases} \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \text{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

A contradiction.

A Turing-unrecognizable Language

• A language is <u>co-Turing-recognizable</u> if it is the complement of a Turing-recognizable language.

Theorem 14

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.

Proof.

If *A* is decidable, then *A* and \overline{A} are both recognizable. Since $\overline{\overline{A}} = A$, *A* is Turing-recognizable and co-Turing-recognizable. Now suppose *A* and \overline{A} are Turing-recognizable by M_1 and M_2 respectively. Consider M ="On input *w*:

- Run both M_1 and M_2 on the input w in parallel.
- **2** If M_1 accepts, accept; if M_2 accepts; reject."

(NTU EE)

Corollary 15

 $\overline{A_{TM}}$ is not Turing-recognizable.

Proof.

 A_{TM} is Turing-recognizable. If $\overline{A_{\text{TM}}}$ is Turing-recognizable, A_{TM} is both Turing-recognizable and co-Turing-recognizable. By Theorem 14, A_{TM} is decidable. A contradiction.