Ogden's Lemma for CFLs

$\mathsf{Theorem}$

If L is a context-free language, then there exists an integer I such that for any $u \in L$ with at least I positions marked, u can be written as u = vwxyz such that

- x and at least one of w or y both contain a marked position;
- 2 wxy contains at most I marked positions; and,
- $vw^m xy^m z \in L for all m \in N.$

Consider language $\{a^ib^jc^kd^l\mid i=0\ or\ j=k=l\}$, for which the classical PL fails (why?).

4 / 4

Non-Decision Properties

- Many questions that can be decided for regular sets cannot be decided for CFLs.
- Example: Are two CFLs the same?
- Example: Are two CFLs disjoint?
- Need theory of Turing machines and decidability to prove no algorithm exists.

Testing Emptiness

- We already did this.
- We learned to eliminate variables that generate no terminal string.
- If the start symbol is one of these, then the CFL is empty; otherwise not.

Testing Membership

- Want to know if string w is in L(G).
- Assume G is in CNF.
 - Or convert the given grammar to CNF.
 - $w = \epsilon$ is a special case, solved by testing if the start symbol is nullable.
- Algorithm (CYK) is a good example of dynamic programming and runs in time $O(n^3)$, where n = |w|.

H. Yen (NTUEE) 4 / 18

CYK Algorithm

- Let $w = a_1...a_n$.
- We construct an n-by-n triangular array of sets of variables.
- $X_{ij} = \{ \text{variables } A \mid A \stackrel{*}{\Rightarrow} a_i ... a_j \}.$
- Induction on j i + 1. The length of the derived string.
- Finally, ask if S is in X_{1n} .

CYK Algorithm V (2)

- Basis: $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production } \}$.
- Induction: $X_{ii} = \{A \mid \text{ there is a production } A \rightarrow BC \text{ and an } A \rightarrow BC \text{ and } A \rightarrow$ integer $k, i < k < j, B \in X_{ik}, C \in X_{k+1, i}$.

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$ String w = ababa

$$X_{11}=\{A,C\}$$
 $X_{22}=\{B,C\}$ $X_{33}=\{A,C\}$ $X_{44}=\{B,C\}$ $X_{55}=\{A,C\}$

$$X_{12} = \{B, S\}$$

$$X_{11}=\{A,C\}$$
 $X_{22}=\{B,C\}$ $X_{33}=\{A,C\}$ $X_{44}=\{B,C\}$ $X_{55}=\{A,C\}$

$$X_{44} = \{B,C\}$$

$$X_{55} = \{A,C\}$$

Example (cont'd)

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$

String w = ababa

Yields nothing
$$X_{12} = \{B,S\} \quad X_{23} = \{A\} \quad X_{34} = \{B,S\} \quad X_{45} = \{A\}$$

$$X_{11} = \{A,C\} \quad X_{22} = \{B,C\} \quad X_{33} = \{A,C\} \quad X_{44} = \{B,C\} \quad X_{55} = \{A,C\}$$

$$X_{13} = \{A\} \quad X_{24} = \{B,S\} \quad X_{35} = \{A\}$$

$$X_{12} = \{B,S\} \quad X_{23} = \{A\} \quad X_{34} = \{B,S\} \quad X_{45} = \{A\}$$

$$X_{11} = \{A,C\} \quad X_{22} = \{B,C\} \quad X_{33} = \{A,C\} \quad X_{44} = \{B,C\} \quad X_{55} = \{A,C\}$$

Example (cont'd)

Example

Grammar: S o AB, $A o BC \mid a$, $B o AC \mid b$, $C o a \mid b$

String w = ababa

$$X_{14}=\{B,S\}$$

 $X_{13}=\{A\}$ $X_{24}=\{B,S\}$ $X_{35}=\{A\}$
 $X_{12}=\{B,S\}$ $X_{23}=\{A\}$ $X_{34}=\{B,S\}$ $X_{45}=\{A\}$
 $X_{11}=\{A,C\}$ $X_{22}=\{B,C\}$ $X_{33}=\{A,C\}$ $X_{44}=\{B,C\}$ $X_{55}=\{A,C\}$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

8 / 18

Example (cont'd)

Example

Grammar: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow AC \mid b$, $C \rightarrow a \mid b$

String w = ababa

$$X_{15}=\{A\}$$
 $X_{14}=\{B,S\}$ $X_{25}=\{A\}$
 $X_{13}=\{A\}$ $X_{24}=\{B,S\}$ $X_{35}=\{A\}$
 $X_{12}=\{B,S\}$ $X_{23}=\{A\}$ $X_{34}=\{B,S\}$ $X_{45}=\{A\}$
 $X_{11}=\{A,C\}$ $X_{22}=\{B,C\}$ $X_{33}=\{A,C\}$ $X_{44}=\{B,C\}$ $X_{55}=\{A,C\}$

◆ロト ◆昼 ト ◆ 差 ト ○ 差 ○ 夕 ○ ○

Testing Infiniteness

- The idea is essentially the same as for regular languages.
- Use the pumping lemma constant n.
- If there is a string in the language of length between n and 2n-1, then the language is infinite; otherwise not.
- Lets work this out in class.

H. Yen (NTUEE) 10 / 18

Closure Properties of CFLs

- CFLs are closed under union, concatenation, and Kleene closure.
- Also, under reversal, homomorphisms and inverse homomorphisms.
- But not under intersection or difference.

H. Yen (NTUEE) 11 / 18

Closure of CFLs Under Reversal

- If L is a CFL with grammar G, form a grammar for L^R by reversing the right side of every production.
- Example: Let G have $S \rightarrow 0S1 \mid 01$.
- The reversal of L(G) has grammar $S \rightarrow 1S0 \mid 10$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

12 / 18

Closure of CFLs Under Homomorphism

- Let L be a CFL with grammar G.
- Let h be a homomorphism on the terminal symbols of G.
- Construct a grammar for h(L) by replacing each terminal symbol a by h(a).

Example

G has productions $S \to 0S1 \mid 01$. *h* is defined by $h(0) = ab, h(1) = \epsilon$. h(L(G)) has the grammar with productions $S \to abS \mid ab$.

◆ロ → ◆回 → ◆ き → ◆ き → り へ ○

Closure of CFLs Under Inverse Homomorphism

- Here, grammars don't help us.
- But a PDA construction serves nicely.
- Intuition: Let L = L(P) for some PDA P.
- Construct PDA P' to accept $h^{-1}(L)$.
- \bullet P' simulates P, but keeps, as one component of a two-component state a buffer that holds the result of applying h to one input symbol.

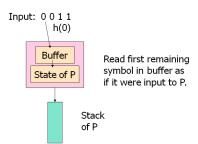
H. Yen (NTUEE) 14 / 18

Construction of P'

- States are pairs [q, b], where:
 - \bigcirc q is a state of P.
 - ② b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible values for *b*.

- Stack symbols of P' are those of P.
- Start state of P' is $[q_0, \epsilon]$.
- Input symbols of P' are the symbols to which h applies.
- Final states of P' are the states $[q, \epsilon]$ such that q is a final state of P.



H. Yen (NTUEE) 15 / 18

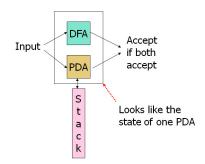
Transitions of P'

- $\delta'(([q, \epsilon], a, X) = \{([q, h(a)], X)\}$ for any input symbol a of P' and any stack symbol X.
 - ▶ When the buffer is empty, P' can reload it.
- ② $\delta'([q, bw], \epsilon, X)$ contains $([p, w], \alpha)$ if $\delta(q, b, X)$ contains (p, α) , where b is either an input symbol of P or ϵ .
 - Simulate P from the buffer.

16 / 18

Intersection with a Regular Language

- Intersection of two CFL's need not be context free.
- But the intersection of a CFL with a regular language is always a CFL.
- Proof involves running a DFA in parallel with a PDA, and noting that the combination is a PDA. (PDAs accept by final state.)



H. Yen (NTUEE) 17 / 18

Formal Construction

- Let the DFA A have transition function δ_A .
- Let the PDA P have transition function δ_P .
- States of combined PDA are [q, p], where q is a state of A and p a state of P.
- $\delta([q,p],a,X)$ contains $([\delta_A(q,a),r],\alpha)$ if $\delta_P(p,a,X)$ contains (r,α) . Note a could be ϵ , in which case $\delta_A(q,a)=q$.
- Accepting states of combined PDA are those [q, p] such that q is an accepting state of A and p is an accepting state of P.
- Easy induction: $([q_0, p_0], w, Z_0) \stackrel{*}{\vdash} ([q, p], \epsilon, \alpha)$ if and only if $\delta_A(q_0, w) = q$ and in $P: (p_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, \alpha)$.

H. Yen (NTUEE) 18 / 18