Ogden’s Lemma for CFLs

If L is a context-free language, then there exists an integer | such that for
any u € L with at least | positions marked, u can be written as u = vwxyz
such that

@ x and at least one of w or y both contain a marked position;
@ wxy contains at most | marked positions; and,
Q wxymz e L forallme N.

Consider language {a’'b/ckd' | i =0 or j= k =1}, for which the
classical PL fails (why?).

H. Yen (NTUEE) 4/4



Non-Decision Properties

@ Many questions that can be decided for regular sets cannot be
decided for CFLs.

Example: Are two CFLs the same?

@ Example: Are two CFLs disjoint?

Need theory of Turing machines and decidability to prove no
algorithm exists.
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Testing Emptiness

@ We already did this.
@ We learned to eliminate variables that generate no terminal string.

@ If the start symbol is one of these, then the CFL is empty; otherwise
not.
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Testing Membership

e Want to know if string w is in L(G).

@ Assume G is in CNF.

» Or convert the given grammar to CNF.

» w = € is a special case, solved by testing if the start symbol is nullable.

@ Algorithm (CYK ) is a good example of dynamic programming and
runs in time O(n%), where n = |w]|.
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CYK Algorithm

o Let w=a;y...a,.

We construct an n-by-n triangular array of sets of variables.

Xjj = {variables A | A= a;...a;}.

@ Induction on j — i+ 1. The length of the derived string.

Finally, ask if S is in Xi,.
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CYK Algorithm V (2)

e Basis: X;j ={A| A— a; is a production }.
o Induction: Xjj = {A| thereis a production A — BC and an
integer k,i < k <j,B € Xi, C € Xig1,}

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X11={ACH  X0={B,C} X33={A,C} X4u={B,C} Xs55={AC}

X12={B,S}

X11={ACr  X5={B,C} X3;:={A,C} X4u={B,C} Xs:5={AC}
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Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X3={} - -
13\ Yields nothing
Xp={B,S} Xu={A} X33={B,S}  Xss={A}

X11={ACH  X0={B,C} X33={A,C} X4u={B,C} Xs5={AC}

X13={IA} X24={B,S} X;5={A}
X12={B,S} Xy3= X34={B,S}  X4s={A}

X11={AC} X5={B,C} X3;:={A,C} X4u={B,C} Xs;5={AC}

H. Yen (NTUEE)

7/18



Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

Sy X;s={A}
X1,={B,S} X;3={A} X34={B,

X11={AC} X5p={B,C} X;:={A,C} X4u={B,C} Xs;5={AC}
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Example (cont'd)

Example

Grammar: S - AB, A—BC|a, B—AC|b, C—alb
String w = ababa

X15={lf\}

X14={B,S}

X13={A} X4={B,S} X35=
X1,={B,S} Xy3={A} X34={B,S} X4s={A

X11={A,C}  X5={B,C} X3;:3={A,C} X4u={B,C} Xs55={AC}
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Testing Infiniteness

@ The idea is essentially the same as for regular languages.
@ Use the pumping lemma constant n.

o If there is a string in the language of length between n and 2n — 1,
then the language is infinite; otherwise not.

@ Lets work this out in class.
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Closure Properties of CFLs

@ CFLs are closed under union, concatenation, and Kleene closure.
@ Also, under reversal, homomorphisms and inverse homomorphisms.

@ But not under intersection or difference.
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Closure of CFLs Under Reversal

o If L is a CFL with grammar G, form a grammar for LR by reversing
the right side of every production.

e Example: Let G have S — 0S1 | 01.

@ The reversal of L(G) has grammar S — 150 | 10.
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Closure of CFLs Under Homomorphism

o Let L be a CFL with grammar G.
@ Let h be a homomorphism on the terminal symbols of G.

e Construct a grammar for h(L) by replacing each terminal symbol a by
h(a).

Example

G has productions S — 051 | 01. h is defined by h(0) = ab, h(1) =e.
h(L(G)) has the grammar with productions S — ab$ | ab.
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Closure of CFLs Under Inverse Homomorphism

@ Here, grammars don't help us.

But a PDA construction serves nicely.

Intuition: Let L = L(P) for some PDA P.

Construct PDA P’ to accept h—1(L).

@ P’ simulates P, but keeps, as one component of a two-component
state a buffer that holds the result of applying h to one input symbol.
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Construction of P’

e States are pairs [q, b], where:

@ g is a state of P.
@ b is a suffix of h(a) for some symbol a.

Thus, only a finite number of possible

Input: 0011
values for b. \h(O)
Read first remaining
@ Stack symbols of P’ are those of P. symbol in buffer as
if it were input to P.
@ Start state of P’ is €].
[q07 ] Stack
@ Input symbols of P’ are the symbols to of P

which h applies.

e Final states of P’ are the states [g, €] such
that g is a final state of P.
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Transitions of P’

0 9 (([g,€], a, X) = {([g, h(a)], X)} for any input symbol a of P’ and
any stack symbol X.
» When the buffer is empty, P’ can reload it.

@ ¢'([g, bw], €, X) contains ([p, w], ) if 6(q, b, X) contains (p, a),

where b is either an input symbol of P or €.
» Simulate P from the buffer.
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Intersection with a Regular Language

@ Intersection of two CFL’s need not be

context free.
bl M, Accept
_ _ _ Input if both
@ But the intersection of a CFL with a PDA accept
regular language is always a CFL.
S
. . . t Looks like the
@ Proof involves running a DFA in parallel a state of one PDA
with a PDA, and noting that the c
k

combination is a PDA. (PDAs accept by
final state.)
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Formal Construction

Let the DFA A have transition function 4.
Let the PDA P have transition function dp.

States of combined PDA are [q, p|, where ¢ is a state of A and p a
state of P.

0([qg, p], a, X) contains ([da(q, a), r], @) if dp(p, a, X) contains (r, ).
Note a could be ¢, in which case da(q,a) = g.

Accepting states of combined PDA are those [g, p] such that g is an
accepting state of A and p is an accepting state of P.

Easy induction: ([qo, po], w, Z0) F ([g, p], €, @) if and only if

*

da(go,w) =g and in P: (po, w, Zp) F (p, €, ).
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