
Theory of Computation
Context-Free Languages

(NTU EE) Context-Free Languages Spring 2023 1 / 38

Context-Free Grammars

Here is an example of a context-free grammar G1:

A −→ 0A1
A −→ B
B −→ #

Each line is a substitution rule (or production).
A,B are variables.
0,1,# are terminals.
The left-hand side of the first rule (A) is the start variable.

(NTU EE) Context-Free Languages Spring 2023 2 / 38

Grammars and Languages

A grammar describes a language.
A grammar generates a string of its language as follows.

1 Write down the start variable.
2 Find a written variable and a rule whose left-hand side is that

variable.
3 Replace the written variable with the right-hand side of the rule.
4 Repeat steps 2 and 3 until no variable remains.

Any language that can be generated by some context-free
grammar is called a context-free language.

(NTU EE) Context-Free Languages Spring 2023 3 / 38

Grammars and Languages

For example, consider the following derivation of the string
00#11 generated by G1:

A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11

We also use a parse tree to denote a string generated by a
grammar:

A

B

A

A

#0 10 1

(NTU EE) Context-Free Languages Spring 2023 4 / 38

Context-Free Grammars – Formal Definition

Definition
A context-free grammar is a 4-tuple (V,Σ,R,S) where

V is a finite set of variables;
Σ is a finite set of terminals where V ∩ Σ = ∅;
R is a fintie set of rules. Each rule consists of a variable and a
string of variables and terminals; and
S ∈ V is the start variable.

Let u, v,w are strings of variables and terminals, and A −→ w a
rule. We say uAv yields uwv (written uAv⇒ uwv).

u derives v (written u ∗
=⇒ v) if u = v or there is a sequence

u1,u2, . . . ,uk (k ≥ 0) that u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ : S ∗
=⇒ w}.

(NTU EE) Context-Free Languages Spring 2023 5 / 38

Context-Free Languages – Examples

Example
Consider G3 = ({S}, {(,)},R,S) where R is

S −→ (S) | SS | ε.

A −→ w1 | w2 | · · · | wk stands for

A −→ w1
A −→ w2

...
A −→ wk

Examples of the strings generated by G3: ε, (), (())(),

(NTU EE) Context-Free Languages Spring 2023 6 / 38

Context-Free Languages – Examples

From a DFA M, we can construct a context-free grammar GM such
that the language of G is L(M).
Let M = (Q,Σ, δ, q0,F) be a DFA. Define GM = (V,Σ,P,S) where

I V = {Ri : qi ∈ Q} and S = {R0}; and
I P = {Ri −→ aRj : δ(qi,a) = qj} ∪ {Ri −→ ε : qi ∈ F}.

Recall M3 and construct GM3 = ({R1,R2}, {0,1},P, {R1}) with

R1 −→ 0R1 | 1R2 | ε
R2 −→ 0R1 | 1R2.

0

q1 q2

0

1
1

(NTU EE) Context-Free Languages Spring 2023 7 / 38

Context-Free Languages – Examples

Example
Consider G4 = (V,Σ,R, 〈EXPR〉) where

V = {〈EXPR〉, 〈TERM〉, 〈FACTOR〉}, Σ = {a,+,×, (,)}; and
R is

〈EXPR〉 −→ 〈EXPR〉+〈TERM〉 | 〈TERM〉
〈TERM〉 −→ 〈TERM〉×〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 −→ (〈EXPR〉) | a

a + aa ×

〈FACTOR〉〈FACTOR〉

〈TERM〉〈TERM〉

〈TERM〉

〈EXPR〉

〈EXPR〉

〈FACTOR〉

(NTU EE) Context-Free Languages Spring 2023 8 / 38

Ambiguity

Example
Consider G5:

〈EXPR〉 −→ 〈EXPR〉+〈EXPR〉 | 〈EXPR〉×〈EXPR〉 | (〈EXPR〉) | a

We have two parse trees for a + a× a.

a aa ×

〈EXPR〉 〈EXPR〉

+

〈EXPR〉 〈EXPR〉

〈EXPR〉

a aa ×

〈EXPR〉

+

〈EXPR〉

〈EXPR〉

〈EXPR〉〈EXPR〉

If a grammar generates the same in different ways, the string is
derived ambiguously in that grammar.
If a grammar generates some string ambiguously, it is ambiguous.

(NTU EE) Context-Free Languages Spring 2023 9 / 38

Ambiguity – Formal Definition

Definition
A string is derived ambiguously in a grammar if it has two or more
different leftmost derivations. A grammar is ambiguous if it generates
some string ambiguously.

A derivation is a leftmost derivation if the leftmost variable is the
one replaced at every step.
Two leftmost derivations of a + a× a:

〈EXPR〉 ⇒ 〈EXPR〉×〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉×〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

〈EXPR〉 ⇒ 〈EXPR〉+〈EXPR〉 ⇒ a+〈EXPR〉 ⇒
a+〈EXPR〉×〈EXPR〉 ⇒ a+a×〈EXPR〉 ⇒ a+a×a

If a language can only be generated by ambiguous grammars, we
call it is inherently ambiguous.

I {aibjck : i = j or j = k} is inherently ambiguous.

(NTU EE) Context-Free Languages Spring 2023 10 / 38

Chomsky Normal Form

Definition
A context-free grammar is in Chomsky normal form if every rule is of
the form

S −→ ε
A −→ BC
A −→ a

where a is a terminal, S is the start variable, A is a variable, and B,C
are non-start variables.

A normal form means a uniform representation.
I conjunctive normal form, negative normal form, etc.

Theorem
Any context-free language is generated by a context-free grammar in
Chomsky normal form.

(NTU EE) Context-Free Languages Spring 2023 11 / 38

Chomsky Normal Form

Proof.
Given a context-free grammar for a context-free language, we will
convert the grammar into Chomsky normal form.

(start variable) Add a new start variable S0 and a rule S0 −→ S.
(ε-rules) For each ε-rule A −→ ε(A 6= S0), remove it. Then for each
occurrence of A on the right-hand side of a rule, add a new rule
with that occurrence deleted.

I R −→ uAvAw becomes R −→ uAvAw | uvAw | uAvw | uvw.

(unit rules) For each unit rule A −→ B, remove it. Add the rule
A −→ u for each B −→ u.
For each rule A −→ u1u2 · · · uk(k ≥ 3) and ui is a variable or
terminal, replace it by A −→ u1A1, A1 −→ u2A2, . . . ,
Ak−2 −→ uk−1uk.
For each rule A −→ u1u2 with u1 a terminal, replace it by
A −→ U1u2, U1 −→ u1. Similarly when u2 is a terminal.

(NTU EE) Context-Free Languages Spring 2023 12 / 38

Chomsky Normal Form – Example

Consider G6 on the left. We add a new start variable on the right.

S −→ ASA | aB
A −→ B | S
B −→ b | ε

S0 −→ S
S −→ ASA | aB
A −→ B | S
B −→ b | ε

Remove B −→ ε (left) and then A −→ ε (right):
S0 −→ S
S −→ ASA | aB | a
A −→ B | S | ε
B −→ b

S0 −→ S
S −→ ASA | aB | a | SA | AS | S
A −→ B | S
B −→ b

Remove S −→ S (left) and then S0 −→ S (right):
S0 −→ S
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ B | S
B −→ b

(NTU EE) Context-Free Languages Spring 2023 13 / 38

Chomsky Normal Form – Example

Remove A −→ B (left) and then A −→ S (right):

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ S | b
B −→ b

S0 −→ ASA | aB | a | SA | AS
S −→ ASA | aB | a | SA | AS
A −→ b | ASA | aB | a | SA | AS
B −→ b

Remove S0 −→ ASA, S −→ ASA, and A −→ ASA:
S0 −→ AA1 | aB | a | SA | AS
S −→ AA1 | aB | a | SA | AS
A −→ b | AA1 | aB | a | SA | AS
B −→ b

A1 −→ SA
Add U −→ a:

S0 −→ AA1 | UB | a | SA | AS
S −→ AA1 | UB | a | SA | AS
A −→ b | AA1 | UB | a | SA | AS
B −→ b

A1 −→ SA
U −→ a

(NTU EE) Context-Free Languages Spring 2023 14 / 38

Schematic of Pushdown Automata

Each step of the PDA looks like:
Read current symbol and advance head;
Read and pop top-of-stack symbol;
Push in a string of symbols on the stack;
Change state.

Each transition is of the form

(p, a,X)→ (q,Y1Y2...Yk)

(NTU EE) Context-Free Languages Spring 2023 15 / 38

Three Mechanisms of Acceptance

Accept if input is consumed and
Stack is empty (Acceptance by Empty Stack),
PDA is in a final state (Acceptance by Final State),
PDA is in a final state and stack is empty (Acceptance by Final
State and Empty Stack).

It turns out that the three notions of acceptance are equivalent.
(NTU EE) Context-Free Languages Spring 2023 16 / 38

Pushdown Automata

Consider L = {0n1n : n ≥ 0}.
We have the following table:

Language Automata
Regular Finite

Context-free Pushdown
A pushdown automaton is a finite automaton with a stack.

I A stack is a last-in-first-out storage.
I Stack symbols can be pushed and poped from the stack.

Computation depends on the content of the stack.
It is not hard to see L is recognized by a pushdown automaton.

(NTU EE) Context-Free Languages Spring 2023 17 / 38

Pushdown Automata

Consider L = {0n1n : n ≥ 0}.
We have the following table:

Language Automata
Regular Finite

Context-free Pushdown
A pushdown automaton is a finite automaton with a stack.

I A stack is a last-in-first-out storage.
I Stack symbols can be pushed and poped from the stack.

Computation depends on the content of the stack.
It is not hard to see L is recognized by a pushdown automaton.

(NTU EE) Context-Free Languages Spring 2023 17 / 38

Pushdown Automata – Formal Definition

Definition
A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0,F) where

Q is the set of states;
Σ is the input alphabet;
Γ is the stack alphabet;
δ : Q× Σε × Γε → P(Q× Γε) is the transition function;
q0 ∈ Q is the start state; and
F ⊆ Q is the accept states.

Recall Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}.
We consider nondeterministic pushdown automata in the
definition. It convers deterministic pushdown automata.
Deterministic pushdown automata are strictly less powerful.

I There is a langauge recognized by only nondeterministic
pushdown automata.

(NTU EE) Context-Free Languages Spring 2023 18 / 38

Computation of Pushdown Automata

A pushdown automaton M = (Q,Σ,Γ, δ, q0,F) accepts input w if w
can be written as w = w1w2 · · ·wm with wi ∈ Σε and there are
sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

such that
I r0 = q0 and s0 = ε;

F M starts with the start state and the empty stack.
I For 0 ≤ i < m, we have (ri+1, b) ∈ δ(ri,wi+1, a), si = at, and si+1 = bt

for some a, b ∈ Γε and t ∈ Γ∗.
F On reading wi+1, M moves from ri with stack at to ri+1 with stack bt.
F Write c, a→ b(c ∈ Σε and a, b ∈ Γε) to denote that the machine is

reading c from the input and replacing the top of stack a with b.
I rm ∈ F.

F M is at an accept state after reading w.

The language recognized by M is denoted by L(M).
I That is, L(M) = {w : M accepts w}.

For convenience, we extend δ to Q× Σε × Γε → P(Q× Γ∗)

(NTU EE) Context-Free Languages Spring 2023 19 / 38

Pushdown Automata – Example

Let M1 = (Q,Σ,Γ, δ, q1,F) where
I Q = {q1, q2, q3, q4}, Σ = {0,1}, Γ = {0, $}, F = {q1, q4}; and
I δ is the following table:

input 0 1 ε
stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2,0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

L(M1) = {0n1n : n ≥ 0}
(NTU EE) Context-Free Languages Spring 2023 20 / 38

Pushdown Automata – Example

Let M1 = (Q,Σ,Γ, δ, q1,F) where
I Q = {q1, q2, q3, q4}, Σ = {0,1}, Γ = {0, $}, F = {q1, q4}; and
I δ is the following table:

input 0 1 ε
stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2,0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

L(M1) = {0n1n : n ≥ 0}
(NTU EE) Context-Free Languages Spring 2023 20 / 38

Pushdown Automata – Example

Consider the following pushdown automaton M2:

ε, ε→ ε ε, ε→ ε

b, ε→ ε c,a→ εa, ε→ a

b,a→ ε c, ε→ ε

ε, $→ ε

ε, $→ ε

q7

q4

q6q5

q3

q2

q1

ε, ε→ $ ε, ε→ ε

L(M2) = {aibjck : i, j, k ≥ 0 and, i = j or i = k}

(NTU EE) Context-Free Languages Spring 2023 21 / 38

Pushdown Automata – Example

Consider the following pushdown automaton M2:

ε, ε→ ε ε, ε→ ε

b, ε→ ε c,a→ εa, ε→ a

b,a→ ε c, ε→ ε

ε, $→ ε

ε, $→ ε

q7

q4

q6q5

q3

q2

q1

ε, ε→ $ ε, ε→ ε

L(M2) = {aibjck : i, j, k ≥ 0 and, i = j or i = k}

(NTU EE) Context-Free Languages Spring 2023 21 / 38

Context-Free Grammars⇒ Pushdown Automata

Idea: Use PDA to simulate derivations
Example: G : A→ 0A1 | B; B→ #

Derivation: A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11
Rule:

I Write the start symbol A onto the stack
I Rewrite variable on top of stack (in reverse) according to

production
I Pop top terminal if it matches input

(NTU EE) Context-Free Languages Spring 2023 22 / 38

Context-Free Grammars⇒ Pushdown Automata

(NTU EE) Context-Free Languages Spring 2023 23 / 38

Context-Free Grammars⇒ Pushdown Automata

Lemma
If a language is context-free, some pushdown automaton recognizes it.

Proof.
Let G = (V,Σ,R,S) be a context-free grammar generating the
language. Define
P = ({qstart, qloop, qaccept, . . .},Σ,V ∪ Σ ∪ {$}, δ, qstart, {qaccept}) where

δ(qstart, ε, ε) = {(qloop,S$)}
δ(qloop, ε,A) = {(qloop,w) : A −→ w ∈ R}
δ(qloop, a, a) = {(qloop, ε)}
δ(qloop, ε, $) = {(qaccept, ε)}

Note that (r,u1u2 · · · ul) ∈ δ(q, a, s) is simulated by (q1,ul) ∈ δ(q, a, s),
δ(q1, ε, ε) = {(q2,ul−1)}, . . ., δ(ql−1, ε, ε) = {(r,u1)}.

(NTU EE) Context-Free Languages Spring 2023 24 / 38

Example

Example
Find a pushdown automaton recognizing the language of the
following context-free grammar:

S −→ aTb | b
T −→ Ta | ε

ε, ε→ S

ε, ε→ T

ε,T → a

qloop

qstart
ε, ε→ $

qaccept
ε, $→ ε

ε,S→ b
ε,T → ε
a,a→ ε
b,b→ ε

ε, ε→ T

ε, ε→ aε,S→ b

(NTU EE) Context-Free Languages Spring 2023 25 / 38

Simplified PDA

Has a single accepting state
Empties its stack before accepting
Each transition is either a push, or a pop, but not both

(NTU EE) Context-Free Languages Spring 2023 26 / 38

Pushdown Automata⇒ Context-Free Grammars

Key Idea: For every pair (q, r) of states in PDA, introduce variable
Aqr in CFG so that Aqr generates all strings that allow the PDA to
go from q to r (with empty stack both at q and at r)

(NTU EE) Context-Free Languages Spring 2023 27 / 38

Pushdown Automata⇒ Context-Free Grammars

p

q r

s f

Read a push X Read b pop X

Aps  a Aqr b

Apf  Aps Asf

g

Agg  ε

(NTU EE) Context-Free Languages Spring 2023 28 / 38

Pushdown Automata⇒ Context-Free Grammars

Lemma
If a pushdown automaton recognizes a language, the language is context-free.

Proof.
Without loss of generality, we consider a pushdown automaton that
has a single accept state qaccept and empties the stack before accepting.
Moreover, its transition either pushes or pops a stack symbol at any
time. Let P = (Q,Σ,Γ, δ, q0, {qaccept}). Define the context-free grammar
G = (V,Σ,R,S) where

V = {Apq : p, q ∈ Q}, S = Aq0,qaccept ; and
R has the following rules:

I For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σε, if (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t), then Apq −→ aArsb ∈ R.

I For each p, q, r ∈ Q, Apq −→ AprArq ∈ R.
I For each p ∈ Q, App −→ ε ∈ R.

(NTU EE) Context-Free Languages Spring 2023 29 / 38

Example

q1 q2

q3q4
ε, $→ ε

0, ε→ 0

1,0→ ε

1,0→ ε

ε, ε→ $

We write Ai,j for Aqiqj .
Consider the following context-free grammar:

A14 → A23 since (q2, $) ∈ δ(q1, ε, ε) and (q4, ε) ∈ δ(q3, ε, $)
A23 → 0A231 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q3,1,0)
A23 → 0A221 since (q2,0) ∈ δ(q2,0, ε) and (q3, ε) ∈ δ(q2,1,0)
A22 → ε

(NTU EE) Context-Free Languages Spring 2023 30 / 38

Pushdown Automata⇒ Context-Free Grammars

Lemma
If Apq generates x in G, then x can bring P from p with empty stack to q with
empty stack.

Proof.
Prove by induction on the length k of derivation.

k = 1. The only possible derivation of length 1 is App ⇒ ε.

Consider Apq
∗

=⇒ x of length k + 1. Two cases for the first step:
I Apq ⇒ aArsb. Then x = ayb with Ars

∗
=⇒ y. By IH, y brings P from r

to s with empty stack. Moreover, (r, t) ∈ δ(p, a, ε) and
(q, ε) ∈ δ(s, b, t) since Apq −→ aArsb ∈ R. Let P start from p with
empty stack, P first moves to r and pushes t to the stack after
reading a. It then moves to s with t in the stack. Finally, P moves to
q with empty stack after reading b and popping t.

I Apq ⇒ AprArq. Then x = yz with Apr
∗

=⇒ y and Arq
∗

=⇒ z. By IH, P
moves from p to r, and then r to q.

(NTU EE) Context-Free Languages Spring 2023 31 / 38

Pushdown Automata⇒ Context-Free Grammars

Lemma
If x can bring P from p with empty stack to q with empty stack, Apq generates
x in G.

Proof.
Prove by induction on the length k of computation.

k = 0. The only possible 0-step computation is to stay at the same state while
reading ε. Hence x = ε. Clearly, App

∗
=⇒ ε in G.

Two possible cases for computation of length k + 1.
I The stack is empty only at the beginning and end of the computation. If P

reads a, pushes t, and moves to r from p at step 1, (r, t) ∈ δ(q, a, ε). Similarly,
if P reads b, pops t, and moves to q from s at step k + 1, (q, ε) ∈ δ(s, b, t).
Hence Apq −→ aArsb ∈ G. Let x = ayb. By IH, Ars

∗
=⇒ y. We have Apq

∗
=⇒ x.

I The stack is empty elsewhere. Let r be a state where the stack becomes
empty. Say y and z are the inputs read during the computation from p to r
and r to q respectively. Hence x = yz. By IH, Apr

∗
=⇒ y and Arq

∗
=⇒ z. Since

Apq −→ AprArq ∈ G. We have Apq
∗

=⇒ x.
(NTU EE) Context-Free Languages Spring 2023 32 / 38

Context-Free Grammars and Pushdown Automata

Theorem
A language is context-free if and only if some pushdown automaton
recognizes it.

Corollary
Every regular language is context-free.

(NTU EE) Context-Free Languages Spring 2023 33 / 38

Pumping Lemma

Theorem
If A is a context-free language, then there is a number p (the puming length)
such that for every s ∈ A with |s| ≥ p, there is a partition s = uvxyz that

1 for each i ≥ 0, uvixyiz ∈ A;
2 |vy| > 0; and
3 |vxy| ≤ p.

Proof.
Let G = (V,Σ,R,T) be a context-free grammar for A. Define b to be the
maximum number of symbols in the right-hand side of a rule. Observe
that a parse tree of height h has at most bh leaves and hence can
generate strings of length at most bh.
Choose p = b|V|+1. Let s ∈ A with |s| ≥ p and τ the smallest parse tree
for s. Then the height of τ ≥ |V|+ 1. There are |V|+ 1 variables along
the longest branch. A variable R must appear twice.

(NTU EE) Context-Free Languages Spring 2023 34 / 38

Pumping Lemma

T

R

R

xu v y z

(a) Smallest parse tree τ

T

R

u z

x

(b) A parse tree if |vy| = 0

Figure: Pumping Lemma

Proof. (cont’d).

From Figure (a), we see uvixyiz ∈ A for i ≥ 0.
Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than τ . A
contradiction. Hence |vy| > 0.
Finally, recall R is in the longest branch of length |V|+ 1. Hence the
subtree R generating vxy has height ≤ |V|+ 1. |vxy| ≤ b|V|+1 = p.

(NTU EE) Context-Free Languages Spring 2023 35 / 38

Pumping Lemma – Examples

Example
Show B = {anbncn : n ≥ 0} is not a context-free language.

Proof.
Let p be the pumping length. s = apbpcp ∈ B. Consider a partition
s = uvxyz with |vy| > 0. There are two cases:

v or y contain more than one type of symbol. Then uv2xy2z 6∈ B.
v and y contain only one type of symbol. Then one of a, b, or c
does not appear in v nor y (pigeon hole principle). Hence
uv2xy2z 6∈ B for |vy| > 0.

(NTU EE) Context-Free Languages Spring 2023 36 / 38

Pumping Lemma – Examples

Example

Show C = {aibjck : 0 ≤ i ≤ j ≤ k} is not a context-free language.

Proof.
Let p be the pumping length and s = apbpcp ∈ C. Consider any
partition s = uvxyz with |vy| > 0. There are two cases:

v or y contain more than one type of symbol. Then uv2xy2z 6∈ C.
v and y contain only one type of symbol. Then one of a, b, or c
does not appear in v nor y. We have three subcases:

I a does not appear in v nor y. uxz 6∈ C for it has more a then b or c.
I b does not appear in v nor y. Since |vy| > 0, a or c must appear in v

or y. If a appears, uv2xy2z 6∈ C for it has more a than b. If c appears,
uxy 6∈ C for it has more b than c.

I c does not appear in v nor y. uv2xy2z 6∈ C for it has less c than a or
b.

(NTU EE) Context-Free Languages Spring 2023 37 / 38

Pumping Lemma – Examples

Example
Show D = {ww : w ∈ {0,1}∗} is not a context-free language.

Proof.
Let p be the pumping length and s = 0p1p0p1p. Consider a partition
s = uvxyz with |vy| > 0 and |vxy| ≤ p.

If 0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·10p1p, uv2xy2z moves 1 into the second half
and thus uv2xy2z 6∈ D. Similarly, uv2xy2z moves 0 into the first half if

0p1p0 · · ·0
vxy︷ ︸︸ ︷

0 · · ·01 · · ·11 · · ·1.

It remains to consider 0p1 · · ·1
vxy︷ ︸︸ ︷

1 · · ·10 · · ·00 · · ·01p. But then
uxz = 0p1i0j1p with i < p or j < p for |vy| > 0. uxz 6∈ D.

(NTU EE) Context-Free Languages Spring 2023 38 / 38

	Context-Free Grammars
	Pushdown Automata
	Pumping Lemma

