Theory of Computation Context-Free Languages

4 0 8 4

Here is an example of a context-free grammar *G*1:

$$
\begin{array}{ccc}\nA & \longrightarrow & 0A1 \\
A & \longrightarrow & B \\
B & \longrightarrow & \# \n\end{array}
$$

- Each line is a substitution rule (or production).
- *A*, *B* are variables.
- \bullet 0, 1, $\#$ are terminals.
- The left-hand side of the first rule (*A*) is the start variable.

つくへ

- A grammar describes a language.
- A grammar generates a string of its language as follows.
	- **1** Write down the start variable.
	- ² Find a written variable and a rule whose left-hand side is that variable.
	- ³ Replace the written variable with the right-hand side of the rule.
	- ⁴ Repeat steps [2](#page-2-0) and [3](#page-2-1) until no variable remains.
- Any language that can be generated by some context-free grammar is called a context-free language.

つへへ

トメ ヨトメ ヨト

Grammars and Languages

• For example, consider the following derivation of the string 00#11 generated by *G*1:

```
A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11
```
We also use a parse tree to denote a string generated by a grammar:

つへへ

Definition

A context-free grammar is a 4-tuple (*V*, Σ, *R*, *S*) where

- *V* is a finite set of variables;
- Σ is a finite set of terminals where $V \cap \Sigma = \emptyset$;
- *R* is a fintie set of rules. Each rule consists of a variable and a string of variables and terminals; and
- $S \in V$ is the start variable.
- Let *u*, *v*, *w* are strings of variables and terminals, and $A \rightarrow w$ a rule. We say uAv yields uww (written $uAv \Rightarrow uww$).
- *u* derives *v* (written $u \stackrel{*}{\Longrightarrow} v$) if $u = v$ or there is a sequence u_1, u_2, \ldots, u_k ($k \ge 0$) that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$.
- The language of the grammar is $\{w \in \Sigma^* : S \stackrel{*}{\Longrightarrow} w\}.$

 $2Q$

メロトメ 御 トメ 君 トメ 君 ト

Example

Consider $G_3 = (\{S\}, \{(),\}, R, S)$ where *R* is

$$
S \longrightarrow (S) | SS | \epsilon.
$$

 \bullet *A* \longrightarrow *w*₁ | *w*₂ | \cdots | *w*_{*k*} stands for

$$
\begin{array}{ccc}\nA & \longrightarrow & w_1 \\
A & \longrightarrow & w_2 \\
\vdots & & \\
A & \longrightarrow & w_k\n\end{array}
$$

• Examples of the strings generated by G_3 : ϵ , (), (())(),....

Context-Free Languages – Examples

- From a DFA *M*, we can construct a context-free grammar *G^M* such that the language of *G* is *L*(*M*).
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Define $G_M = (V, \Sigma, P, S)$ where

$$
V = \{R_i : q_i \in Q\} \text{ and } S = \{R_0\} \text{; and}
$$

 $P = {R_i → aR_j : δ(q_i, a) = q_j} ∪ {R_i → ε : q_i ∈ F}.$

• Recall *M*₃ and construct $G_{M_3} = (\{R_1, R_2\}, \{0, 1\}, P, \{R_1\})$ with

$$
R_1 \longrightarrow \begin{array}{c} 0R_1 \mid 1R_2 \mid \epsilon \\ R_2 \longrightarrow \begin{array}{c} 0R_1 \mid 1R_2. \end{array} \end{array}
$$

つへへ

Context-Free Languages – Examples

Example

Consider $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$ where

• $V = \{ \langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle \}, \Sigma = \{a, +, \times, (,) \};$ and *R* is

Ambiguity

Example

Consider *G*5:

$\langle EXPR \rangle \longrightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$

• We have two parse trees for $a + a \times a$.

- If a grammar generates the same in different ways, the string is derived ambiguously in that grammar.
- If a grammar generates some string ambi[gu](#page-0-0)[ou](#page-40-0)[s](#page-13-0)[ly,](#page-8-0) [i](#page-1-0)[t](#page-0-0) is [a](#page-14-0)[m](#page-1-0)[b](#page-13-0)[i](#page-14-0)guous.

Definition

A string is derived ambiguously in a grammar if it has two or more different leftmost derivations. A grammar is ambiguous if it generates some string ambiguously.

- A derivation is a leftmost derivation if the leftmost variable is the one replaced at every step.
- Two leftmost derivations of $a + a \times a$:

 $\langle EXPR \rangle \Rightarrow \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow \langle EXPR \rangle \rightarrow \langle EXPR \rangle \langle \langle EXPR \rangle$ $a+\langle EXPR\rangle\times\langle EXPR\rangle \Rightarrow a+a\times\langle EXPR\rangle \Rightarrow a+a\times a$ $\langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \Rightarrow a + \langle EXPR \rangle \Rightarrow$ $a+\langle EXPR\rangle\times\langle EXPR\rangle \Rightarrow a+a\times\langle EXPR\rangle \Rightarrow a+a\times a$

- If a language can only be generated by ambiguous grammars, we call it is inherently ambiguous.
	- \blacktriangleright { $a^i b^j c^k : i = j$ or $j = k$ } is inherently amb[igu](#page-8-0)[ou](#page-10-0)[s](#page-8-0)[.](#page-9-0)

 QQQ

Chomsky Normal Form

Definition

A context-free grammar is in Chomsky normal form if every rule is of the form

 $S \rightarrow \epsilon$ $A \rightarrow BC$ $A \rightarrow a$

where a is a terminal, *S* is the start variable, *A* is a variable, and *B*, *C* are non-start variables.

- A normal form means a uniform representation.
	- \triangleright conjunctive normal form, negative normal form, etc.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Chomsky Normal Form

Proof.

Given a context-free grammar for a context-free language, we will convert the grammar into Chomsky normal form.

- \bullet (start variable) Add a new start variable *S*₀ and a rule *S*₀ → *S*.
- \bullet (ϵ -rules) For each ϵ -rule $A \longrightarrow \epsilon(A \neq S_0)$, remove it. Then for each occurrence of *A* on the right-hand side of a rule, add a new rule with that occurrence deleted.

^I *R* −→ *uAvAw* becomes *R* −→ *uAvAw* | *uvAw* | *uAvw* | *uvw*.

- (unit rules) For each unit rule $A \rightarrow B$, remove it. Add the rule $A \longrightarrow u$ for each $B \longrightarrow u$.
- For each rule $A \longrightarrow u_1u_2\cdots u_k$ ($k \geq 3$) and u_i is a variable or terminal, replace it by $A \longrightarrow u_1A_1, A_1 \longrightarrow u_2A_2, \ldots$, $A_{k-2} \longrightarrow u_{k-1}u_k$
- • For each rule $A \longrightarrow u_1u_2$ with u_1 a terminal, replace it by $A \rightarrow U_1u_2, U_1 \rightarrow u_1$ $A \rightarrow U_1u_2, U_1 \rightarrow u_1$. Si[m](#page-12-0)ilarly whe[n](#page-1-0) u_2 [is](#page-10-0) [a](#page-12-0) [te](#page-10-0)rmina[l.](#page-14-0)

Chomsky Normal Form – Example

• Consider *G*₆ on the left. We add a new start variable on the right.

$$
S \rightarrow ASA \mid aB
$$
\n
$$
A \rightarrow B \mid S
$$
\n
$$
B \rightarrow b \mid \epsilon
$$
\n
$$
S_0 \rightarrow S
$$
\n
$$
S_1 \rightarrow ASA \mid aB
$$
\n
$$
B \rightarrow b \mid \epsilon
$$
\n
$$
S_2 \rightarrow ASA \mid aB
$$
\n
$$
S_3 \rightarrow S \mid \epsilon
$$
\n
$$
S_4 \rightarrow S \mid \epsilon
$$
\n
$$
S_5 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_6 \rightarrow S
$$
\n
$$
S_7 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_8 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_9 \rightarrow S
$$
\n
$$
S_9 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow B \mid S
$$
\n
$$
S_1 \rightarrow B \mid S
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_0 \rightarrow S
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow ASA \mid aB \mid a
$$
\n
$$
S_1 \rightarrow B \mid S
$$

4 0 8 4

Chomsky Normal Form – Example

• Remove $A \longrightarrow B$ (left) and then $A \longrightarrow S$ (right):

$$
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \quad S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \quad S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \quad A \rightarrow S \mid \underline{b} \quad A \rightarrow \underline{b} \mid ASA \mid aB \mid a \mid SA \mid AS \quad A \rightarrow \underline{b} \mid ASA \mid \underline{a}B \mid \underline{a} \mid SA \mid AS \quad B \rightarrow \underline{b} \quad A \rightarrow \underline{A} \quad A \mid aB \mid a \mid SA \mid AS \quad S \rightarrow \underline{A} \quad A \mid aB \mid a \mid SA \mid AS \quad B \rightarrow \underline{b} \quad A \rightarrow \underline{b} \mid \underline{A} \quad A \mid B \mid a \mid SA \mid AS \quad B \rightarrow \underline{b} \quad A \rightarrow \underline{b} \mid A \quad A \mid \underline{UB} \mid a \mid SA \mid AS \quad A \rightarrow \underline{b} \mid A \quad A \mid \underline{UB} \mid a \mid SA \mid AS \quad B \rightarrow \underline{b} \quad B \
$$

Schematic of Pushdown Automata

Each step of the PDA looks like:

- Read current symbol and advance head;
- Read and pop top-of-stack symbol;
- Push in a string of symbols on the stack;
- Change state.

Each transition is of the form

$$
(p, a, X) \rightarrow (q, Y_1 Y_2 ... Y_k)
$$

Three Mechanisms of Acceptance

Accept if input is consumed and

- Stack is empty (Acceptance by Empty Stack),
- PDA is in a final state (Acceptance by Final State),
- PDA is in a final state and stack is empty (Acceptance by Final State and Empty Stack).

It turns out that the three notions of acceptanc[e a](#page-14-0)[re](#page-16-0) [e](#page-14-0)[q](#page-15-0)[u](#page-16-0)[i](#page-13-0)[v](#page-14-0)[a](#page-35-0)[le](#page-36-0)[n](#page-13-0)[t](#page-14-0)[.](#page-35-0)

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

- A pushdown automaton is a finite automaton with a stack.
	-
	-
- Computation depends on the content of the stack. \bullet
- It is not hard to see *L* is recognized by a pushdown automaton.

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

- A pushdown automaton is a finite automaton with a stack.
	- \triangleright A stack is a last-in-first-out storage.
	- \triangleright Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see *L* is recognized by a pushdown automaton.

Pushdown Automata – Formal Definition

Definition

- A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where
	- *Q* is the set of states;
	- \bullet Σ is the input alphabet;
	- \bullet Γ is the stack alphabet;
	- $\bullet \delta : Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function;
	- \bullet *q*₀ \in *Q* is the start state; and
	- $F \subset O$ is the accept states.
	- Recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}.$
	- We consider nondeterministic pushdown automata in the definition. It convers deterministic pushdown automata.
	- Deterministic pushdown automata are strictly less powerful.
		- \triangleright There is a langauge recognized by only nondeterministic pushdown automata.

つくへ

Computation of Pushdown Automata

- A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input *w* if *w* can be written as $w = w_1w_2 \cdots w_m$ with $w_i \in \Sigma_{\epsilon}$ and there are sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ such that
	- \blacktriangleright $r_0 = q_0$ and $s_0 = \epsilon$;
		- \star *M* starts with the start state and the empty stack.
	- ► For $0 \le i < m$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, $s_i = at$, and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$.
		- \star On reading w_{i+1} , *M* moves from r_i with stack *at* to r_{i+1} with stack *bt*.
		- \star Write *c*, *a* → *b*(*c* ∈ Σ_{ϵ} and *a*, *b* ∈ Γ_{ϵ}) to denote that the machine is reading *c* from the input and replacing the top of stack *a* with *b*.
	- \blacktriangleright $r_m \in F$.
		- \star *M* is at an accept state after reading *w*.
- The language recognized by *M* is denoted by *L*(*M*).
	- If That is, $L(M) = \{w : M \text{ accepts } w\}.$
- For convenience, we extend δ to $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma^*)$

 QQQ

• Let
$$
M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)
$$
 where

 \blacktriangleright *Q* = {*q*₁, *q*₂, *q*₃, *q*₄}, Σ = {0, 1}, Γ = {0, \$}, *F* = {*q*₁, *q*₄}; and

 \blacktriangleright δ is the following table:

• Let
$$
M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)
$$
 where

 \blacktriangleright *Q* = {*q*₁, *q*₂, *q*₃, *q*₄}, Σ = {0, 1}, Γ = {0, \$}, *F* = {*q*₁, *q*₄}; and

 \triangleright δ is the following table:

• Consider the following pushdown automaton *M*₂:

 $L(M_2) = \{a^i b^j c^k : i, j, k \ge 0 \text{ and, } i = j \text{ or } i = k\}$

4 0 8 4

トイラトイラト

• Consider the following pushdown automaton *M*₂:

 $L(M_2) = \{a^i b^j c^k : i, j, k \ge 0 \text{ and, } i = j \text{ or } i = k\}$

4 0 8 4

おす悪き

- Idea: Use PDA to simulate derivations
- Example: $G : A \rightarrow 0A1 \mid B; B \rightarrow \#$
- Derivation: *A* ⇒ 0*A*1 ⇒ 00*A*11 ⇒ 00*B*11 ⇒ 00#11
- Rule:
	- \triangleright Write the start symbol A onto the stack
	- Rewrite variable on top of stack (in reverse) according to production
	- \triangleright Pop top terminal if it matches input

 $A \cup A \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

Context-Free Grammars ⇒ Pushdown Automata

4 0 F

Lemma

If a language is context-free, some pushdown automaton recognizes it.

Proof.

Let $G = (V, \Sigma, R, S)$ be a context-free grammar generating the language. Define

- $P = (\{q_{start}, q_{loop}, q_{accept}, \ldots\}, \Sigma, V \cup \Sigma \cup \{\$\}, \delta, q_{start}, \{q_{accept}\})$ where
	- $\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\})\}$
	- $\delta(q_{\text{loop}}, \epsilon, A) = \{(q_{\text{loop}}, w) : A \longrightarrow w \in R\}$
	- $\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \epsilon)\}\$
	- $\delta(q_{\text{loop}}, \epsilon, \text{\$}) = \{(q_{\text{accept}}, \epsilon)\}\$

Note that $(r, u_1u_2 \cdots u_l) \in \delta(q, a, s)$ is simulated by $(q_1, u_l) \in \delta(q, a, s)$, $\delta(q_1, \epsilon, \epsilon) = \{ (q_2, u_{l-1}) \}, \ldots, \delta(q_{l-1}, \epsilon, \epsilon) = \{ (r, u_1) \}.$

 $2Q$

イロト (個) イヨト (ヨ)

Example

Example

Find a pushdown automaton recognizing the language of the following context-free grammar:

$$
\begin{array}{ccc} S & \longrightarrow & aTb \mid b \\ T & \longrightarrow & Ta \mid \epsilon \end{array}
$$

Simplified PDA

- Has a single accepting state
- Empties its stack before accepting
- Each transition is either a push, or a pop, but not both

つくい

Pushdown Automata ⇒ Context-Free Grammars

• Key Idea: For every pair (q, r) of states in PDA, introduce variable *Aqr* in CFG so that *Aqr* generates all strings that allow the PDA to go from *q* to *r* (with empty stack both at *q* and at *r*)

つへへ

Pushdown Automata ⇒ Context-Free Grammars

 \leftarrow

Lemma

If a pushdown automaton recognizes a language, the language is context-free.

Proof.

Without loss of generality, we consider a pushdown automaton that has a single accept state q_{accept} and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol at any time. Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$. Define the context-free grammar $G = (V, \Sigma, R, S)$ where

$$
\bullet\ \ V=\{A_{pq}: p,q\in Q\}, S=A_{q_0,q_\text{accept}}; \text{ and }
$$

• *R* has the following rules:

For each $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ and

$$
(q, \epsilon) \in \delta(s, b, t)
$$
, then $A_{pq} \longrightarrow aA_{rs}b \in R$.
For each $n, a, r \in Q$, $A_{pq} \longrightarrow A_{rs}b \in R$.

For each
$$
p, q, r \in Q
$$
, $A_{pq} \longrightarrow A_{pr}A_{rq} \in R$.

For each
$$
p \in Q
$$
, $A_{pp} \longrightarrow \epsilon \in R$.

- We write $A_{i,j}$ for $A_{q_i q_j}$.
- Consider the following context-free grammar:

$$
A_{14} \rightarrow A_{23} \text{ since } (q_2, \$) \in \delta(q_1, \epsilon, \epsilon) \text{ and } (q_4, \epsilon) \in \delta(q_3, \epsilon, \$)
$$

\n
$$
A_{23} \rightarrow 0A_{23}1 \text{ since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_3, 1, 0)
$$

\n
$$
A_{23} \rightarrow 0A_{22}1 \text{ since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_2, 1, 0)
$$

\n
$$
A_{22} \rightarrow \epsilon
$$

 $2Q$

イロト (個) イヨト (ヨ)

Lemma

If Apq generates x in G, then x can bring P from p with empty stack to q with empty stack.

Proof.

Prove by induction on the length *k* of derivation.

- $k = 1$. The only possible derivation of length 1 is $A_{\nu} \Rightarrow \epsilon$.
- Consider $A_{pq} \stackrel{*}{\Longrightarrow} x$ of length $k+1$. Two cases for the first step:
	- ► A_{pq} \Rightarrow $aA_{rs}b$. Then $x = ayb$ with $A_{rs} \stackrel{*}{\Longrightarrow} y$. By IH, *y* brings *P* from *r* to *s* with empty stack. Moreover, $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ since $A_{pa} \longrightarrow aA_{rs}b \in R$. Let *P* start from *p* with empty stack, *P* first moves to *r* and pushes *t* to the stack after reading *a*. It then moves to *s* with *t* in the stack. Finally, *P* moves to *q* with empty stack after reading *b* and popping *t*. ■ *A*_{*pq*} \Rightarrow *A*_{*prArq*}. Then *x* = *yz* with *A_{pr}* \Longrightarrow *y* and *A_{rq}* \Longrightarrow *z*. By IH, *P*

moves from *p* to *r*, and then *r* to *q*.

П

Pushdown Automata ⇒ Context-Free Grammars

Lemma

If x can bring P from p with empty stack to q with empty stack, Apq generates x in G.

Proof.

Prove by induction on the length *k* of computation.

- \bullet $k = 0$. The only possible 0-step computation is to stay at the same state while reading ϵ . Hence $x = \epsilon$. Clearly, $A_{pp} \stackrel{*}{\Longrightarrow} \epsilon$ in *G*.
- Two possible cases for computation of length $k + 1$.
	- The stack is empty only at the beginning and end of the computation. If *P* reads *a*, pushes *t*, and moves to *r* from *p* at step 1, $(r, t) \in \delta(q, a, \epsilon)$. Similarly, if *P* reads *b*, pops *t*, and moves to *q* from *s* at step $k + 1$, $(q, \epsilon) \in \delta(s, b, t)$. Hence $A_{pq} \longrightarrow aA_{rs}b \in G$. Let $x = ayb$. By IH, $A_{rs} \stackrel{*}{\Longrightarrow} y$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$. The stack is empty elsewhere. Let r be a state where the stack becomes empty. Say *y* and *z* are the inputs read during the computation from *p* to *r* and *r* to *q* respectively. Hence $x = yz$. By IH, $A_{pr} \stackrel{*}{\Longrightarrow} y$ and $A_{rq} \stackrel{*}{\Longrightarrow} z$. Since $A_{pq} \longrightarrow A_{pr}A_{rq} \in G$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$.

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Corollary

Every regular language is context-free.

つへへ

Pumping Lemma

Theorem

If A is a context-free language, then there is a number p (the puming length) such that for every $s \in A$ *with* $|s| \geq p$ *, there is a partition* $s = uvxyz$ *that*

- $\textbf{1}$ for each $i \geq 0$, uvⁱxy^{*i*} $z \in A$;
- **2** |*vy*| > 0 *; and*
- \bullet $|vxy| \leq p$.

Proof.

Let $G = (V, \Sigma, R, T)$ be a context-free grammar for *A*. Define *b* to be the maximum number of symbols in the right-hand side of a rule. Observe that a parse tree of height *h* has at most *b h* leaves and hence can generate strings of length at most *b h* . Choose $p = b^{|V|+1}$. Let $s \in A$ with $|s| \geq p$ and τ the smallest parse tree for *s*. Then the height of $\tau \geq |V| + 1$. There are $|V| + 1$ variables along the longest branch. A variable *R* must appear [tw](#page-35-0)[ic](#page-37-0)[e.](#page-35-0)

Pumping Lemma

Figure: Pumping Lemma

Proof. (cont'd).

From Figure (a), we see $uv^ixy^iz \in A$ for $i \geq 0$. Suppose $|vy| = 0$. Then Figure (b) is a smaller parse tree than τ . A contradiction. Hence $|v\psi| > 0$. Finally, recall *R* is in the longest branch of length $|V| + 1$. Hence the su[b](#page-38-0)tree *R* generating vxy vxy has height $\leq |V|+1.$ $\leq |V|+1.$ $|vxy|\leq b^{|V|+1}=p.$ $|vxy|\leq b^{|V|+1}=p.$ $|vxy|\leq b^{|V|+1}=p.$

Example

Show $B = \{a^n b^n c^n : n \ge 0\}$ is not a context-free language.

Proof.

Let *p* be the pumping length. $s = a^p b^p c^p \in B$. Consider a partition $s = uvxyz$ with $|vy| > 0$. There are two cases:

- *v* or *y* contain more than one type of symbol. Then $uv^2xy^2z \not\in B.$
- *v* and *y* contain only one type of symbol. Then one of a, b, or c does not appear in *v* nor *y* (pigeon hole principle). Hence $uv^2xy^2z \not\in B$ for $|vy| > 0$.

つくへ

メロトメ 伊 トメ ミ トメ ミ ト

Pumping Lemma – Examples

Example

Show $C = \{a^i b^j c^k : 0 \le i \le j \le k\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = a^p b^p c^p \in C$. Consider any partition $s = uvxyz$ with $|vy| > 0$. There are two cases:

- *v* or *y* contain more than one type of symbol. Then $u v^2 x y^2 z \not\in \mathsf{C}.$
- *v* and *y* contain only one type of symbol. Then one of a, b, or c does not appear in *v* nor *y*. We have three subcases:
	- a does not appear in *v* nor *y*. $uxz \notin C$ for it has more a then b or c.
	- b does not appear in *v* nor *y*. Since $|vy| > 0$, a or c must appear in *v* or *y*. If a appears*, uv* 2 *xy* 2 *z* $\not\in$ *C* for it has more a than b. If \circ appears*,* $uxy \notin C$ for it has more b than c.
	- ► c does not appear in *v* nor *y. uv²xy²z ∉ C for it has less* c than a or b.

(ロ) (₍)) (ミ))

Example

Show $D = \{ww : w \in \{0,1\}^*\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = 0^p1^p0^p1^p$. Consider a partition $s = uvxyz$ with $|vy| > 0$ and $|vxy| \leq p$. If $0 \cdots 0 \overbrace{0 \cdots 0}^{0 \cdots 0} 1 \cdots 1$ $1 \cdots 10^{p} 1^{p}$, $uv^{2} xy^{2} z$ moves 1 into the second half *vxy* and thus $uv^2xy^2z \not\in D.$ Similarly, uv^2xy^2z moves 0 into the first half if $0^p1^p0\cdots 0 \overbrace{0\cdots 01\cdots 1}^{p-1}1\cdots 1.$ *vxy* It remains to consider $0^p1 \cdots 1 \overbrace{ 1 \cdots 1 \, 0 \cdots 0 } 0 \cdots 0 1^p.$ But then *vxy* $uxz = 0^p1^i0^j1^p$ with $i < p$ or $j < p$ for $|vy| > 0$. $uxz \not\in D$.

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶