
More on Finite Automata and Regular Languages

(NTU EE) Regular Languages Spring 2023 1 / 68

Pumping Lemma is not a Sufficient Condition

Example 1
We know L = {bmcm|m > 0} is not regular. Let us consider
L′ = a+L ∪ (b + c)∗. L′ is not regular. If L′ would be regular, then we
can prove that L is regular (using the closure properties we will see
next). However, the Pumping lemma does apply for L′ with n = 1.

Consider string abncn and partition
u︷︸︸︷
ε

v︷︸︸︷
a

w︷︸︸︷
bncn. Then uviw,∀i ≥ 0

remains in L′.

This shows the Pumping lemma is not a sufficient condition for a
language to be regular.

(NTU EE) Regular Languages Spring 2023 2 / 68

Use of closure properties to show non-regularity

We can easily prove L1 = {0n1n|n > 0} is not a regular language.

L2 = the set of strings with an equal number of 0’s and 1’s isn’t
either, but that fact is trickier to prove.

Regular languages are closed under ∩.

If L2 were regular, then L2 ∩ L(0∗1∗) = L1 would be, but it isn’t.

(NTU EE) Regular Languages Spring 2023 3 / 68

Closure properties

Let L and M be regular. Then L = L(R) = L(D) and M = L(S) = L(F)
for regular expressions R and S, and DFA D and F.
We have seen that RL are closed under the following operations:

Union : L ∪M = L(R + S) or L ∪M = L(D
⊕

F)

Complement : L̄ = L(D̄)

Intersection : L ∩M = L̄ ∪ M̄ or L ∩M = L(D× F)

Difference : L−M = L ∩ M̄
Concatenation : LM = L(RS)

Closure : L∗ = L(R∗)
Prefix : Prefix(L) = {x | ∃y ∈ Σ∗, xy ∈ L} (Hint: in D, make final all
states in a path from the start state to final state)
quotient, morphism, inverse morphism, substitution, ...

(NTU EE) Regular Languages Spring 2023 4 / 68

Quotient

Definition 2
L1,L2 ⊆ Σ∗, L1/L2 = {x ∈ Σ∗ | ∃y ∈ L2, xy ∈ L1}.

Note: Pref (L) = L/Σ∗.

Theorem 3
L,R ⊆ Σ∗. If R is regular, then R/L is also regular.

Proof Idea: F′ = {q ∈ Q | ∃y ∈ L, δ̂(q, y) ∈ F}

Example 4

L = {an2 | n ≥ 0}. L/L = {an2−m2 | m,n ≥ 0} = a(aa)∗ + (a4)∗.

(NTU EE) Regular Languages Spring 2023 5 / 68

Morphisms

h : Σ→ ∆∗

h : Σ∗ → ∆∗ h(xy) = h(x)h(y), h(ε) = ε

h : 2Σ∗ → 2∆∗ h(L) =
⋃

x∈L{h(x)}

Example 5
h(0) = ab, h(1) = ba, h(2) = ε.
h(00212) = ababba;
h({0n21n|n ≥ 0}) = {(ab)n(ba)n|n ≥ 0}

Theorem 6
h(K ∪ L) = h(K) ∪ (L);
h(K · L) = h(K) · h(L);
h(K∗) = h(K)∗.

(NTU EE) Regular Languages Spring 2023 6 / 68

Inverse Morphisms

h : Σ∗ → ∆∗,K ⊆ ∆∗

h−1(K) = {x ∈ Σ∗ | h(x) ∈ K}

Theorem 7
Regular languages are closed under inverse morphism.

Proof Idea:

(NTU EE) Regular Languages Spring 2023 7 / 68

Shuffle

Definition 8
x‖ε = ε‖x = {x}
ax‖by = a(x‖by) ∪ b(ax‖y)
K‖L =

⋃
x∈K,y∈L x‖y

abb‖aca = {aabbca, aabcba, aabcab, aacabb, aacbab,
aacbba, abbaca, ababca, abacba, abacab, acabba, acabab, acaabb}.

Theorem 9
If K,L are regular, so is K‖L.

(NTU EE) Regular Languages Spring 2023 8 / 68

Shuffle (cont’d)

Proof.

(NTU EE) Regular Languages Spring 2023 9 / 68

1
2L

Definition 10
1
2 L = {x ∈ Σ∗|∃y ∈ Σ∗, xy ∈ L; |y| = |x|}.

Theorem 11
If L is regular, so is 1

2 L.

Proof.
guess middle state, simulate halves in parallel
Q′ = {q′0} ∪Q×Q×Q (Note: middle, 1st, 2nd)
δ′(q′0, ε) = {[q, q0, q]|q ∈ Q} – ε-move
δ′([q, p, r], a) = {[q, δ(p, a), δ(r, b)]|b ∈ Σ}
F′ = {[q, q, p]|q ∈ Q, p ∈ F}

(NTU EE) Regular Languages Spring 2023 10 / 68

Exponential Blow-Up in Subset Construction

There is an NFA N with n + 1 states that has no equivalent DFA with
fewer than 2n states.

L(N) = {x1c2c3 · · · cn : x ∈ {0, 1}∗, ci ∈ {0, 1}}.
Suppose an equivalent DFA D with fewer than 2n states exists.
D must remember the last n symbols it has read.
There are 2n bitsequences a1a2 · · · an.

∃q, a1a2 · · · an, b1b2 · · · bn : q ∈ δ̂N(q0, a1a2 · · · an), q ∈
δ̂N(q0, b1b2 · · · bn), a1a2 · · · an 6= b1b2 · · · bn

(NTU EE) Regular Languages Spring 2023 11 / 68

Exponential Blow-Up (Cont’d)

a1 · · · ai11ai+1 · · · an
b1 · · · bi10bi+1 · · · bn

Now

δ̂N(q0, a1 · · · ai−11ai+1 · · · an0i−1) = δ̂N(q0, b1 · · · bi−10bi+1 · · · bn0i−1)

And
δ̂N(q0, a1 · · · ai−11ai+1 · · · an0i−1) ∈ FD

δ̂N(q0, b1 · · · bi−10bi+1 · · · bn0i−1) 6∈ FD

– A contradiction!

(NTU EE) Regular Languages Spring 2023 12 / 68

Decision Properties

A decision property for a class of languages is an algorithm that
takes a formal description of a language (e.g., a DFA) and tells
whether or not some property holds.

Example: Is language L empty?
I The representation is a DFA (or a RE that you will convert to a

DFA).
I Can you tell if L(A) = ∅ for DFA A?

(NTU EE) Regular Languages Spring 2023 13 / 68

Why Decision Properties

When we talked about protocols represented as DFAs, we noted
that important properties of a good protocol were related to the
language of the DFA.

Example: Does the protocol terminate? = Is the language finite?

Example: Can the protocol fail? = Is the language nonempty?

(NTU EE) Regular Languages Spring 2023 14 / 68

The Membership Question

Our first decision property is the question: is string w in regular
language L?
Assume L is represented by a DFA A.
Simulate the action of A on the sequence of input symbols
forming w

(NTU EE) Regular Languages Spring 2023 15 / 68

The Emptiness Problem

Given a regular language, does the language contain any string at
all.
Assume representation is DFA.
Construct the transition graph.
Compute the set of states reachable from the start state.
If any final state is reachable, then yes, else no.

(NTU EE) Regular Languages Spring 2023 16 / 68

The Infiniteness Problem

Is a given regular language infinite?
Start with a DFA for the language.
Key idea: if the DFA has n states, and the language contains any
string of length n or more, then the language is infinite.
Second key idea: if there is a string of length > n (= number of
states) in L, then there is a string of length between n and 2n− 1.

|w| ≦ n

|w| ≦ 2n

|w| > 2n

s

s’
s’=uv0w

s’’
t

Test for membership all strings of length between n and 2n− 1. If
any are accepted, then infinite, else finite.

(NTU EE) Regular Languages Spring 2023 17 / 68

The Product Automaton M×N

Idea: Running two automata M and N in parallel.

0 0

1 1

1 2

a a

b b

Running the two FAs in
parallel

(NTU EE) Regular Languages Spring 2023 18 / 68

The Equivalence Problem

Given regular languages L and M, is L = M?
Algorithm involves constructing the product DFA from DFA’s for
L and M.
Let these DFA’s have sets of states Q and R, respectively.
Product DFA has set of states Q× R. I.e., pairs [q, r] with q in Q, r
in R.

Make the final states of the product
DFA be those states [q, r] such that
exactly one of q and r is a final state of
its own DFA. Thus, the product accepts
w iff w is in exactly one of L and M.
The product DFA’s language is empty
iff L = M.

(NTU EE) Regular Languages Spring 2023 19 / 68

The Containment Problem

Given regular languages L and M, is L ⊆M?
Algorithm also uses the product automaton.
How do you define the final states [q, r] of the product so its
language is empty iff L ⊆M?

- Answer: q is final; r is not.

(NTU EE) Regular Languages Spring 2023 20 / 68

The Minimum-State DFA for a Regular Language

In principle, since we can test for equivalence of DFA’s we can,
given a DFA A find the DFA with the fewest states accepting L(A).

Test all smaller DFA’s for equivalence with A.

But that’s a terrible algorithm.

– Efficient State Minimization

Construct a table with all pairs of states.
If you find a string that distinguishes two states (takes exactly one
to an accepting state), mark that pair.
Algorithm is a recursion on the length of the shortest
distinguishing string.

(NTU EE) Regular Languages Spring 2023 21 / 68

Equivalence Relation

Definition 12
A binary relation R on a set S is a subset of S× S. An equivalence
relation on a set satisfies

1 Reflexivity: For all x in S, xRx
2 Symmetry: For x, y ∈ S xRy⇔ yRx
3 Transitivity: For x, y, z ∈ S xRy ∧ yRz⇒ xRz

Every equivalence relation on S partitions S into equivalence
classes.
The number of equivalence classes is called the index of the
relation.
An equivalence class containing x is written as [x].

(NTU EE) Regular Languages Spring 2023 22 / 68

Right Invariant

Definition 13
An equivalence relation on Σ∗ is said to be right invariant with respect
to concatenation if ∀x, y ∈ Σ∗ and a ∈ Σ, xRy implies that xaRya.

(NTU EE) Regular Languages Spring 2023 23 / 68

Refinement

Definition 14
An equivalence relation R1 is a refinement of R2 if R1 ⊆ R2, i.e.
(x, y) ∈ R1 ⇒ (x, y) ∈ R2

(NTU EE) Regular Languages Spring 2023 24 / 68

Myhill-Nerode Theorem – Algebraic View of
Languages

Equivalence relation ≡L on A∗ induced by L ⊆ A∗:

x ≡L y⇔ (z ∈ A∗, xz ∈ L⇔ yz ∈ L)

Theorem 15 (Myhill-Nerode)
L is regular iff ≡L is of finite index (i.e., having a finite number of equivalence
classes).

(NTU EE) Regular Languages Spring 2023 25 / 68

Myhill-Nerode Relation for a Language

An MN relation for a language L on an alphabet A is an
equivalence relation R on A∗ satisfying

I R is right-invariant (i.e. xRy⇒ xaRya, a ∈ A)
I R respects L (i.e., x R y⇒ (x, y ∈ L) or(x, y 6∈ L)).

(NTU EE) Regular Languages Spring 2023 26 / 68

Deterministic Finite Automata for L and MN relations
for L

DFA (with no unreachable states) for L and MN relations for L are in
1-1 correspondence (they represent each other).

Let A = (Q,Σ, δ, q0,F) be a DFA.
Define a relation RA as follows:

I For x, y ∈ Σ∗, xRAy⇔ δ(q0, x) = δ(q0, y).

(NTU EE) Regular Languages Spring 2023 27 / 68

Example

L is ”Odd number of a’s”:

[ε] = {ε, b, bb, aaaa, ...}; [a] = {a, ab, abb, ...}; [aa] = {aa, aab, aabb....};
[aaa] = {aaa, aaab, aaabb, ...}.

(NTU EE) Regular Languages Spring 2023 28 / 68

Refinements of ≡L

Lemma 16
Let R be any MN-relation for a language L over A. Then R refines ≡L.

Proof.
To prove that xRy implies x ≡L y. Suppose x 6≡L y. Then there exists z
such that (WLOG) xz ∈ L and yz 6∈ L. Suppose xRy. Since its an MN
relation for L, it must be right invariant; and hence xzRyz. But this
contradicts the assumption that R respects L.

Theorem 17 (Myhill-Nerode)
L is regular iff ≡L is of finite index (i.e., having a finite number of equivalence
classes).

(NTU EE) Regular Languages Spring 2023 29 / 68

Canonical DFA for L

We call A≡L the ”canonical” DFA for L in the following sense.
Given a DFA A = (Q,A, q0, δ,F), let ≈ be an equivalence relation
on Q (called a partitioning of A) s.t.

I p ≈ q⇒ δ(p, a) ≈ δ(q, a),∀a ∈ A,
I (p ≈ q and p ∈ F)⇒ q ∈ F

The quotient automaton A/ ≈ is defined as
A/ ≈ = (Q≈,A, [q0], δ≈,F≈), where

I Q≈ = {[q] | q ∈ Q}
I δ≈([q], a) = [δ(q, a)]
I F≈ = {[qf] | qf ∈ F}

DFA A is a refinement of a DFA B if there is a partition ≈ of A,
such that A/ ≈ is isomorphic to B.
Every other DFA for L is a ”refinement” of A≡L .

(NTU EE) Regular Languages Spring 2023 30 / 68

Canonicity of A≡L

Let A be a DFA for L with no unreachable states. Then A≡L represents
a partitioning of A (i.e., A refines A≡L).

(NTU EE) Regular Languages Spring 2023 31 / 68

A≡L

Let A = (Q,A, q0, δ,F) be a DFA for L with no unreach. states.
The canonical MN relation for L (i.e. ≡L) induces a ”coarsest”
partitioning ≈L of A given by

I p ≈L q iff ∃x, y ∈ A∗, such that δ(q0, x) = p, δ(q0, y) = q with x ≡L y,
or equivalently,

I p ≈L q iff ∀z ∈ A∗, δ(p, z) ∈ F iff δ(q, z) ∈ F

(NTU EE) Regular Languages Spring 2023 32 / 68

Algorithm for Computing ≈L for a DFA A

Input: DFA A = (Q,A, q0, δ,F)

Output ≈L for A
1 Initialize entry for each pair in table to ”unmarked”.
2 Mark (p, q) if p ∈ F and q 6∈ F or vice-versa.
3 Scan table entries and repeat till no more marks can be added:

F If there exists unmarked (p, q) with a ∈ A such that δ(p, a) and δ(q, a)
are marked, then mark (p, q).

4 Return ≈L as: p ≈L q iff (p, q) is left unmarked in table.

(NTU EE) Regular Languages Spring 2023 33 / 68

Example

Run minimization algorithm on DFA below:

(NTU EE) Regular Languages Spring 2023 34 / 68

Example (Cont’d)

Run minimization algorithm on DFA below:

(NTU EE) Regular Languages Spring 2023 35 / 68

Example (Cont’d)

Run minimization algorithm on DFA below:

(NTU EE) Regular Languages Spring 2023 36 / 68

Example (Cont’d)

Run minimization algorithm on DFA below:

(NTU EE) Regular Languages Spring 2023 37 / 68

Applications of the Myhill-Nerode Theorem

The MN theorem can be used to show that a particular language is
regular without actually constructing the automaton or to show
conclusively that a language is not regular.
Example. Is the following language regular

1 L1 = {xy : |x| = |y|, x, y ∈ Σ∗}?
2 Example. What about the language

L2 = {xy : |x| = |y|, x, y ∈ Σ∗ and y ends with a 1 }?
3 Example. What about the language

L3 = {xy : |x| = |y|, x, y ∈ Σ∗ and y contains a 1}?

(NTU EE) Regular Languages Spring 2023 38 / 68

Applications of the Myhill-Nerode Theorem (cont’d)

1 For the language L1 there are two equivalence classes of RL1 . The
first C1 contains all strings of even length and the second C2 all
strings of odd length.

2 For L2 we have the additional constraint that y ends with a 1.
Class C2 remains the same as that for L1. Class C1 is refined into
classes C′1 which contains all strings of even length that end in a 1
and C′′1 which contains all strings of even length which end in a 0.
Thus L1 and L2 are both regular.

3 For L3 we have to distinguish for example, between the even
length strings in the sequence 01, 0001, 000001,..., as 00
distinguishes the first string from all the others after it in the
sequence (concatenation of 00 to 01 gives a string not in L3 but
concatenation of 00 to all the others gives a string in L3), 0000
distinguishes the second from all the others ...

(NTU EE) Regular Languages Spring 2023 39 / 68

The ≡L for L = {anbn n ≥ 0}
Describe the equivalence classes of ≡L for L = {anbn n ≥ 0}

(NTU EE) Regular Languages Spring 2023 40 / 68

	More on Finite Automata and Regular Languages

