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Monoids and Monoid Morphisms

A monoid is a structure (M, ◦, 1), where
I M is a base set containing the element ”1”,
I ◦ is an associative binary operation on M, and
I 1 is the identity element with respect to ◦.

Examples of monoids: (N,+, 0), (A∗, ·, ε).
Another example: (X→ X, ◦, id), where

I X→ X denotes the set of all functions from a set X to itself,
I f ◦ g is a function composition: (f ◦ g)(x) = f (g(x))

A morphism from a monoid (M, ◦M, 1M) to (N, ◦N, 1N) is a
mapping ψ : M→ N, satisfying

I ψ(1M) = 1N, and,
I ψ(m ◦M m′) = ψ(m) ◦N ψ(m′).

Example: ψ : A∗ → N, given by ψ(w) = |w| is a morphism from
(A∗, ·, ε) to (N,+, 0).
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Language Recognition via Monoid Morphisms

A language L ⊆ A∗ is said to be recognizable if there exists a
monoid (M, ◦, 1) and a morphism ψ from (A∗, ·, ε) to (M, ◦, 1), and
a subset X of M such that

L = ψ−1(X)

In this case, we say that the monoid M recognizes L.
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Example of Language Recognition via Monoid

Consider monoid M = ({1,m}, ◦, 1), where ◦ is given by:

◦ 1 m
1 1 m
m m m

Consider the morphism ψ : A∗ →M given by

ε→ 1 and w→ m, for w ∈ A∗.

Then M recognizes A+, since ψ−1({m}) = A+. Notice that M also
recognizes {ε}, A∗, and ∅.
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Transition Monoid of a DFA

Let A = (Q,A, q0, δ,F) be a DFA.
For w ∈ A∗, define fw : Q→ Q by fw(q) = δ(q,w)

Consider the monoid M(A) = ({fw | w ∈ A∗}, ◦, 1).
M(A) is called the transition monoid of A.

Distinct elements of M(A) are {fε, fa, fb, faa, fab, fba}, where fa is
1→ 2, 2→ 3, 3→ 3.
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Algebraic Characterization of Regular Languages

Theorem 1
Let L ⊆ A∗. The following are equivalent.

1 L is regular.
2 L is recognized by a finite monoid, i.e., ∃ a finite monoid (M, ◦, 1) and a

morphism ψ : (A∗, ·, ε)→ (M, ◦, 1) and a X ⊆M, L = ψ−1(X).

Proof.
1 (1)⇒ (2). Let A = (Q,A, q0, δ,F) be a DFA accepting L. Consider

the transition monoid M(A) = ({fw | w ∈ A∗}, ◦, 1), which is
clearly finite. Consider the morphism
ψ : (A∗, ·, ε)→ ({fw | w ∈ A∗}, ◦, 1) with ψ(w) = fw,w ∈ A∗, and
X = {fw | fw(q0) ∈ F}. It is not hard to see that L = ψ−1(X).

2 (2)⇒ (1). Define a DFA A = (M,A, 1, δ,X), where
δ(m, a) = m ◦ ψ(a).
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Another Algebraic View of DFA

1

q1 q2 q3

0

0,1

1

0

Figure: A Finite Automaton M1

Consider the following matrix representation:

Initial state I =

 1
0
0

; final state F =

 0
1
0

;

M0 =

 1 0 0
0 0 1
0 1 0

 ; M1 =

 0 1 0
0 1 0
0 1 0

.
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Algebraic View of DFA

The computation q1
1→ q2

0→ q3
1→ q2 is represented by 1

0
0

T

·

 0 1 0
0 1 0
0 1 0

 ·
 1 0 0

0 0 1
0 1 0

 ·
 0 1 0

0 1 0
0 1 0

 =

 0
1
0

T

·

 1 0 0
0 0 1
0 1 0

 ·
 0 1 0

0 1 0
0 1 0

 =

 0
0
1

T

·

 0 1 0
0 1 0
0 1 0

 =

 0
1
0

T

As

 0
1
0

T

· F =

 0
1
0

T

·

 0
1
0

 = 1, the input ”101” is accepted.
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Algebraic View of NFA

a,b

q1

q2 q3

a

a

b

ε

Figure: NFA N4

Ma =

 0 0 0
0 1 1
1 0 0

 ; Mb =

 0 1 0
0 0 1
0 0 0

 ; Mε =

 0 0 1
0 0 0
0 0 0
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Matrix Multiplication

Question:
How to define matrix multiplication a1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 for the above examples”

In (a1,1 · b1,1 + a1,2 · b2,1 + a1,3 · b3,1), for instance, the operations ”.”
and ”+” stand for integer multiplication and addition, resp.
Suppose ”1” and ”0” stand for Boolean ”True” and ”False”, resp.,
the operations ”.” and ”+” stand for Boolean operations ∧ and ∨,
resp.
Hence, conventional FA are with respect to (∨,∧)-Semiring.
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Semiring

A semiring is a set R equipped with two binary operations + and ·,
called addition and multiplication, such that

(R,+) is a commutative monoid with identity element 0:
I (a + b) + c = a + (b + c)
I 0 + a = a + 0 = a
I a + b = b + a

(R, ·) is a monoid with identity element 1:
I (a · b) · c = a · (b · c)
I 1 · a = a · 1 = a

Multiplication left and right distributes over addition:
I a · (b + c) = (a · b) + (a · c)
I (a + b) · c = (a · c) + (b · c)

Multiplication by 0 annihilates R:
I 0 · a = a · 0 = 0

Note: a monoid is an algebraic structure with a single associative
binary operation and an identity element.

(NTU EE) Regular Languages Spring 2023 11 / 28



Probabilistic FA: (+,×)-Semiring

PFA A0: qs = q1, qr = q2, qa = q3

M0 =

 2
3

1
3 0

0 1 0
0 0 1

 ; M1 =

 1
3 0 2

3
0 1 0
0 0 1


On input 011, we calculate 1

0
0

T

·

 2
3

1
3 0

0 1 0
0 0 1

 ·
 1

3 0 2
3

0 1 0
0 0 1

 ·
 1

3 0 2
3

0 1 0
0 0 1

 =

 2
9
1
3
4
9

T

·

 1
3 0 2

3
0 1 0
0 0 1

 =

 2
27
1
3
16
27

T

, where 16
27 corresponds to

qs
0| 23→ as

1| 13→ qs
1| 23→ qa⇒ prob. = 4

27

qs
0| 23→ as

1| 23→ qa
1|1→ qa⇒ prob. = 4

9
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Probabilistic Finite Automaton – Formal Definition

A probabilistic finite automaton (PFA) A is a 5-tuple (Q,Σ, δ, q0,F)
where

Q is a finite set of states;
Σ is a finite alphabet;
δ : Q× Σ×Q→ [0, 1] is the transition function, such that
∀q,∈ Q, ∀a ∈ Σ,

∑
q′∈Q δ(q, a, q′) = 1, where δ(q, a, q′) is a rational

number;
q0 ∈ Q is the start state; and
F ⊆ Q is the accept states.

The language L♦x(A) = {u ∈ Σ∗ | PA(u)♦x}, where PA(u) is the
probability of acceptance on u, x ∈ [0, 1], and ♦ ∈ {<,≤,=,≥, >}.

In general, L♦x(A) may not be regular. For instance, L> 1
2
(A0) and

L≥ 1
2
(A0) are not regular.

L♦x(A) is regular, if x ∈ {0, 1}.
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Why Tree Automata?

Foundations of XML type languages (DTD, XML Schema, Relax
NG...)
Provide a general framework for XML type languages
A tool to define regular tree languages with an operational
semantics
Provide algorithms for efficient validation
Basic tool for static analysis (proofs, decision procedures in logic)
...

E.g. Binary trees with an even number of a’s
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Binary Trees & Ranked Trees

Binary trees with an even
number of a’s
How to write transitions?

I (even, odd) a→ even
I (even, even) a→ odd
I ...

Ranked Tree:
I Alphabet:
{a(2), b(2), c(3),#(0)}

I a(k): symbol a with arity(a) =
k
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Bottom-up (Ranked) Tree Automata

A ranked bottom-up tree automaton A consists of:
Alphabet(A): finite alphabet of symbols
States(A): finite set of states
Rules(A): finite set of transition rules
Final(A): finite set of final states (⊆ States(A))

where Rules(A) are of the form (q1, ..., qk)
a(k)
→ q;

if k = 0, we write ε a(0)
→ q
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Bottom-up Tree Automata: An Example
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Top-down (Ranked) Tree Automata

A ranked top-down tree automaton A consists of:
Alphabet(A): finite alphabet of symbols
States(A): finite set of states
Rules(A): finite set of transition rules
Final(A): finite set of final states (⊆ States(A))

where Rules(A) are of the form q a(k)
→ (q1, ..., qk);

if k = 0, we write ε a(0)
→ q

Top-down tree automata also recognize all regular tree languages
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Top-down Tree Automata: An Example
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Expressive Power of Tree Automata

Theorem 2
The following properties are equivalent for a tree language L:
(a) L is recognized by a bottom-up non-deterministic tree automaton
(b) L is recognized by a bottom-up deterministic tree automaton
(c) L is recognized by a top-down non-deterministic tree automaton
(d) L is generated by a regular tree grammar
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Deterministic Top-down Tree Automata

Deterministic top-down tree automata do not recognize all regular tree
languages

Example:
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Unranked Trees

δ(σ, q): specified by a regular expression (i.e., regular language).
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Quantum Entanglement

An n-qubit system can exist in any superposition of the 2n basis
states.

α0|000...000〉+ α1|000...001〉+ · · ·+ α2n−1|111...111〉

Sometimes such a state can be decomposed into the states of
individual bits

1√
2

(|00〉+ |01〉) = |0〉 ⊗ 1√
2

((|0〉+ |1〉))

But,
1√
2

(|00〉+ |11〉)

is not decomposible, which is called an entangled state.
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Unitary Evolution

A quantum system that is not measured (i.e. does not interact
with its environment) evolves in a unitary fashion.
That is, it’s evolution in a time step is given by a unitary linear
operation.
Such an operator is described by a matrix U such that

UU∗ = I

where U∗ is the conjugate transpose of U.

(
3 3 + i

2− i 2

)∗
=

(
3 2 + i

3− i 2

)
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Quantum Automata

Quantum finite automata are obtained by letting the matrices Mσ

have complex entries. We also require each of the matrices to be
unitary. E.g.

Mσ =

(
−1 0
0 i

)
If all matrices only have 0 or 1 entries and the matrices are unitary,
then the automaton is deterministic and reversible.
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Quantum Automata

Consider the automaton in a one letter alphabet as:

The initial state |ψ0〉 = 1 · |0〉+ 0 · |1〉 = (1, 0)T

Maa =

(
0 1
−1 0

)
. Hence, upon reading aa, M’s state is

|ψ〉 =

(
0 1
−1 0

)
·
(

1
0

)
=

(
0
−1

)
= 0 · |0〉+−1 · |1〉

There are two distinct paths labelled aa from q1 back to itself, and
each has non-zero probability, the net probability of ending up in
q1 is 0.
The automaton accepts a string of odd length with probability 0.5
and a string of even length with probability 1 if its length is not a
multiple of 4 and probability 0 otherwise.
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Measure-once Quantum Automata

The accept state of the automaton is given by an N ×N projection
matrix P, so that, given a N-dimensional quantum state |ψ〉 , the
probability of |ψ〉 being in the accept state is 〈ψ|P|ψ〉 = ‖P|ψ〉‖2.

In the previous example, P =

(
0 0
0 1

)
The probability of the state machine accepting a given finite input
string σ = (σ0, σ1, · · · , σk) is given by
Pr(σ) = ‖PUσk · · ·Uσ1Uσ0 |ψ〉‖2. In the previous example, Pr(aa)=(

0
−1

)T

·
(

0 0
0 1

)
·
(

0
−1

)
= 1

A regular language is accepted with probability p by a quantum
finite automaton, if, for all sentences σ in the language, (and a
given, fixed initial state |ψ〉), one has p < Pr(σ).

(NTU EE) Regular Languages Spring 2023 27 / 28



Language Accepted

Measure Many 1-way QFA: Measurement is performed after each
input symbol is read.
Measure-many model is more powerful than the measure-once
model, where the power of a model refers to the acceptance
capability of the corresponding automata.
MM-1QFA can accept more languages than MO- 1QFA.
Both of them accept proper subsets of regular languages.
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