Theory of Computation Regular Languages

4 0 8 4

 $2Q$

- A set is a group of (possibly infinite) objects; its objects are called elements or members.
- The set without any element is called the empty set (written \emptyset).
- Let *A*, *B* be sets.
	- ^I *A* ∪ *B* denotes the union of *A* and *B*.
	- ^I *A* ∩ *B* denotes the intersection of *A* and *B*.
	- \overline{A} denotes the complement of *A* (with respect to some universe *U*).
	- \blacktriangleright *A* \subset *B* denotes that *A* is a subset of *B*.
	- \blacktriangleright *A* \subseteq *B* denotes that *A* is a proper subset of *B*.
- The power set of a set *A* (written 2^A) is the set consisting of all subsets of *A*.
- If the number of occurrences matters, we use multiset instead.

つくへ

メイヨメイヨメ

- A sequence is a (possibly infinite) list of ordered objects.
- A finite sequence of *k* elements is also called *k*-tuple; a 2-tuple is also called a pair.
- The Cartesian product of sets *A* and *B* (written $A \times B$) is defined by

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$

 \bullet We can take Cartesian products of *k* sets A_1, A_2, \ldots, A_k

 $A_1 \times A_2 \times \cdots \times A_k = \{ (a_1, a_2, \ldots, a_k) : a_i \in A_i \text{ for every } 1 \le i \le k \}.$

• Define

$$
A^k = \overbrace{A \times A \times \cdots \times A}^k.
$$

メロトメ 伊 トメ ミ トメ ミ ト

 QQ

Functions and Relations

- A function $f: D \to R$ maps an element in the domain *D* to an element in the range *R*.
- Write $f(a) = b$ if f maps $a \in D$ to $b \in R$.
- When $f : A_1 \times A_2 \times \cdots \times A_k \rightarrow B$, we say *f* is a *k*-ary function and *k* is the arity of *f*.
	- \blacktriangleright When $k = 1$, *f* is a unary function.
	- \blacktriangleright When $k = 2$, *f* is a binary function.
- A predicate or property is a function whose range is $\{0, 1\}$.

$$
\kappa
$$

- A property with domain $\overline{A \times A \times \cdots \times A}$ is a *k*-ary relation on A .
	- \blacktriangleright When $k = 2$, it is a binary relation.
- A binary relation *R* is an equivalence relation if
	- ^I *R* is reflexive (for every *x*, *xRx*);
	- ^I *R* is symmetric (for every *x* and *y*, *xRy* implies *yRx*; and
	- \blacktriangleright *R* is transitive (for every *x*, *y*, and *z*, *xRy* and *yRz* implies *xRz*.

 $2Q$

医尿道 医尿道下腺 重

(□) (n)

More about Sets

A set *A* is countably infinite if there is a bijection $f : \mathbb{N} \to A$.

Theorem 1

Let $\mathbb B$ *be* $\{0,1\}$ *. Then* $A = \mathbb B \times \mathbb B \times \cdots \times \mathbb B \times \cdots$ *is uncountable.*

Proof.

 $s_1 = 000000000000...$ $s_2 = 11111111111...$ $s_3 = 0 1 0 1 0 1 0 1 0 1 0 ...$ $s_4 = 10101010101...$ $s_5 = 11010110101...$ $s_e = 0.0110110110...$ $s_7 = 10001000100...$ $s_8 = 00110011001...$ $s_9 = 1 1 0 0 1 1 0 0 1 1 0 \ldots$ $s_{10} = 1 1 0 1 1 1 0 0 1 0 1 ...$ $s_{11} = 1 1 0 1 0 1 0 0 1 0 0 ...$

 $= 10111010011...$

Induction Principle:

 $P(0) \wedge (\forall k, P(k) \Rightarrow P(k+1)) \Rightarrow (\forall n \in \mathbb{N}, P(n)).$

Well-founded Relation:

A binary *R* is called well-founded on a class *X* if every **non-empty subset** *S* ⊆ *X* has a **minimal element** with respect to *R*. (E.g., $\mathbb N$ is well-founded; $\mathbb Z$ is not well-founded.)

Induction Principle \Leftrightarrow $(N, <)$ **is well-founded.**

To prove property $P(n)$ holds for all $n \in \mathbb{N}$,

- **(Induction Basis)**: Prove *P*(0);
- **(Induction Step)**: Prove that if $P(k)$ holds, then $P(k+1)$ also holds.

 Ω

- An alphabet is a nonempty finite set.
- Members of an alphabet are called symbols.
- A string over an alphabet is a finite sequence of symbols from the alphabet.
- **If** *w* is a string over an alphabet Σ , the length of *w* (written $|w|$) is the number of symbols in *w*.
- The string of length zero is the empty string.

k

• Let $x = x_1x_2 \cdots x_n$ and $y = y_1y_2 \cdots y_m$ be strings of length *n* and *m* respectively. The concatenation of *x* and *y* (written *xy*) is the string $x_1x_2 \cdots x_ny_1y_2 \cdots y_m$ of length $n + m$.

• For any string
$$
x
$$
, $x^k = \overbrace{xx \cdots x}^k$.

• A language is a set of strings.

イロト (御) (目) (目)

 QQ

Figure: Schematic of Finite Automata

- A finite automaton has a finite set of control states.
- A finite automaton reads input symbols from left to right.
- A finite automaton accepts or rejects an input after reading the input.

つくい

Finite Automaton *M*¹

Figure: A Finite Automaton *M*¹

The above figure shows the state diagram of a finite automaton *M*1. *M*¹ has

- 3 states: *q*1, *q*2, *q*3;
- a start state: *q*1;
- a accept state: *q*2;

 6 <u>transitions:</u> $q_1 \stackrel{0}{\longrightarrow} q_1$, $q_1 \stackrel{1}{\longrightarrow} q_2$, $q_2 \stackrel{1}{\longrightarrow} q_2$, $q_2 \stackrel{0}{\longrightarrow} q_3$, $q_3 \stackrel{0}{\longrightarrow} q_2$, and $q_3 \stackrel{1}{\longrightarrow} q_2.$ つくい

Accepted and Rejected String

- Consider an input string 1100.
- M_1 processes the string from the start state q_1 .
- It takes the transition labeled by the current symbol and moves to the next state.
- At the end of the string, there are two cases:
	- If M_1 is at an accept state, M_1 outputs accept;
	- \triangleright Otherwise, M_1 outputs reject.
- Strings accepted by $M_1: 1, 01, 11, 1100, 1101, \ldots$
- **Strings rejected by** *M*₁: 0, 00, [10](#page-8-0), 010, 1010, [.](#page-8-0)[.](#page-9-0).

つくい

Finite Automaton – Formal Definition

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
	- \triangleright *Q* is a finite set of states;
	- \triangleright Σ is a finite set called alphabet;
	- \triangleright δ : $Q \times \Sigma \rightarrow Q$ is the transition function;
	- \blacktriangleright *q*₀ \in *Q* is the start state; and
	- \blacktriangleright *F* \subset *Q* is the set of accept states.
- Accept states are also called final states.
- The set of all strings that *M* accepts is called the language of machine *M* (written *L*(*M*)).
	- Recall a language is a set of strings.
- We also say *M* recognizes (or accepts) *L*(*M*).

つくへ

ドメ ミドメ ミド

*M*¹ – Formal Definition

- A finite automaton $M_1 = (Q, \Sigma, \delta, q_1, F)$ consists of
	- $\blacktriangleright Q = \{q_1, q_2, q_3\};$ $\mathbf{F} = \mathbf{I} \cap \mathbf{I}$

$$
\triangleright \delta: Q \times \Sigma \to Q \text{ is}
$$

$$
\begin{array}{c|cc}\n & 0 & 1 \\
\hline\nq_1 & q_1 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_2 & q_2\n\end{array}
$$

 \blacktriangleright *q*₁ is the start state; and \blacktriangleright $F = \{q_2\}.$

• Moreover, we have

 $L(M_1) = \{w : w \text{ contains at least one } 1 \text{ and } 2\}$ an even number of $0's$ follow the last 1 }

∢ ロ ▶ (伊) (ミ) (ミ) (ニ

 QQ

Finite Automaton *M*₂

Figure: Finite Automaton *M*²

• The above figure shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

$$
\begin{array}{c|cc}\n & 0 & 1 \\
\hline\nq_1 & q_1 & q_2 \\
q_2 & q_1 & q_2\n\end{array}
$$

4 0 8 4

• What is $L(M_2)$?

 $L(M_2) = \{w : w \text{ ends in a 1}\}.$

 $2Q$

Finite Automaton *M*₂

Figure: Finite Automaton *M*²

• The above figure shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is \mathbf{r}

$$
\begin{array}{c|cc}\n & 0 & 1 \\
\hline\nq_1 & q_1 & q_2 \\
q_2 & q_1 & q_2\n\end{array}
$$

4 0 8 4

• What is $L(M_2)$? $L(M_2) = \{w : w \text{ ends in a 1}\}.$

 $2Q$

Finite Automaton *M*³

Figure: Finite Automaton *M*³

• The above figure shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

$$
\begin{array}{c|cc}\n & 0 & 1 \\
\hline\nq_1 & q_1 & q_2 \\
q_2 & q_1 & q_2\n\end{array}
$$

• What is $L(M_3)$?

 \blacktriangleright \blacktriangleright \blacktriangleright $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$

 Ω

Finite Automaton *M*³

Figure: Finite Automaton *M*³

• The above figure shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

$$
\begin{array}{c|cc}\n & 0 & 1 \\
\hline\nq_1 & q_1 & q_2 \\
q_2 & q_1 & q_2\n\end{array}
$$

• What is $L(M_3)$?

If $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$ $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a 0}\}.$

つへへ

Computation – Formal Definition

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = w_1w_2 \cdots w_n$ a string where $w_i \in \Sigma$ for every $i = 1, \ldots, n$.
- We say *M* accepts *w* if there is a sequence of states r_0, r_1, \ldots, r_n such that

$$
r_0 \stackrel{w_1}{\rightarrow} r_1 \stackrel{w_2}{\rightarrow} r_2 \cdots r_{n-1} \stackrel{w_n}{\rightarrow} r_n,
$$

$$
\begin{array}{ll}\n\blacktriangleright & r_0 = q_0; \\
\blacktriangleright & \delta(r_i, w_{i+1}) = r_{i+1} \text{ for } i = 0, \ldots, n-1; \text{ and} \\
\blacktriangleright & r_n \in F,\n\end{array}
$$

• *M* recognizes language *A* if $A = \{w : M \text{ accepts } w\}.$

Definition 2

A language is called a regular language if some finite automaton recognizes it.

(NTU EE) [Regular Languages](#page-0-0) Spring 2023 15 / 46

 $2Q$

イロト (個) イヨト (ヨ)

Definition 3

Let *A* and *B* be languages. We define the following operations:

- \bullet Union: *A* ∪ *B* = {*x* : *x* ∈ *A* or *x* ∈ *B*}.
- Concatenation: $A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1x_2 \cdots x_k : k \ge 0 \text{ and every } x_i \in A\}.$
- Note that $\epsilon \in A^*$ for every language A.

つくい

Theorem 4

The class of regular languages is closed under the union operation. That is, A_1 ∪ A_2 *is regular if* A_1 *and* A_2 *are.*

Proof.

Let
$$
M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)
$$
 recognize A_i for $i = 1, 2$. Construct
\n $M = (Q, \Sigma, \delta, q_0, F)$ where
\n• $Q = Q_1 \times Q_2 = \{(r_1, r_2) : r_1 \in Q_1, r_2 \in Q_2\};$
\n• $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));$
\n• $q_0 = (q_1, q_2);$
\n• $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

• Why is $L(M) = A_1 \cup A_2$?

 \leftarrow \Box \rightarrow \leftarrow \Box

つくへ

- When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.
- This is call deterministic computation.
- In nondeterministic machines, multiple choices may exist for the next state.
- A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.
- A DFA is also an NFA.
- Since NFA allow more general computation, they can be much smaller than DFA.

つくへ

NFA *N*⁴

Figure: NFA *N*⁴

On input string baa, *N*⁴ has several possible computations:

▶
$$
q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_2;
$$

\n▶ $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_3;$ or
\n▶ $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_1.$

4 0 8 4

一4 周 ト

∍

 $2Q$

Nondeterministic Finite Automaton – Formal Definition

- For any set Q , $P(Q) = \{R : R \subseteq Q\}$ denotes the power set of Q .
- For any alphabet Σ , define Σ_{ϵ} to be $\Sigma \cup \{\epsilon\}$.
- A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
	- \triangleright *Q* is a finite set of states;
	- \blacktriangleright Σ is a finite alphabet;
	- \triangleright δ : $Q \times \Sigma_{\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function;
	- \blacktriangleright *q*₀ ∈ *Q* is the start state; and
	- \blacktriangleright *F* \subseteq *Q* is the accept states.
- Note that the transition function accepts the empty string as an input symbol.

つくへ

おすぼおす 重まし

NFA *N*⁴ – Formal Definition

- $N_4 = (Q, \Sigma, \delta, q_1, \{q_1\})$ is a nondeterministic finite automaton where
	- $\blacktriangleright Q = \{q_1, q_2, q_3\};$
	- Its transition function δ is

ϵ	a	b	
q_1	$\{q_3\}$	\emptyset	$\{q_2\}$
q_2	\emptyset	$\{q_2, q_3\}$	$\{q_3\}$
q_3	\emptyset	$\{q_1\}$	\emptyset

\n(NTU EE)

\n

Regular Languages	Spring 2023	21/46
-------------------	-------------	-------

 $2Q$

Nondeterministic Computation – Formal Definition

 \bullet Let $N = (O, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ . We say N accepts *w* if *w* can be rewritten as $w = y_1 y_2 \cdots y_m$ with $y_i \in \Sigma_{\epsilon}$ and there is a sequence of states r_0, r_1, \ldots, r_m such that

$$
r_0 \stackrel{y_1}{\rightarrow} r_1 \stackrel{y_2}{\rightarrow} r_2 \cdots r_{m-1} \stackrel{y_m}{\rightarrow} r_m,
$$

▶
$$
r_0 = q_0;
$$

\n▶ $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, ..., m-1$; and
\n▶ $r_m \in F$.

Note that finitely many empty strings can be inserted in *w*.

- Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.
- **Strings accepted by N₄: a, baa,....**

 $2Q$

Equivalence of NFA's and DFA's

Theorem 5

Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that $L(M) = L(N)$.

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For $R \subseteq Q$, define $E(R) = \{q : q \text{ can be reached from } R \text{ along } 0 \text{ or more } \epsilon \text{ transitions } \}.$ Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

\n- $$
Q' = \mathcal{P}(Q);
$$
\n- $\delta'(R, a) = \{q \in Q : q \in E(\delta(r, a)) \text{ for some } r \in R\};$
\n- $q'_0 = E(\{q_0\});$
\n

$$
\bullet \ F' = \{ R \in Q' : R \cap F \neq \emptyset \}.
$$

• Why is $L(M) = L(N)$?

 $2Q$

◆ロト→ 伊ト→ モト→ モ

Equivalence of NFA's and DFA's

• ϵ -closure $E(R)$:

• Transition $\delta'(R, a) = \{q \in Q : q \in E(\delta(r, a))\}$

 $2Q$

A DFA Equivalent to *N*⁴

Closure Properties – Revisited

Theorem 6

The class of regular languages is closed under the union operation.

Proof.

Let
$$
N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)
$$
 recognize A_i for $i = 1, 2$. Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

$$
\bullet \ Q = \{q_0\} \cup Q_1 \cup Q_2;
$$

•
$$
F = F_1 \cup F_2
$$
; and

•
$$
\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}
$$

• Why is $L(N) = L(N_1) \cup L(N_2)$?

つくへ

←ロト ← 伊

おす 高 おし

Theorem 7

The class of regular languages is closed under the concatenation operation.

Proof.

Let
$$
N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)
$$
 recognize A_i for $i = 1, 2$. Construct
\n $N = (Q, \Sigma, \delta, q_1, F_2)$ where
\n• $Q = Q_1 \cup Q_2$; and
\n• $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$

 \bullet Why is $L(N) = L(N_1) \cdot L(N_2)$?

4 0 8 4

おす悪お

 $2Q$

Closure Properties – Revisited

Theorem 8

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

\n- \n
$$
Q = \{q_0\} \cup Q_1;
$$
\n
\n- \n $F = \{q_0\} \cup F_1;$ and\n $\delta_1(q, a)$ \n
\n- \n $\delta(q, a) = \begin{cases} \n \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \n \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \n \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\ \n \{q_1\} & q = q_0 \text{ and } a \neq \epsilon \n \end{cases}$ \n
\n

Why is $L(N) = [L(N_1)]^*$?

∢ □ ▶ ∢占

 $2Q$

Theorem 9

The class of regular languages is closed under complementation.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Consider $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$. We have $w \in L(M)$ if and only if $w \notin L(\overline{M})$. That is, $L(\overline{M}) = \overline{A}$ as required.

つくい

Regular Expressions (Syntax)

Definition 10

R is a regular expression if *R* is

- *a* for some $a \in \Sigma$;
- \bullet ϵ :
- \bullet \emptyset ;
- $(R_1 + R_2)$ where R_1 and R_2 are regular expressions;
- \bullet $(R_1 \cdot R_2)$ where R_1 and R_2 are regular expressions; or
- (R_1^*) where R_1 is a regular expression.
- We write R^+ for $R \cdot R^*$. Hence $R^* = R^+ + \epsilon$. *k*
- Moreover, write R^k for $\overline{R \cdot R \cdot \cdots \cdot R}$.
	- ► Define $R^0 = \epsilon$. We have $R^* = R^0 + R^1 + \cdots + R^n + \cdots$.
- *L*(*R*) denotes the language described by the regular expression *R*.
- Note th[a](#page-30-0)[t](#page-48-0) $\emptyset \neq {\epsilon}$ $\emptyset \neq {\epsilon}$. + is also written as "∪[" is](#page-30-0) [m](#page-32-0)an[y](#page-32-0) [t](#page-30-0)e[x](#page-47-0)t[b](#page-30-0)oo[k](#page-48-0)[s](#page-0-0)

 QQ

Definition 11

The language associated with a regular expression *R*, written as *L*(*R*), is defined recursively as

$$
\bullet \ L(a) = \{a\}, a \in \Sigma;
$$

- $L(\epsilon) = {\epsilon};$
- $L(\emptyset) = \emptyset$;

$$
\bullet \ L(R_1 + R_2) = L(R_1) \cup L(R_2)
$$

 $L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$

$$
\bullet \ L(R_1^*)=(L(R_1))^*
$$

ドメ ミドメ ミド

(□) (_□)

 QQQ

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ ∢ 御 ▶ ∢ 重 ▶ ∢ 重 ▶

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ (何) (《 重) ((重) .

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ (伊) (ミ) (ミ) (ニ

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset.$
- $\emptyset^* = {\epsilon}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ (伊) (ミ) (ミ) (ニ

- For convenience, we write *RS* for *R* · *S*.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = {\epsilon, 0, 1, 01}.$
- $1^*\emptyset = \emptyset.$
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

 Ω

∢ ロ ▶ ∢ 母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Lemma 12

If a language is described by a regular expression, it is regular.

Proof.

We prove by induction on the regular expression *R*.

- $R = a$ for some $a \in \Sigma$. Consider the NFA $N_a = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ where $\delta(r, y) = \begin{cases} {q_2} & r = q_1 \text{ and } y = a \\ 0 & \text{otherwise} \end{cases}$ ∅ otherwise
- $R = \epsilon$. Consider the NFA $N_{\epsilon} = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where $\delta(r, y) = \emptyset$ for any *r* and *y*.
- $R = \emptyset$. Consider the NFA $N_{\emptyset} = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where $\delta(r, y) = \emptyset$ for any *r* and *y*.
- $R = R_1 + R_2$, $R = R_1 \cdot R_2$, or $R = R_1^*$. By inductive hypothesis and the closure properties of finite automata.

Lemma 13

If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

つくい

Generalized Nondeterministic Finite Automata

Definition 14

A generalized nondeterministic finite automaton is a 5-tuple

- $(Q, \Sigma, q_{start}, q_{accept})$ where
	- *Q* is the finite set of states;
	- \bullet Σ is the input alphabet;
	- $\bullet \delta : (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \rightarrow \mathcal{R}$ is the transition function, where R denotes the set of regular expressions;
	- q_{start} is the start state; and
	- *q*accept is the accept state.

A GNFA <u>accepts</u> a string $w \in \Sigma^*$ if $w = w_1w_2 \cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \ldots, r_k such that

- $r_0 = q_{\text{start}}$;
- $r_k = q_{\text{accept}}$; and
- for every *i*, $w_i \in L(R_i)$ $w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.

Proof of Lemma.

Let *M* be the DFA for the regular language. Construct an equivalent GNFA *G* by adding q_{start} , q_{accept} and necessary ϵ -transitions. CONVERT (*G*):

- ¹ Let *k* be the number of states of *G*.
- 2 If $k = 2$, then return the regular expression *R* labeling the transition from *q*start to *q*accept.

\n- \n If
$$
k > 2
$$
, select $q_{\text{rip}} \in Q \setminus \{q_{\text{start}}, q_{\text{accept}}\}$. Construct\n $G' = (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ where\n $Q' = Q \setminus \{q_{\text{rip}}\};$ \n for any $q_i \in Q' \setminus \{q_{\text{accept}}\}$ and $q_j \in Q' \setminus \{q_{\text{start}}\}$, define\n $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup R_4$ where\n $R_1 = \delta(q_i, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}), R_3 = \delta(q_{\text{rip}}, q_j),$ \n and\n $R_4 = \delta(q_i, q_j).$ \n
\n

⁴ return CONVERT (G').

 $2Q$

≮ロト ⊀ 伊 ト ⊀ ヨ ト ⊀

Lemma 15

For any GNFA G, CONVERT (G) is equivalent to G.

Proof.

We prove by induction on the number *k* of states of *G*.

- $k = 2$. Trivial.
- Assume the lemma holds for $k-1$ states. We first show G' is equivalent to *G*. Suppose *G* accepts an input *w*. Let $q_{start}, q_1, q_2, \ldots, q_{accept}$ be an accepting computation of *G*. We have $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1}} q_{\text{rip}} \cdots q_{\text{rip}} \xrightarrow{w_{j-1}} q_{\text{rip}} \xrightarrow{w_j} q_j \cdots q_{\text{accept}}.$ Hence $q_{start} \stackrel{w_1}{\longrightarrow} q_1 \cdots q_{i-1} \stackrel{w_i}{\longrightarrow} q_i \stackrel{w_{i+1} \cdots w_j}{\longrightarrow} q_j \cdots q_{accept}$ is a computation of *G*[']. Conversely, any string accepted by *G*['] is also accepted by *G* since the transition between q_i and q_j in *G*^{*'*} describes the strings taking q_i to q_j in *G*. Hence *G*^{*'*} is equivalent to *G*. By inductive hypothesis, CONVERT (G') is e[qu](#page-44-0)i[v](#page-46-0)[al](#page-44-0)[en](#page-45-0)[t](#page-46-0)[to](#page-31-0) [G](#page-48-0)'[.](#page-31-0) П

Theorem 16

A language is regular if and only if some regular expression describes it.

4 0 8 4

つくい

Pumping Lemma

Lemma 17

If A is a regular language, then there is a number p such that for any s \in *A of length at least p, there is a partition s* = *xyz with*

1 for each $i \geq 0$, $xy^iz \in A$; **2** $|y| > 0$; and $|xy| \leq p$.

Proof Idea:

 \leftarrow \Box \rightarrow \leftarrow \Box

おす 高 おし

 $2Q$

Proof.

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA recognizing A and $p = |Q|$. Consider any string $s = \sigma_1 \sigma_2 \cdots \sigma_{m-1}$ of length $m-1 \geq p$. Let q_1, \ldots, q_m be the sequence of states such that $q_{i+1} = \delta(q_i, \sigma_i)$ for $1 \leq i \leq m-1$. Since $m \ge p + 1 = |Q| + 1$, there are $1 \le s < t \le p + 1$ such that $q_s = q_t$ (why?). Let $x = \sigma_1 \cdots \sigma_{s-1}$, $y = \sigma_s \cdots \sigma_{t-1}$, and $z = \sigma_t \cdots \sigma_{m-1}$. Note that $q_1 \stackrel{x}{\longrightarrow} q_s$, $q_s \stackrel{y}{\longrightarrow} q_t$, and $q_t \stackrel{z}{\longrightarrow} q_m \in F.$ Thus M accepts xy^iz for $i \geq 0$. Since $t \neq s$, $|y| > 0$. Finally, $|xy| \leq p$ for $t \leq p + 1$.

つくい

∢ ロ ▶ (伊) 《 ヨ) 〈 ヨ) │ ヨ

Applications of Pumping Lemma

Example 18

 $B = \{0^n 1^n : n \ge 0\}$ is not a regular language.

Proof.

Suppose *B* is regular. Let *p* be the pumping length given by the pumping lemma. Choose $s = 0^p1^p$. Then $s \in B$ and $|s| \geq p$, there is a partition $s = xyz$ such that $xy^iz \in B$ for $i \geq 0$.

- $y \in 0^+$ or $y \in 1^+$. $xz \notin B$. A contradiction.
- $y \in 0^+1^+$. *xyyz* \notin *B*. A contradiction.

Corollary 19

 $C = \{w : w \text{ has an equal number of } 0 \text{'s and } 1 \text{'s} \}$ *is not a regular language.*

Proof.

Suppose *C* is re[gul](#page-49-0)[ar.](#page-51-0) Then $B = C \cap 0^*1^*$ is regular.

Example 20

 $F = \{ww : w \in \{0,1\}^*\}$ is not a regular language.

Proof.

Suppose *F* is a regular language and *p* the pumping length. Choose $s = 0^p10^p1$. By the pumping lemma, there is a partition $s = xyz$ such that $|xy| \leq p$ and $xy^iz \in F$ for $i \geq 0$. Since $|xy| \leq p$, $y \in 0^+$. But then $xz \notin F$. A contradiction.

Example 21

 $D = \{1^{n^2}: n \geq 0\}$ is not a regular language.

Proof.

Suppose *D* is a regular language and *p* the pumping length. Choose $s = 1^{p^2}$. By the pumping lemma*,* there is a partition $s = xyz$ such that $|y| > 0$, $|xy| \le p$, and $xy^i z \in D$ for $i \ge 0$. Consider the strings *xyz* and *xy*²z. We have $|xyz| = p^2$ and $|xy^2z| = p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$. Since $|y| > 0$, we have $p^2 = |xyz| < |xy^2z| < (p+1)^2.$ Thus $xy^2z \not\in D.$ A contradiction.

∢ ロ ▶ (伊) 《 ヨ 》 (ヨ) 《 ヨ

Example 22

 $E = \{0^i 1^j : i > j\}$ is not a regular language.

Proof.

Suppose *E* is a regular language and *p* the pumping length. Choose $s = 0^{p+1} 1^p$. By the pumping lemma*,* there is a partition $s = xyz$ such that $|y| > 0$, $|xy| \le p$, and $xy^iz \in E$ for $i \ge 0$. Since $|xy| \le p$, $y \in 0^+$. But then $xz \notin E$ for $|y| > 0$. A contradiction.