
Theory of Computation
Regular Languages

(NTU EE) Regular Languages Spring 2023 1 / 46

Sets

A set is a group of (possibly infinite) objects; its objects are called
elements or members.
The set without any element is called the empty set (written ∅).
Let A,B be sets.

I A ∪ B denotes the union of A and B.
I A ∩ B denotes the intersection of A and B.
I A denotes the complement of A (with respect to some universe U).
I A ⊆ B denotes that A is a subset of B.
I A (B denotes that A is a proper subset of B.

The power set of a set A (written 2A) is the set consisting of all
subsets of A.
If the number of occurrences matters, we use multiset instead.

(NTU EE) Regular Languages Spring 2023 2 / 46

Sequences and Tuples

A sequence is a (possibly infinite) list of ordered objects.
A finite sequence of k elements is also called k-tuple; a 2-tuple is
also called a pair.
The Cartesian product of sets A and B (written A×B) is defined by

A× B = {(a, b) : a ∈ A and b ∈ B}.

We can take Cartesian products of k sets A1,A2, . . . ,Ak

A1 × A2 × · · · × Ak = {(a1, a2, . . . , ak) : ai ∈ Ai for every 1 ≤ i ≤ k}.

Define

Ak =

k︷ ︸︸ ︷
A× A× · · · × A .

(NTU EE) Regular Languages Spring 2023 3 / 46

Functions and Relations

A function f : D→ R maps an element in the domain D to an
element in the range R.
Write f (a) = b if f maps a ∈ D to b ∈ R.
When f : A1 ×A2 × · · · ×Ak → B, we say f is a k-ary function and k
is the arity of f .

I When k = 1, f is a unary function.
I When k = 2, f is a binary function.

A predicate or property is a function whose range is {0, 1}.

A property with domain

k︷ ︸︸ ︷
A× A× · · · × A is a k-ary relation on A.

I When k = 2, it is a binary relation.
A binary relation R is an equivalence relation if

I R is reflexive (for every x, xRx);
I R is symmetric (for every x and y, xRy implies yRx; and
I R is transitive (for every x, y, and z, xRy and yRz implies xRz.

(NTU EE) Regular Languages Spring 2023 4 / 46

More about Sets

A set A is countably infinite if there is a bijection f : N→ A.

Theorem 1
Let B be {0, 1}. Then A = B× B× · · · × B× · · · is uncountable.

Proof.

(NTU EE) Regular Languages Spring 2023 5 / 46

Induction Proof

Induction Principle:
P(0) ∧ (∀k,P(k)⇒ P(k + 1))⇒ (∀n ∈ N,P(n)).
Well-founded Relation:
A binary R is called well-founded on a class X if every non-empty
subset S ⊆ X has a minimal element with respect to R. (E.g., N is
well-founded; Z is not well-founded.)

Induction Principle⇔ (N, <) is well-founded.

To prove property P(n) holds for all n ∈ N,
(Induction Basis): Prove P(0);
(Induction Step): Prove that if P(k) holds, then P(k + 1) also holds.

(NTU EE) Regular Languages Spring 2023 6 / 46

Strings and Languages

An alphabet is a nonempty finite set.
Members of an alphabet are called symbols.
A string over an alphabet is a finite sequence of symbols from the
alphabet.
If w is a string over an alphabet Σ, the length of w (written |w|) is
the number of symbols in w.
The string of length zero is the empty string.
Let x = x1x2 · · · xn and y = y1y2 · · · ym be strings of length n and m
respectively. The concatenation of x and y (written xy) is the string
x1x2 · · · xny1y2 · · · ym of length n + m.

For any string x, xk =

k︷ ︸︸ ︷
xx · · · x.

A language is a set of strings.

(NTU EE) Regular Languages Spring 2023 7 / 46

Schematic of Finite Automata

control

0 01 1 0110

Figure: Schematic of Finite Automata

A finite automaton has a finite set of control states.
A finite automaton reads input symbols from left to right.
A finite automaton accepts or rejects an input after reading the
input.

(NTU EE) Regular Languages Spring 2023 8 / 46

Finite Automaton M1

1

q1 q2 q3

0

0,1

1

0

Figure: A Finite Automaton M1

The above figure shows the state diagram of a finite automaton M1.
M1 has

3 states: q1, q2, q3;
a start state: q1;
a accept state: q2;

6 transitions: q1
0−→ q1, q1

1−→ q2, q2
1−→ q2, q2

0−→ q3, q3
0−→ q2,

and q3
1−→ q2.

(NTU EE) Regular Languages Spring 2023 9 / 46

Accepted and Rejected String

1

q1 q2 q3

0

0,1

1

0

Consider an input string 1100.
M1 processes the string from the start state q1.
It takes the transition labeled by the current symbol and moves to
the next state.
At the end of the string, there are two cases:

I If M1 is at an accept state, M1 outputs accept;
I Otherwise, M1 outputs reject.

Strings accepted by M1: 1,01,11,1100,1101,
Strings rejected by M1: 0,00,10,010,1010,

(NTU EE) Regular Languages Spring 2023 10 / 46

Finite Automaton – Formal Definition

A finite automaton is a 5-tuple (Q,Σ, δ, q0,F) where
I Q is a finite set of states;
I Σ is a finite set called alphabet;
I δ : Q× Σ→ Q is the transition function;
I q0 ∈ Q is the start state; and
I F ⊆ Q is the set of accept states.

Accept states are also called final states.
The set of all strings that M accepts is called the language of
machine M (written L(M)).

I Recall a language is a set of strings.

We also say M recognizes (or accepts) L(M).

(NTU EE) Regular Languages Spring 2023 11 / 46

M1 – Formal Definition

A finite automaton M1 = (Q,Σ, δ, q1,F) consists of
I Q = {q1, q2, q3};
I Σ = {0,1};
I δ : Q× Σ→ Q is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

I q1 is the start state; and
I F = {q2}.

Moreover, we have

L(M1) = {w : w contains at least one 1 and
an even number of 0’s follow the last 1}

(NTU EE) Regular Languages Spring 2023 12 / 46

Finite Automaton M2

0

q1 q2

0

1
1

Figure: Finite Automaton M2

The above figure shows M2 = ({q1, q2}, {0,1}, δ, q1, {q2}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M2)?
I L(M2) = {w : w ends in a 1}.

(NTU EE) Regular Languages Spring 2023 13 / 46

Finite Automaton M2

0

q1 q2

0

1
1

Figure: Finite Automaton M2

The above figure shows M2 = ({q1, q2}, {0,1}, δ, q1, {q2}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M2)?
I L(M2) = {w : w ends in a 1}.

(NTU EE) Regular Languages Spring 2023 13 / 46

Finite Automaton M3

0

q1 q2

0

1
1

Figure: Finite Automaton M3

The above figure shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M3)?
I L(M3) = {w : w is the empty string ε or ends in a 0}.

(NTU EE) Regular Languages Spring 2023 14 / 46

Finite Automaton M3

0

q1 q2

0

1
1

Figure: Finite Automaton M3

The above figure shows M3 = ({q1, q2}, {0,1}, δ, q1, {q1}) where δ
is

0 1
q1 q1 q2
q2 q1 q2

What is L(M3)?
I L(M3) = {w : w is the empty string ε or ends in a 0}.

(NTU EE) Regular Languages Spring 2023 14 / 46

Computation – Formal Definition

Let M = (Q,Σ, δ, q0,F) be a finite automaton and w = w1w2 · · ·wn
a string where wi ∈ Σ for every i = 1, . . . ,n.
We say M accepts w if there is a sequence of states r0, r1, . . . , rn
such that

r0
w1→ r1

w2→ r2 · · · rn−1
wn→ rn,

I r0 = q0;
I δ(ri,wi+1) = ri+1 for i = 0, . . . ,n− 1; and
I rn ∈ F,

M recognizes language A if A = {w : M accepts w}.

Definition 2
A language is called a regular language if some finite automaton
recognizes it.

(NTU EE) Regular Languages Spring 2023 15 / 46

Regular Operations

Definition 3
Let A and B be languages. We define the following operations:

Union: A ∪ B = {x : x ∈ A or x ∈ B}.
Concatenation: A · B = {xy : x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 · · · xk : k ≥ 0 and every xi ∈ A}.

Note that ε ∈ A∗ for every language A.

(NTU EE) Regular Languages Spring 2023 16 / 46

Closure Property – Union

Theorem 4
The class of regular languages is closed under the union operation. That is,
A1 ∪ A2 is regular if A1 and A2 are.

Proof.
Let Mi = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
M = (Q,Σ, δ, q0,F) where

Q = Q1 ×Q2 = {(r1, r2) : r1 ∈ Q1, r2 ∈ Q2};
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a));
q0 = (q1, q2);
F = (F1 ×Q2) ∪ (Q1 × F2) = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2}.

Why is L(M) = A1 ∪ A2?

(NTU EE) Regular Languages Spring 2023 17 / 46

Nondeterminism

When a machine is at a given state and reads an input symbol,
there is precisely one choice of its next state.
This is call deterministic computation.
In nondeterministic machines, multiple choices may exist for the
next state.
A deterministic finite automaton is abbreviated as DFA; a
nondeterministic finite automaton is abbreviated as NFA.
A DFA is also an NFA.
Since NFA allow more general computation, they can be much
smaller than DFA.

(NTU EE) Regular Languages Spring 2023 18 / 46

NFA N4

a,b

q1

q2 q3

a

a

b

ε

Figure: NFA N4

On input string baa, N4 has several possible computations:
I q1

b−→ q2
a−→ q2

a−→ q2;
I q1

b−→ q2
a−→ q2

a−→ q3; or
I q1

b−→ q2
a−→ q3

a−→ q1.

(NTU EE) Regular Languages Spring 2023 19 / 46

Nondeterministic Finite Automaton – Formal
Definition

For any set Q, P(Q) = {R : R ⊆ Q} denotes the power set of Q.
For any alphabet Σ, define Σε to be Σ ∪ {ε}.
A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F)
where

I Q is a finite set of states;
I Σ is a finite alphabet;
I δ : Q× Σε → P(Q) is the transition function;
I q0 ∈ Q is the start state; and
I F ⊆ Q is the accept states.

Note that the transition function accepts the empty string as an
input symbol.

(NTU EE) Regular Languages Spring 2023 20 / 46

NFA N4 – Formal Definition

a,b

q1

q2 q3

a

a

b

ε

N4 = (Q,Σ, δ, q1, {q1}) is a nondeterministic finite automaton
where

I Q = {q1, q2, q3};
I Its transition function δ is

ε a b
q1 {q3} ∅ {q2}
q2 ∅ {q2, q3} {q3}
q3 ∅ {q1} ∅

(NTU EE) Regular Languages Spring 2023 21 / 46

Nondeterministic Computation – Formal Definition

Let N = (Q,Σ, δ, q0,F) be an NFA and w a string over Σ. We say N
accepts w if w can be rewritten as w = y1y2 · · · ym with yi ∈ Σε and
there is a sequence of states r0, r1, . . . , rm such that

r0
y1→ r1

y2→ r2 · · · rm−1
ym→ rm,

I r0 = q0;
I ri+1 ∈ δ(ri, yi+1) for i = 0, . . . ,m− 1; and
I rm ∈ F.

Note that finitely many empty strings can be inserted in w.
Also note that one sequence satisfying the conditions suffices to
show the acceptance of an input string.
Strings accepted by N4: a,baa,

(NTU EE) Regular Languages Spring 2023 22 / 46

Equivalence of NFA’s and DFA’s

Theorem 5
Every nondeterministic finite automaton has an equivalent deterministic
finite automaton. That is, for every NFA N, there is a DFA M such that
L(M) = L(N).

Proof.
Let N = (Q,Σ, δ, q0,F) be an NFA. For R ⊆ Q, define
E(R) = {q : q can be reached from R along 0 or more ε transitions }.
Construct a DFA M = (Q′,Σ, δ′, q′0,F

′) where
Q′ = P(Q);
δ′(R, a) = {q ∈ Q : q ∈ E(δ(r, a)) for some r ∈ R};
q′0 = E({q0});
F′ = {R ∈ Q′ : R ∩ F 6= ∅}.

Why is L(M) = L(N)?
(NTU EE) Regular Languages Spring 2023 23 / 46

Equivalence of NFA’s and DFA’s

• ε-closure E(R):

• Transition δ′(R, a) = {q ∈ Q : q ∈ E(δ(r, a))}

(NTU EE) Regular Languages Spring 2023 24 / 46

A DFA Equivalent to N4

a,b

q1

q2 q3

a

a

b

ε

b

∅ {q1, q2}

{q1, q2, q3}

a

b

a

a,b
a

{q2}

{q2, q3}

{q1}

{q1, q3}{q3}

ba

b
b

a

b

a,b

a

Figure: A DFA Equivalent to N4

(NTU EE) Regular Languages Spring 2023 25 / 46

Closure Properties – Revisited

Theorem 6
The class of regular languages is closed under the union operation.

Proof.
Let Ni = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
N = (Q,Σ, δ, q0,F) where

Q = {q0} ∪Q1 ∪Q2;
F = F1 ∪ F2; and

δ(q, a) =

δ1(q, a) q ∈ Q1
δ2(q, a) q ∈ Q2
{q1, q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = L(N1) ∪ L(N2)?

(NTU EE) Regular Languages Spring 2023 26 / 46

Closure Properties – Revisited

Theorem 7
The class of regular languages is closed under the concatenation operation.

Proof.
Let Ni = (Qi,Σ, δi, qi,Fi) recognize Ai for i = 1, 2. Construct
N = (Q,Σ, δ, q1,F2) where

Q = Q1 ∪Q2; and

δ(q, a) =

δ1(q, a) q ∈ Q1 and q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 and a = ε
δ2(q, a) q ∈ Q2

Why is L(N) = L(N1) · L(N2)?

(NTU EE) Regular Languages Spring 2023 27 / 46

Closure Properties – Revisited

Theorem 8
The class of regular languages is closed under the star operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1,F1) recognize A1. Construct N = (Q,Σ, δ, q0,F)
where

Q = {q0} ∪Q1;
F = {q0} ∪ F1; and

δ(q, a) =

δ1(q, a) q ∈ Q1 and q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = [L(N1)]∗?
(NTU EE) Regular Languages Spring 2023 28 / 46

Closure Properties – Revisited

Theorem 9
The class of regular languages is closed under complementation.

Proof.
Let M = (Q,Σ, δ, q0,F) be a DFA recognizing A. Consider
M = (Q,Σ, δ, q0,Q \ F). We have w ∈ L(M) if and only if w 6∈ L(M).
That is, L(M) = A as required.

(NTU EE) Regular Languages Spring 2023 29 / 46

Regular Expressions (Syntax)

Definition 10
R is a regular expression if R is

a for some a ∈ Σ;
ε;
∅;
(R1 + R2) where R1 and R2 are regular expressions;
(R1 · R2) where R1 and R2 are regular expressions; or
(R∗1) where R1 is a regular expression.

We write R+ for R · R∗. Hence R∗ = R+ + ε.

Moreover, write Rk for

k︷ ︸︸ ︷
R · R · · · · · R.

I Define R0 = ε. We have R∗ = R0 + R1 + · · ·+ Rn + · · · .
L(R) denotes the language described by the regular expression R.
Note that ∅ 6= {ε}. + is also written as ”∪” is many textbooks

(NTU EE) Regular Languages Spring 2023 30 / 46

Regular Expressions (Semantics)

Definition 11
The language associated with a regular expression R, written as L(R),
is defined recursively as

L(a) = {a}, a ∈ Σ;
L(ε) = {ε};
L(∅) = ∅;
L(R1 + R2) = L(R1) ∪ L(R2)

L(R1 · R2) = L(R1) · L(R2)

L(R∗1) = (L(R1))∗

(NTU EE) Regular Languages Spring 2023 31 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Examples of Regular Expressions

For convenience, we write RS for R · S.
We may also write the regular expression R to denote its language
L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 + ε)(1 + ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R + ∅ = R and R · ε = R.

(NTU EE) Regular Languages Spring 2023 32 / 46

Regular Expressions and Finite Automata

Lemma 12
If a language is described by a regular expression, it is regular.

Proof.
We prove by induction on the regular expression R.

R = a for some a ∈ Σ. Consider the NFA
Na = ({q1, q2},Σ, δ, q1, {q2}) where

δ(r, y) =

{
{q2} r = q1 and y = a
∅ otherwise

R = ε. Consider the NFA Nε = ({q1},Σ, δ, q1, {q1}) where
δ(r, y) = ∅ for any r and y.
R = ∅. Consider the NFA N∅ = ({q1},Σ, δ, q1, ∅) where δ(r, y) = ∅
for any r and y.
R = R1 + R2, R = R1 · R2, or R = R∗1. By inductive hypothesis and
the closure properties of finite automata.

(NTU EE) Regular Languages Spring 2023 33 / 46

Regular Expressions and Finite Automata

a
a

b
b

ab
εa b

ab + a
ε

a bε

a

ε

(ab + a)∗ ε

a bε

a

ε

ε

ε

ε

(NTU EE) Regular Languages Spring 2023 34 / 46

Regular Expressions and Finite Automata

Lemma 13
If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

(NTU EE) Regular Languages Spring 2023 35 / 46

Generalized Nondeterministic Finite Automata

Definition 14
A generalized nondeterministic finite automaton is a 5-tuple
(Q,Σ, qstart, qaccept) where

Q is the finite set of states;
Σ is the input alphabet;
δ : (Q− {qaccept})× (Q− {qstart})→ R is the transition function,
whereR denotes the set of regular expressions;
qstart is the start state; and
qaccept is the accept state.

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 · · ·wk where wi ∈ Σ∗ and
there is a sequence of states r0, r1, . . . , rk such that

r0 = qstart;
rk = qaccept; and
for every i, wi ∈ L(Ri) where Ri = δ(qi−1, qi).

(NTU EE) Regular Languages Spring 2023 36 / 46

Regular Expressions and Finite Automata

Proof of Lemma.
Let M be the DFA for the regular language. Construct an equivalent
GNFA G by adding qstart, qaccept and necessary ε-transitions.
CONVERT (G):

1 Let k be the number of states of G.
2 If k = 2, then return the regular expression R labeling the

transition from qstart to qaccept.
3 If k > 2, select qrip ∈ Q \ {qstart, qaccept}. Construct

G′ = (Q′,Σ, δ′, qstart, qaccept) where
I Q′ = Q \ {qrip};
I for any qi ∈ Q′ \ {qaccept} and qj ∈ Q′ \ {qstart}, define
δ′(qi, qj) = (R1)(R2)∗(R3) ∪ R4 where R1 = δ(qi, qrip),
R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4 return CONVERT (G′).

(NTU EE) Regular Languages Spring 2023 37 / 46

Regular Expressions and Finite Automata

Lemma 15
For any GNFA G, CONVERT (G) is equivalent to G.

Proof.
We prove by induction on the number k of states of G.

k = 2. Trivial.
Assume the lemma holds for k− 1 states. We first show G′ is
equivalent to G. Suppose G accepts an input w. Let
qstart, q1, q2, . . . , qaccept be an accepting computation of G. We have

qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1−→ qrip · · · qrip

wj−1−→ qrip
wj−→ qj · · · qaccept.

Hence qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1···wj−→ qj · · · qaccept is a

computation of G′. Conversely, any string accepted by G′ is also
accepted by G since the transition between qi and qj in G′ describes
the strings taking qi to qj in G. Hence G′ is equivalent to G. By
inductive hypothesis, CONVERT (G′) is equivalent to G′.

(NTU EE) Regular Languages Spring 2023 38 / 46

Regular Expressions and Finite Automata

a,b

q1

q2

b

a

(a) DFA M

ε

q1

q2

b

a

a,b

qstart

qaccept

ε

(b) GNFA G

b(a ∪ b)∗

q1 aqstart

qaccept

ε

(c) GNFA

a∗b(a ∪ b)∗

qstart

qaccept

(d) GNFA

Figure: Finite Automaton to Regular Expression(NTU EE) Regular Languages Spring 2023 39 / 46

Regular Expressions and Finite Automata

Theorem 16
A language is regular if and only if some regular expression describes it.

(NTU EE) Regular Languages Spring 2023 40 / 46

Pumping Lemma

Lemma 17
If A is a regular language, then there is a number p such that for any s ∈ A of
length at least p, there is a partition s = xyz with

1 for each i ≥ 0, xyiz ∈ A;
2 |y| > 0; and
3 |xy| ≤ p.

Proof Idea:

(NTU EE) Regular Languages Spring 2023 41 / 46

Pumping Lemma (Proof)

Proof.
Let M = (Q,Σ, δ, q1,F) be a DFA recognizing A and p = |Q|.
Consider any string s = σ1σ2 · · ·σm−1 of length m− 1 ≥ p. Let q1, . . . , qm
be the sequence of states such that qi+1 = δ(qi, σi) for 1 ≤ i ≤ m− 1.
Since m ≥ p + 1 = |Q|+ 1, there are 1 ≤ s < t ≤ p + 1 such that qs = qt
(why?). Let x = σ1 · · ·σs−1, y = σs · · ·σt−1, and z = σt · · ·σm−1.
Note that q1

x−→ qs, qs
y−→ qt, and qt

z−→ qm ∈ F. Thus M accepts xyiz
for i ≥ 0. Since t 6= s, |y| > 0. Finally, |xy| ≤ p for t ≤ p + 1.

(NTU EE) Regular Languages Spring 2023 42 / 46

Applications of Pumping Lemma

Example 18
B = {0n1n : n ≥ 0} is not a regular language.

Proof.
Suppose B is regular. Let p be the pumping length given by the
pumping lemma. Choose s = 0p1p. Then s ∈ B and |s| ≥ p, there is a
partition s = xyz such that xyiz ∈ B for i ≥ 0.

y ∈ 0+ or y ∈ 1+. xz 6∈ B. A contradiction.
y ∈ 0+1+. xyyz 6∈ B. A contradiction.

Corollary 19
C = {w : w has an equal number of 0’s and 1’s} is not a regular language.

Proof.
Suppose C is regular. Then B = C ∩ 0∗1∗ is regular.

(NTU EE) Regular Languages Spring 2023 43 / 46

Applications of Pumping Lemma

Example 20
F = {ww : w ∈ {0,1}∗} is not a regular language.

Proof.
Suppose F is a regular language and p the pumping length. Choose
s = 0p10p1. By the pumping lemma, there is a partition s = xyz such
that |xy| ≤ p and xyiz ∈ F for i ≥ 0. Since |xy| ≤ p, y ∈ 0+. But then
xz 6∈ F. A contradiction.

(NTU EE) Regular Languages Spring 2023 44 / 46

Applications of Pumping Lemma

Example 21

D = {1n2
: n ≥ 0} is not a regular language.

Proof.
Suppose D is a regular language and p the pumping length. Choose
s = 1p2

. By the pumping lemma, there is a partition s = xyz such that
|y| > 0, |xy| ≤ p, and xyiz ∈ D for i ≥ 0.
Consider the strings xyz and xy2z. We have |xyz| = p2 and
|xy2z| = p2 + |y| ≤ p2 + p < p2 + 2p + 1 = (p + 1)2. Since |y| > 0, we have
p2 = |xyz| < |xy2z| < (p + 1)2. Thus xy2z 6∈ D. A contradiction.

(NTU EE) Regular Languages Spring 2023 45 / 46

Applications of Pumping Lemma

Example 22

E = {0i1j : i > j} is not a regular language.

Proof.
Suppose E is a regular language and p the pumping length. Choose
s = 0p+11p. By the pumping lemma, there is a partition s = xyz such
that |y| > 0, |xy| ≤ p, and xyiz ∈ E for i ≥ 0. Since |xy| ≤ p, y ∈ 0+. But
then xz 6∈ E for |y| > 0. A contradiction.

(NTU EE) Regular Languages Spring 2023 46 / 46

	Finite Automata
	Nondeterminism
	Regular Expressions
	Nonregular Languages

