Theory of Computation Regular Languages

(N	IΤ	U	E	F

- A set is a group of (possibly infinite) objects; its objects are called elements or members.
- The set without any element is called the empty set (written \emptyset).
- Let *A*, *B* be sets.
 - $A \cup B$ denotes the union of A and B.
 - $A \cap B$ denotes the intersection of A and B.
 - \overline{A} denotes the <u>complement</u> of A (with respect to some <u>universe</u> U).
 - $A \subseteq B$ denotes that A is a subset of B.
 - $A \subsetneq B$ denotes that A is a proper subset of B.
- The <u>power set</u> of a set *A* (written 2^{*A*}) is the set consisting of all subsets of *A*.
- If the number of occurrences matters, we use multiset instead.

- A <u>sequence</u> is a (possibly infinite) list of ordered objects.
- A finite sequence of *k* elements is also called <u>*k*-tuple</u>; a 2-tuple is also called a pair.
- The Cartesian product of sets *A* and *B* (written *A* × *B*) is defined by

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$

• We can take Cartesian products of k sets A_1, A_2, \ldots, A_k

 $A_1 \times A_2 \times \cdots \times A_k = \{(a_1, a_2, \dots, a_k) : a_i \in A_i \text{ for every } 1 \le i \le k\}.$

Define

$$A^k = \overbrace{A \times A \times \cdots \times A}^k.$$

(NTU EE)

Functions and Relations

- A function $f : D \to R$ maps an element in the domain D to an element in the range R.
- Write f(a) = b if f maps $a \in D$ to $b \in R$.
- When $f : A_1 \times A_2 \times \cdots \times A_k \to B$, we say f is a <u>k-ary function</u> and k is the <u>arity</u> of f.
 - When k = 1, f is a unary function.
 - When k = 2, f is a binary function.
- A predicate or property is a function whose range is {0,1}.

- A property with domain $A \times A \times \cdots \times A$ is a <u>*k*-ary relation</u> on *A*.
 - When k = 2, it is a <u>binary relation</u>.
- A binary relation *R* is an <u>equivalence relation</u> if
 - *R* is reflexive (for every *x*, *xRx*);
 - ► *R* is symmetric (for every *x* and *y*, *xRy* implies *yRx*; and
 - *R* is $\overline{\text{transitive}}$ (for every *x*, *y*, and *z*, *xRy* and *yRz* implies *xRz*.

★ E ► ★ E ► E

More about Sets

A set *A* is <u>countably infinite</u> if there is a bijection $f : \mathbb{N} \to A$.

Theorem 1

Let \mathbb{B} *be* $\{0,1\}$ *. Then* $A = \mathbb{B} \times \mathbb{B} \times \cdots \times \mathbb{B} \times \cdots$ *is uncountable.*

Proof.

 $= 1 0 1 1 1 0 1 0 0 1 1 \dots$

(NTU EE)

Regular Languages

• Induction Principle:

 $P(0) \land (\forall k, P(k) \Rightarrow P(k+1)) \Rightarrow (\forall n \in \mathbb{N}, P(n)).$

• Well-founded Relation:

A binary *R* is called <u>well-founded</u> on a class *X* if every **non-empty subset** $S \subseteq X$ has a **minimal element** with respect to *R*. (E.g., \mathbb{N} is well-founded; \mathbb{Z} is not well-founded.)

Induction Principle $\Leftrightarrow (\mathbb{N},<)$ is well-founded.

To prove property P(n) holds for all $n \in \mathbb{N}$,

- (Induction Basis): Prove *P*(0);
- (Induction Step): Prove that if P(k) holds, then P(k+1) also holds.

Strings and Languages

- An <u>alphabet</u> is a nonempty finite set.
- Members of an alphabet are called symbols.
- A <u>string</u> over an alphabet is a finite sequence of symbols from the alphabet.
- If *w* is a string over an alphabet Σ , the <u>length</u> of *w* (written |w|) is the number of symbols in *w*.
- The string of length zero is the empty string.

ŀ

• Let $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_m$ be strings of length n and m respectively. The concatenation of x and y (written xy) is the string $x_1 x_2 \cdots x_n y_1 y_2 \cdots y_m$ of length n + m.

• For any string
$$x$$
, $x^k = \overbrace{xx \cdots x}^n$.

• A <u>language</u> is a set of strings.

Figure: Schematic of Finite Automata

- A finite automaton has a finite set of control states.
- A finite automaton reads input symbols from left to right.
- A finite automaton accepts or rejects an input after reading the input.

Finite Automaton M₁

Figure: A Finite Automaton M₁

The above figure shows the <u>state diagram</u> of a finite automaton M_1 . M_1 has

- 3 <u>states</u>: *q*₁, *q*₂, *q*₃;
- a start state: *q*₁;
- a accept state: q₂;

• 6 <u>transitions</u>: $q_1 \xrightarrow{0} q_1, q_1 \xrightarrow{1} q_2, q_2 \xrightarrow{1} q_2, q_2 \xrightarrow{0} q_3, q_3 \xrightarrow{0} q_2,$ and $q_3 \xrightarrow{1} q_2$.

Accepted and Rejected String

- Consider an input string 1100.
- *M*₁ processes the string from the start state *q*₁.
- It takes the transition labeled by the current symbol and moves to the next state.
- At the end of the string, there are two cases:
 - ▶ If *M*¹ is at an accept state, *M*¹ outputs <u>accept</u>;
 - ▶ Otherwise, *M*¹ outputs reject.
- Strings accepted by *M*₁: 1, 01, 11, 1100, 1101,
- Strings rejected by *M*₁: 0,00,10,010,1010,....

Finite Automaton – Formal Definition

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - *Q* is a finite set of states;
 - Σ is a finite set called <u>alphabet;</u>
 - $\delta: Q \times \Sigma \to Q$ is the transition function;
 - $q_0 \in Q$ is the start state; and
 - $F \subseteq Q$ is the set of accept states.
- Accept states are also called final states.
- The set of all strings that *M* accepts is called the <u>language of</u> machine *M* (written *L*(*M*)).
 - Recall a <u>language</u> is a set of strings.
- We also say *M* recognizes (or accepts) *L*(*M*).

M_1 – Formal Definition

- A finite automaton $M_1 = (Q, \Sigma, \delta, q_1, F)$ consists of
 - $Q = \{q_1, q_2, q_3\};$

•
$$\Sigma = \{0, 1\};$$

• $\delta : Q \times \Sigma \to Q$ is

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

*q*₁ is the start state; and
 F = {*q*₂}.

• Moreover, we have

 $L(M_1) = \{w: w \text{ contains at least one 1 and} \\ an even number of 0's follow the last 1\}$

Finite Automaton M₂

Figure: Finite Automaton M₂

• The above figure shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

$$\begin{array}{c|cccc}
0 & 1 \\
\hline
q_1 & q_1 & q_2 \\
q_2 & q_1 & q_2
\end{array}$$

• What is $L(M_2)$?

• $L(M_2) = \{w : w \text{ ends in a } 1\}$.

(NTU EE)

Finite Automaton M₂

Figure: Finite Automaton M₂

• The above figure shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

What is L(M₂)?
 ▶ L(M₂) = {w : w ends in a 1}.

Finite Automaton M₃

Figure: Finite Automaton M₃

• The above figure shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

$$\begin{array}{c|ccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

• What is $L(M_3)$?

 $\blacktriangleright L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a } 0\}$

(NTU EE)

Finite Automaton M₃

Figure: Finite Automaton M₃

• The above figure shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

$$\begin{array}{c|ccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

• What is *L*(*M*₃)?

• $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a } 0\}.$

		-	-
NI			
•			

Computation – Formal Definition

- Let M = (Q, Σ, δ, q₀, F) be a finite automaton and w = w₁w₂ ··· w_n a string where w_i ∈ Σ for every i = 1, ..., n.
- We say *M* <u>accepts</u> *w* if there is a sequence of states r_0, r_1, \ldots, r_n such that

$$r_0 \stackrel{w_1}{\to} r_1 \stackrel{w_2}{\to} r_2 \cdots r_{n-1} \stackrel{w_n}{\to} r_n,$$

*r*₀ = *q*₀;
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
 for *i* = 0,..., *n* − 1; and
*r*_n ∈ *F*,

• <u>*M* recognizes language A</u> if $A = \{w : M \text{ accepts } w\}$.

Definition 2

A language is called a <u>regular language</u> if some finite automaton recognizes it.

		-		-	-
- (IN	111		H.	H.
· · ·			۰	-	-

< □ ▶ < 両

Definition 3

Let *A* and *B* be languages. We define the following operations:

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- Concatenation: $A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$
- <u>Star</u>: $A^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and every } x_i \in A\}.$
- Note that $\epsilon \in A^*$ for every language *A*.

Theorem 4

The class of regular languages is closed under the union operation. That is, $A_1 \cup A_2$ *is regular if* A_1 *and* A_2 *are.*

Proof.

Let $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $M = (Q, \Sigma, \delta, q_0, F)$ where

•
$$Q = Q_1 \times Q_2 = \{(r_1, r_2) : r_1 \in Q_1, r_2 \in Q_2\};$$

•
$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));$$

•
$$q_0 = (q_1, q_2);$$

•
$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2\}.$$

• Why is
$$L(M) = A_1 \cup A_2$$
?

- When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.
- This is call <u>deterministic</u> computation.
- In <u>nondeterministic</u> machines, <u>multiple</u> choices may exist for the next state.
- A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.
- A DFA is also an NFA.
- Since NFA allow more general computation, they can be much smaller than DFA.

Figure: NFA N₄

• On input string baa, N₄ has several possible computations:

►
$$q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_2;$$

► $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_3;$ or

Nondeterministic Finite Automaton – Formal Definition

- For any set Q, $\mathcal{P}(Q) = \{R : R \subseteq Q\}$ denotes the power set of Q.
- For any alphabet Σ , define Σ_{ϵ} to be $\Sigma \cup \{\epsilon\}$.
- A <u>nondeterministic finite automaton</u> is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - *Q* is a finite set of states;
 - Σ is a finite alphabet;
 - $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is the transition function;
 - $q_0 \in Q$ is the start state; and
 - $F \subseteq Q$ is the accept states.
- Note that the transition function accepts the empty string as an input symbol.

NFA N_4 – Formal Definition

- $N_4 = (Q, \Sigma, \delta, q_1, \{q_1\})$ is a nondeterministic finite automaton where
 - $Q = \{q_1, q_2, q_3\};$
 - Its transition function δ is

$$\begin{array}{c|ccc} \epsilon & a & b \\ \hline q_1 & \{q_3\} & \emptyset & \{q_2\} \\ q_2 & \emptyset & \{q_2, q_3\} & \{q_3\} \\ q_3 & \emptyset & \{q_1\} & \emptyset \end{array}$$

Nondeterministic Computation – Formal Definition

• Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ . We say N<u>accepts</u> w if w can be rewritten as $w = y_1y_2\cdots y_m$ with $y_i \in \Sigma_{\epsilon}$ and there is a sequence of states r_0, r_1, \ldots, r_m such that

$$r_0 \xrightarrow{y_1} r_1 \xrightarrow{y_2} r_2 \cdots r_{m-1} \xrightarrow{y_m} r_m,$$

▶
$$r_0 = q_0$$
;
▶ $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, ..., m - 1$; and

- ▶ $r_m \in F$.
- Note that finitely many empty strings can be inserted in *w*.
- Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.
- Strings accepted by N₄: a, baa,....

Equivalence of NFA's and DFA's

Theorem 5

Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that L(M) = L(N).

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For $R \subseteq Q$, define $E(R) = \{q : q \text{ can be reached from } R \text{ along } 0 \text{ or more } \epsilon \text{ transitions } \}$. Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

• $F' = \{R \in Q' : R \cap F \neq \emptyset\}.$

• Why is L(M) = L(N)?

< ロト < 同

Equivalence of NFA's and DFA's

• ϵ -closure E(R):

• Transition $\delta'(R, a) = \{q \in Q : q \in E(\delta(r, a))\}$


```
(NTU EE)
```

A DFA Equivalent to N_4

Spring 2023 25 / 46

Closure Properties - Revisited

Theorem 6

The class of regular languages is closed under the union operation.

Proof.

Let
$$N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$$
 recognize A_i for $i = 1, 2$. Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0\} \cup Q_1 \cup Q_2;$
- $F = F_1 \cup F_2$; and

•
$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1\\ \delta_2(q,a) & q \in Q_2\\ \{q_1,q_2\} & q = q_0 \text{ and } a = \epsilon\\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

• Why is $L(N) = L(N_1) \cup L(N_2)$?

< 口 > < 🗇

Theorem 7

The class of regular languages is closed under the concatenation operation.

Proof.

Let
$$N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$$
 recognize A_i for $i = 1, 2$. Construct
 $N = (Q, \Sigma, \delta, q_1, F_2)$ where
• $Q = Q_1 \cup Q_2$; and
• $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$

• Why is $L(N) = L(N_1) \cdot L(N_2)$?

Closure Properties – Revisited

Theorem 8

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

•
$$Q = \{q_0\} \cup Q_1;$$

• $F = \{q_0\} \cup F_1;$ and
• $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$

• Why is $L(N) = [L(N_1)]^*$?

Theorem 9

The class of regular languages is closed under complementation.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Consider $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$. We have $w \in L(M)$ if and only if $w \notin L(\overline{M})$. That is, $L(\overline{M}) = \overline{A}$ as required.

Regular Expressions (Syntax)

Definition 10

R is a <u>regular expression</u> if *R* is

- *a* for some $a \in \Sigma$;
- €;
- Ø;
- $(R_1 + R_2)$ where R_1 and R_2 are regular expressions;
- $(R_1 \cdot R_2)$ where R_1 and R_2 are regular expressions; or
- (R_1^*) where R_1 is a regular expression.
- We write R^+ for $R \cdot R^*$. Hence $R^* = R^+ + \epsilon$.
- Moreover, write R^k for $\overrightarrow{R \cdot R \cdot \cdots \cdot R}$.
 - Define $R^0 = \epsilon$. We have $R^* = R^0 + R^1 + \dots + R^n + \dots$.
- *L*(*R*) denotes the language described by the regular expression *R*.
- Note that $\emptyset \neq {\epsilon}$. + is also written as " \cup " is many textbooks

Definition 11

The language associated with a regular expression R, written as L(R), is defined recursively as

•
$$L(a) = \{a\}, a \in \Sigma;$$

- $L(\epsilon) = \{\epsilon\};$
- $L(\emptyset) = \emptyset$;

•
$$L(R_1 + R_2) = L(R_1) \cup L(R_2)$$

• $L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$

•
$$L(R_1^*) = (L(R_1))^*$$

▶ < 필 > < 필</p>

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}.$
- $(0 + \epsilon)(1 + \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- *L*((ΣΣ)*) = {*w* : *w* is a string of even length }.
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- *L*((ΣΣ)*) = {*w* : *w* is a string of even length }.
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- *L*((ΣΣ)*) = {*w* : *w* is a string of even length }.
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

- For convenience, we write RS for $R \cdot S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- *L*(0*10*) = {*w* : *w* contains a single 1}.
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- *L*((ΣΣ)*) = {*w* : *w* is a string of even length }.
- $(0+\epsilon)(1+\epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R + \emptyset = R$ and $R \cdot \epsilon = R$.

Lemma 12

If a language is described by a regular expression, it is regular.

Proof.

We prove by induction on the regular expression *R*.

- R = a for some $a \in \Sigma$. Consider the NFA $N_a = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ where $\delta(r, y) = \begin{cases} \{q_2\} & r = q_1 \text{ and } y = a \\ \emptyset & \text{otherwise} \end{cases}$
- $R = \epsilon$. Consider the NFA $N_{\epsilon} = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where $\delta(r, y) = \emptyset$ for any *r* and *y*.
- $R = \emptyset$. Consider the NFA $N_{\emptyset} = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where $\delta(r, y) = \emptyset$ for any *r* and *y*.
- $R = R_1 + R_2$, $R = R_1 \cdot R_2$, or $R = R_1^*$. By inductive hypothesis and the closure properties of finite automata.

Lemma 13

If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

(N)	I'T'I	ΓT.	F	E,
(1)		0	-	ь.

Generalized Nondeterministic Finite Automata

Definition 14

A generalized nondeterministic finite automaton is a 5-tuple

- $(Q, \Sigma, q_{\text{start}}, q_{\text{accept}})$ where
 - *Q* is the finite set of states;
 - Σ is the input alphabet;
 - δ : (Q − {q_{accept}}) × (Q − {q_{start}}) → R is the transition function, where R denotes the set of regular expressions;
 - *q*_{start} is the start state; and
 - *q*_{accept} is the accept state.

A GNFA <u>accepts</u> a string $w \in \Sigma^*$ if $w = w_1 w_2 \cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \ldots, r_k such that

- $r_0 = q_{\text{start}}$;
- $r_k = q_{\text{accept}}$; and
- for every $i, w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.

Proof of Lemma.

Let *M* be the DFA for the regular language. Construct an equivalent GNFA *G* by adding q_{start} , q_{accept} and necessary ϵ -transitions. CONVERT (*G*):

- Let *k* be the number of states of *G*.
- If k = 2, then return the regular expression *R* labeling the transition from q_{start} to q_{accept} .

• If
$$k > 2$$
, select $q_{rip} \in Q \setminus \{q_{start}, q_{accept}\}$. Construct
 $G' = (Q', \Sigma, \delta', q_{start}, q_{accept})$ where
• $Q' = Q \setminus \{q_{rip}\};$
• for any $q_i \in Q' \setminus \{q_{accept}\}$ and $q_j \in Q' \setminus \{q_{start}\}$, define
 $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup R_4$ where $R_1 = \delta(q_i, q_{rip}),$
 $R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j),$ and $R_4 = \delta(q_i, q_j).$

return CONVERT (G').

< ロト < 同

Lemma 15

For any GNFA G, CONVERT (G) is equivalent to G.

Proof.

We prove by induction on the number *k* of states of *G*.

- k = 2. Trivial.
- Assume the lemma holds for k 1 states. We first show G' is equivalent to G. Suppose G accepts an input w. Let $q_{\text{start}}, q_1, q_2, \ldots, q_{\text{accept}}$ be an accepting computation of G. We have $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1}} q_{\text{rip}} \cdots q_{\text{rip}} \xrightarrow{w_j} q_{ip} \cdots q_{\text{accept}}$. Hence $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1} \cdots w_j} q_j \cdots q_{\text{accept}}$ is a computation of G'. Conversely, any string accepted by G' is also accepted by G since the transition between q_i and q_j in G' describes the strings taking q_i to q_j in G. Hence G' is equivalent to G. By inductive hypothesis, CONVERT (G') is equivalent to G'.

(NTU EE)

Regular Languages

Spring 2023 38 / 46

Theorem 16

A language is regular if and only if some regular expression describes it.

(N)	ΓU	EΕ

Pumping Lemma

Lemma 17

If A is a regular language, then there is a number p such that for any $s \in A$ *of length at least p, there is a partition* s = xyz *with*

for each i ≥ 0, xyⁱz ∈ A;
|y| > 0; and
|xy| ≤ p.

Proof Idea:

Proof.

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA recognizing A and p = |Q|. Consider any string $s = \sigma_1 \sigma_2 \cdots \sigma_{m-1}$ of length $m-1 \ge p$. Let q_1, \ldots, q_m be the sequence of states such that $q_{i+1} = \delta(q_i, \sigma_i)$ for $1 \le i \le m-1$. Since $m \ge p+1 = |Q|+1$, there are $1 \le s < t \le p+1$ such that $q_s = q_t$ (why?). Let $x = \sigma_1 \cdots \sigma_{s-1}, y = \sigma_s \cdots \sigma_{t-1}$, and $z = \sigma_t \cdots \sigma_{m-1}$. Note that $q_1 \xrightarrow{x} q_s, q_s \xrightarrow{y} q_t$, and $q_t \xrightarrow{z} q_m \in F$. Thus M accepts xy^iz for $i \ge 0$. Since $t \ne s, |y| > 0$. Finally, $|xy| \le p$ for $t \le p+1$.

イロト イポト イヨト イヨト 三日

Applications of Pumping Lemma

Example 18

 $B = \{0^n 1^n : n \ge 0\}$ is not a regular language.

Proof.

Suppose *B* is regular. Let *p* be the pumping length given by the pumping lemma. Choose $s = 0^p 1^p$. Then $s \in B$ and $|s| \ge p$, there is a partition s = xyz such that $xy^i z \in B$ for $i \ge 0$.

- $y \in 0^+$ or $y \in 1^+$. $xz \notin B$. A contradiction.
- $y \in 0^+1^+$. *xyyz* \notin *B*. A contradiction.

Corollary 19

 $C = \{w : w \text{ has an equal number of } 0's \text{ and } 1's\}$ is not a regular language.

Proof.

Suppose *C* is regular. Then $B = C \cap 0^* 1^*$ is regular.

(NTU EE)

Regular Languages

Example 20

 $F = \{ww : w \in \{0, 1\}^*\}$ is not a regular language.

Proof.

Suppose *F* is a regular language and *p* the pumping length. Choose $s = 0^p 10^p 1$. By the pumping lemma, there is a partition s = xyz such that $|xy| \le p$ and $xy^i z \in F$ for $i \ge 0$. Since $|xy| \le p, y \in 0^+$. But then $xz \notin F$. A contradiction.

Example 21

 $D = \{1^{n^2} : n \ge 0\}$ is not a regular language.

Proof.

Suppose *D* is a regular language and *p* the pumping length. Choose $s = 1^{p^2}$. By the pumping lemma, there is a partition s = xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in D$ for $i \ge 0$. Consider the strings xyz and xy^2z . We have $|xyz| = p^2$ and $|xy^2z| = p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$. Since |y| > 0, we have $p^2 = |xyz| < |xy^2z| < (p+1)^2$. Thus $xy^2z \notin D$. A contradiction.

(NTU EE)

ヘロト 人間 とくほとく ほとう

Example 22

 $E = \{0^i 1^j : i > j\}$ is not a regular language.

Proof.

Suppose *E* is a regular language and *p* the pumping length. Choose $s = 0^{p+1}1^p$. By the pumping lemma, there is a partition s = xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in E$ for $i \ge 0$. Since $|xy| \le p, y \in 0^+$. But then $xz \notin E$ for |y| > 0. A contradiction.