
Theory of Computation 
Spring 2023, Homework #3 Solution 

———————————————————————————————— 
1. 

The proof is done by reducing  to . 
Suppose  is decidable and  decides it. Consider the following TM 

 = “ On input  where  is a TM and  is a string, use  and  to construct 
 = “On input : 

(1) If , accept. 
(2) Otherwise, Run  on . Accept if  accepts. Reject if  rejects. Loop if 

 loops.  ” 
Run  on . 

1) If  accepts, accept. 

2) If  rejects, reject.   ” 

 accepts    accepts      accepts  and 

. 
 rejects    rejects      does not accept  and  

accepts 01 but does not accept . 
Therefore  decides . However,  is undecidable and this is a contradiction. So  
is undecidable. 

2.  
(Proof for the  part) 
Let  be a Turing-decidable language such that there exists  such that . 
Let  be the TM that decides . Consider the following TM 

 = “On input , 
1) Run  on . If  accepts, accept. (In this case,  since .) 
2) For , do the following loop: 

For every  and , run  on . If  accepts, accept. 
Otherwise continue with the loop.” 

We can conclude that: 
(a) For any  accepted by , there exists  such that . So . 
(b) By definition, if the input , there exists  such that . If , then 

step 1) in  accepts. Otherwise, step 2) in  goes through all strings and will 
eventually find the corresponding  and accepts. This means . 

(c) If ,  loops forever in step 2) and never accepts. This means  
. 
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Based on (a) and (b),  so  is Turing-recognizable. 

(Proof for the  part) 
Let  be a TM that recognizes . Defined a language  is accepted by  in 
at most  steps. }. Consider 

“ On input  where  are strings,  

1) Simulate running  on  one step at a time.  
2) If  accepts, accept. 
3) If  rejects or does not halt after  steps, reject.” 

Clearly, . Since  always halts,  is decidable. We then show that 

there exists  such that . 
Consider the following cases: 
(a) For ,  accepts  in finite number of steps. Let  be the number of steps. Clearly 

a string  where  will result in  being accepted by . That is, there exists 

 such that . 
(b) For , clearly  for any . That is, there are no  such that . 
Based on (a) and (b), there exists  such that . Hence there 
exists  such that . Since we already proved that  is decidable,  matches the 
definition of  in the original questions. 

3 (a).  
Ans: No.  
Let , which is not a regular language. Let , which is a regular 
language. Let  be the alphabet for both  and . Define 

 .  Since  is CFL so A is decidable. Therefore f 

is computable (since we can use A’s decider to test  and output 0 or 1 accordingly). 
If , then . If , then . So . 

3 (b). 
Consider . Let . Then 

. Note . 
(1) To prove  is undecidable: Let ,  . Clearly  is computable. If  

, . If , . So  is the reduction of  to 
. Since  is undecidable,  is undecidable. 
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(2) To prove : Let . Clearly 

 is computable. First consider the case when . Since  flips the first 
alphabet of ,  . Then consider the case when .  but 

. So . Therefore  is the reduction of  to . 

4. 
Let  and  be two disjoint co-Turing-recognizable languages. Then there exists two Turing 
machines,  and , that recognize  and  respectively. Consider Turing machine 

 = “On input : 
Run both  and  on the input  in parallel. 
At each step: 

(1) If  accepts, reject. 
(2) Else if  accepts, accept. 
(3) Else continue to the next step.” 

We then prove that (i)  is decidable and (ii)  separates  and . 
i) Since  and  are disjoint, . That is, for any input ,  is accepted 

by either  ,  , or both. Since  stops as soon as either  or  accepts ,  
halts on all inputs. So  is a decidable language. 

ii) For any input  to be accepted by , it must be accepted by  . So , which 
implies . Similarly, for any input w to be rejected by , it must be accepted 
by . So , which implies . Hence  separates  and . 

5. 
Let  and  be two languages where . So there exist nondeterministic polynomial 
time Turing machines  and  that decide  and , respectively. 

(I) NP is closed under union: Consider a NTM 
 = “On input , 

(1) Run  on , if  accepts, accept. 
(2) Run  on , if  accepts, accept. 
(3) Reject. ” 

Clearly . Since  and  are both deciders,  always 
halts. Finally, since steps (1) and (2) can both be done in polynomial time (w.r.t. ),  is 
a polynomial time decider. Therefore . 

(II) NP is closed under intersection: Consider a NTM 
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 = “On input , 
(1) Run  on , if  rejects, reject. 
(2) Run  on , if  rejects, reject. 
(3) Accept. ” 

Clearly . Since  and  are both deciders,  always 
halts. Finally, since steps (1) and (2) can both be done in polynomial time (w.r.t. ),  is 
a polynomial time decider. Therefore . 

(III) NP is closed under concatenation: Consider a NTM 
 = “On input , 

(1) Nondeterministically split  into two substrings  and , where . 
(2) Run  on , if  rejects, reject. 
(3) Run  on , if  rejects, reject. 
(4) Accept. ” 

Clearly . Since  and  are both deciders,  always 
halts. Finally, since steps (1), (2) and (3) can all be done in polynomial time (w.r.t. ),  
is a polynomial time decider. Therefore . 

(IV) NP is closed under Kleene star: Consider a NTM 
 = “On input , 

(1) If , accept. 
(2) Nondeterministically choose a number  where . 
(3) Nondeterministically split  into  substrings: . 
(4) For , run  on  , if  rejects, reject. 
(5) Accept. ” 

Clearly . Since  is a decider,  always halts. Suppose  
decides  in time . Step (4) takes . So  is still a polynomial 
time decider. Therefore . 
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