Theory of Computation

Spring 2023, Homework #2 Solution

1.

Suppose $L = \{a^n b^j c^k | k = jn\}$ is context free and *m* is the pumping length. Let $s = a^m b^m c^{m^2} \in L$. $|s| = m^2 + 2m > m$. According to pumping lemma, there exists a partition s = uvxyz where (1) |vy| > 0; (2) $|vxy| \le m$; and (3) $uv^i xy^i z \in L$ for $i \ge 0$. If either *v* or *y* contains more than one type of symbols, then clearly $uv^2 xy^2 z \notin L$. So both *v* and *y* can only contain one type of symbols. Consider the following two cases:

- (1) v and y contain the same type of symbols. Since |vy| > 0, $uv^0 x y^0 z \notin L$.
- (2) *v* and *y* contain different types of symbols. Since $|vxy| \le m$, $(v, y) = (a^*, b^*)$ or (b^*, c^*) . In both cases, $uv^0xy^0z \notin L$. (E.g., $v = a^*; y = b^*$, $s' = uv^0xy^0z = a^{m-|v|}b^{m-|y|}c^{m^2}$. Since $(m - |v|) \cdot (m - |y|) \neq m^2$ when |v| + |y| > 0, so $s' \notin L$.)

So there is no partition that can satisfy the pumping lemma. Contradiction. So L is not context-free.

2.

Suppose *ADD* is regular and *p* is the pumping length. Choose $s = "1^p = 0 + 1^{p"}$. So $|s| = 2p + 3 \ge p$. According to pumping lemma, there exists a partition s = abc where (1) $ab^i c \in ADD$ for $i \ge 0$, (2) $|b| \ge 1$, and (3) $|ab| \le p$. Given (2) and (3), we have $b = 1^k$ where $k \ge 1$. Therefore $ab^0c = "1^{p-k} = 0 + 1^{p"} \notin ADD$. A contradiction. So ADD is not regular.

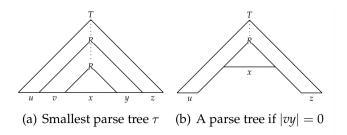
3.

 $B = L_1 \cup L_2 \cup L_3$ where

- (1) $L_1 = \{a^n b^m | n > m\}$. L_1 is context-free since it can be generated by the context-free grammar $G_1 = (\{S, A, B\}, \{a, b\}, R, S)$ where R is: $S \to AB$, $A \to aA | a$, $B \to aBb | \epsilon$.
- (2) $L_2 = \{a^n b^m | n < m\}$. L_2 is context-free since it can be generated by the context-free grammar $G_2 = (\{S, A, B\}, \{a, b\}, R, S)$ where R is: $S \to AB$, $A \to aAb | \epsilon$, $B \to Bb | b$.
- (3) $L_3 = \overline{a^*b^*}$. L_3 is regular and therefore also context-free.

4 (a).

Let $L = (V, \Sigma, R, S)$ be a linear language. Define *b* to be the maximum number of terminals in the right-hand side of a rule. Based on the definition of linear language, the right-hand side of any rule can contain at most one nonterminal. As a result, all the nonterminals must appear on the same branch in the parse tree. So a parse tree with height *h* has at most *bh* leaves (terminals), which is also the maximal length of any strings it can generate. Choose p = b(|V| + 1). Let $w \in L$ with $|w| \ge p$ and τ be the smallest parse tree for *w*. Then the height of $\tau \ge |V| + 1$, which means the longest branch in τ contains |V| + 1nonterminals. So there exists a nonterminal which appears more than once in the branch. Let *R* be the first nonterminal that appears twice. Figure (a) below shows how the leaves of τ are partitioned. The root of the subtree generating vxy corresponds to the 1st occurrence of *R*. The root of the subtree generating *x* corresponds to the 2nd occurrence of *R*.



i) From Figure (a), we see $uv^i x t^i z \in L$ for $i \ge 0$.

ii) If |vy| = 0, Figure (b) is a smaller parse tree than τ . A contradiction. Hence |vy| > 0. iii) There are at most |V| + 1 nonterminals from *T* to the 2nd occurrence of *R*, both ends included. (Otherwise *R* cannot be the "first" nonterminal to appear twice.) Therefore $|uvyz| \le b |V| < p$.

4 (b).

Suppose $L = \{a^n b^{2n} a^n | n \ge 0\}$ is linear and p the pumping length. Choose $w = a^p b^{2p} a^p \in L$. $|w| = 4p \ge p$. Let w = uvxyz be a partition that satisfies the pumping lemma. That is, $|uvzy| \le p$, $|vy| \ge 1$, and $uv^i xy^i z \in L$ for all $i \ge 0$. Since $|x| = 4p - |uvyz| \ge 3p$, x must contain the entire substring b^{2p} . Consider $s' = uv^0 xy^0 z = a^{p-|v|} b^{2p} a^{p-|y|}$. Since |v| + |y| > 0, $s' \notin L$. Contradiction. Hence L is not linear.

5.

 $B \propto D$ if $B \subseteq D$ and $D \setminus B$ contains infinitely many strings.

Since both *B* and *D* are regular languages, $D \setminus B$ is also regular. Therefore pumping lemma must hold for $D \setminus B$. Let *p* be the pumping length for $D \setminus B$. Choose a string *s* from $D \setminus B$ where $|s| \ge p$. According to pumping lemma, there exists a partition s = xyz where

 $xy^iz \in D \setminus B$ for any $i \ge 0$. Let $L_{even} = \{xy^iz \mid i \ge 0 \text{ and } i \text{ is even}\}$. Clearly $L_{even} \subseteq D \setminus B \subseteq D$ and L_{even} contains infinitely many strings (since there are infinitely many values for *i*). Similarly, we can define $L_{odd} = \{xy^iz \mid i \ge 0 \text{ and } i \text{ is odd}\}$. Then $L_{odd} \subseteq D \setminus B \subseteq D$ and L_{odd} contains infinitely many strings. Note that $L_{even} \cap L_{odd} = \emptyset$.

Let $C = L_{even} \cup B$. We first prove that $B \propto C$: $B \subseteq B \cup L_{even} = C$. Since $L_{even} \subseteq D \setminus B$, $L_{even} \cap B = \emptyset$. Therefore $C \setminus B = L_{even}$, which contains infinitely many strings. Therefore $B \propto C$.

We then prove that $C \propto D$: Since $B \subseteq D$ and $L_{even} \subseteq D$, we have $C = L_{even} \cup B \subseteq D$. Since $L_{odd} \subseteq D \setminus B$, $L_{odd} \cap B = \emptyset$. Given that $L_{even} \cap L_{odd} = \emptyset$, we have $L_{odd} \cap C = \emptyset$. So $L_{odd} \subseteq D \setminus C$. We already know that L_{odd} contains infinitely many strings. Therefore $C \propto D$.