DFA/NFA Minimization
Minimizing DFAs

The Idea:
Distinguishable Strings

- Given a language L, strings x, y are **distinguishable** by L if there is string z such that $xz \in L$ and $yz \notin L$ (or the other way round).

- Equivalently, strings x, y are **indistinguishable** if for every string z, $xz \in L \iff yz \in L$.

- Given a DFA M and a state q, let $L_M(q) = \{ w \mid q \xrightarrow{w} q_f, q_f \in F \}$, i.e., the set of strings leading M to acceptance from q. $L_M(q)$ is called the language associated with state q.

- If x and y are distinguishable by L, any DFA accepting L must reach different states upon reading x and $y.$
Minimal DFA and Distinguishability

Distinguishable strings must be associated with different states.
Indistinguishable strings may end up in the same state.

DFA minimal ⇔ Every pair of states is distinguishable
Distinguishable States

Two states q and r are distinguishable if $\exists z_1, \ldots, z_k$

Indistinguishability is an equivalence relation, which partitions the set of states into equivalence classes.
Finding (In)distinguishable States

Phase 1: If q is accepting and q' is rejecting
Mark (q, q') as distinguishable (X)

Phase 2: If (q, q') are marked
Mark (r, r') as distinguishable (X)

Phase 3: Unmarked pairs are indistinguishable
Merge them into groups
An Example

(Phase 1) q_{11} is distinguishable from all other states
(Phase 2) Looking at \((r, r') = (q_\epsilon, q_0)\), Neither \((q_0, q_{00})_{\text{input} \ 0}\) nor
\((q_1, q_{01})_{\text{input} \ 1}\) are distinguishable
(Phase 2) Looking at \((r, r') = (q_\epsilon, q_1), (q_1, q_{11})\) input 1 is distinguishable.
(Phase 3) Merge states into groups (also called *equivalence classes*)

Minimized DFA:
Why It Works?

Why have we found all distinguishable pairs?

Because we work backwards!
Theorem 1

Every regular language has a single minimal automaton (up to isomorphism).

However, minimal NFAs are not unique as the following examples show.
Another way of Characterizing Regular Languages – Residuals of Languages

- The **residual** of a language $L \subseteq \Sigma^*$ with respect to a word w is the language
 \[L^w = \{ u \in \Sigma^* \mid wu \in L \} \]

- A language $L' \subseteq \Sigma^*$ is a residual of L if $L' = L^w$ for some $w \in \Sigma^*$.

- We define
 \[R_L : xR_L y \overset{\text{def}}{=} (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L) \].

 R_L is an equivalence relation. Note that $xR_L y \Leftrightarrow L^x = L^y$.

- Let A be a DFA. The language recognized by A with q the initial state, denoted by $L_A(q)$, is a residual of $L(A)$.

Theorem 2 (Myhill-Nerode Theorem)

A language is regular iff it has finitely many residuals.
Canonical DFA of a Regular Language

Let $L \subseteq \Sigma^*$ be a regular language, the canonical DFA of L $M_L = (Q_L, \Sigma, \delta_L, q_{0L}, F_L)$ is

- Q_L is the set of residuals of L, i.e., $Q_L = \{ L^w \mid w \in \Sigma^* \}$
- $\delta_L(R, a) = L^{wa}$, where $R = L^w$, for some w, where $R \in Q_L$ and $a \in \Sigma$
- $q_{0L} = L^\epsilon = L$
- $F_L = \{ R \in Q_L \mid \epsilon \in R \}$

Example: $L = a^*b^* \subseteq \{a, b\}^*$

- $Q_L = \{ Q_1, Q_2, Q_3 \}$, where
 - $Q_1 = a^*b^* (= L^\epsilon)$, $Q_2 = b^* (= L^{ab})$, $Q_3 = \emptyset (= L^{aba})$
- $q_{0L} = Q_1$
- $F_L = \{ Q_1, Q_2 \}$
- $\delta_L(Q_1, a) = Q_1$, $\delta_L(Q_1, b) = Q_2$, $\delta_L(Q_2, a) = Q_3$, $\delta_L(Q_2, b) = Q_2$, $\delta_L(Q_3, a \mid b) = Q_3$.

(NTU EE) Finite Automata Spring 2020 14 / 17
Theorem 3

If L is regular, then M_L is the unique minimal DFA up to isomorphism recognizing L.
State partition for DFAs

The quotient of a DFA (NFA) \(M = (Q, \Sigma, \delta, q_0, F) \) w.r.t. a partition \(P \) is \(M_P = (Q_P, \Sigma, \delta_P, q_{0P}, F_P) \), where

- \(Q_P = P = \{B_1, \ldots, B_n\} \),
- \((B, a, B') \in \delta_P \) iff \((q, a, q') \in \delta \) for some \(q \in B \) and \(q' \in B' \),
- \(q_{0P} \) is the block containing \(q_0 \),
- \(F_P \) is the set of blocks that contain some state of \(F \).
The notion of a quotient can be used for NFA minimization except that the definition of a partition is slightly different.

- A block B containing q_1, q_2 can be split via an input a and a block B' if $\delta(q_1, a) \cap B' \neq \emptyset$ and $\delta(q_2, a) \cap B' = \emptyset$

Theorem 4

Given an NFA M and a number k, deciding if there is another NFA M' equivalent to M with at most k states is PSPACE-complete (polynomial-space complete).