Theory of Computation Final Exam. Spring 2001 (YEN)

- 1. (15 pts) Let $DOUBLE SAT = \{ \langle \phi \rangle \mid \phi \text{ has at least two satisfying assignments} \}$. Prove in detail that DOUBLE SAT is NP-complete.
- 2. (20 pts) **True or False?** You must provide a short yet convincing explanation for your answer, in order to receive full credit.
 - (a) If PH (the polynomial time hierarchy) has a complete problem, then P = NP.
 - (b) The language $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^*\}$ is decidable. (Σ is the alphabet and $\langle A \rangle$ denotes the encoding of A.)
 - (c) If $A \leq_m^P B$ (A is polynomial-time many-one reducible to B) then $A \leq_T^P B$ (A is polynomial-time Turing reducible to B).
 - (d) If $A \leq_T^P B$, then $A \leq_T^P \overline{B}$. (\overline{B} is the complement of B.)
 - (e) If $L_2 \subseteq L_1$ and L_2 is NP-hard, then L_1 must also be NP-hard.
- 3. (15 pts) For any class of langauges \mathcal{C} , $co \mathcal{C} = \{\overline{L} \mid L \in \mathcal{C}\}$. Prove that $NP \cup co NP \subseteq P^{SAT}$ (P^{SAT} is the class of languages accepted by polynomial time DTMs using SAT as oracles). Show your proof in sufficient detail. (Hint: Recall that SAT is NP-hard.)
- 4. (15 pts) Is it true that $L \in NP$ implies $L^* \in NP$? Justify your answer in sufficient detail. (Recall that $L^* = \{x_1 x_2 \cdots x_k \mid k \ge 0, x_1, x_2, \dots, x_k \in L\}$.)
- 5. (15 pts) Draw the containment relationships for the following complexity classes: DL, NL, P, NP, Σ_i^P , Δ_i^P , Π_i^P ($\forall i, 0 \leq i$), PH, PSPACE, BPP, recursive, r.e., EXPTIME, EX-PSPACE, P^{NP} .
- 6. (15 pts) Prove that RP is closed under intersection (i.e, if $A, B \in RP$, so is $A \cap B$). (Recall that $A \in RP$ if there is a polynomial-time probabilistic TM accepting A with zero error probability for every $x \notin A$.)
- 7. (15 pts) Define the following two *PCP*s.
 - (a) Post correspondence problem. What does this problem mean?
 - (b) Probabilistically checkable proof. What does the class PCP(r(n), t(n)) mean?