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1.(Linear CFG — 1-turn PDA) We can assume that every production in
G = (N, A, S, P) is of the foorm A — uBv or A — u, where A, B are non-
terminals, and u, v are terminals or empty strings. An 1-turn PDA M that
accepts L(G) is described as follows. There is only one state ¢;. The bottom-
of-stack symbol L = S is the start non-terminal symbol of G. Acceptance
condition is empty stack. The transitions are: (1) If A — uBw is a production,
(q1,u, A) = (q1, Bv), and (2) if A — u is a production, (¢1,u, A) = (q1,¢€), and
(3) (q1,u,u) = (qu,¢€) for each non-terminal u.

1.(1-turn PDA — Linear CFG) Please refer to Theorem 2.1 of Ginsburg, S.
and Spanier, E. ”Finite-Turn Pushdown Automata”. SIAM Journal on Control
1966 4:3, 429-453.

2. We follow the hint. L’ is clearly not CFL (by an similar argument for
proving non-CFL of {a"b"¢™|n > 0} by applying pumping lemma. ). To design
an NPDA M; that accepts L', assuming that L were a DCFL, let M; be a
DPDA accepting L and M, be a copy of M;. The construction of Mjz is de-
scribed as follows: (1) Initial state of Ms is the initial state of M;. (2) Final
states of M3 is union of the final states in M; and Ms. (3) We change all the
b in the transitions of Ms to ¢. (4) Let S denotes the set of states in M; that
accepts some a’b’ for some i > 0. For every ¢ € S, we add an e-transition
(g,6,X) = (¢, X) for each X € T, where ¢’ is the corresponding state of ¢ in
Ms. The proof of correctness is quite tedious so we simply omit here.

3.(a) We show that the statement of pumping lemma (p.60 of S-3) holds for
L. Let k be any constant greater than 0. For any word z in L of length
at least k, we use z; to denote the it" letter of z. Set u = v = w = ¢,
T = 21, Yy = 2223...2),. Now wiwzly = zlizgz;;...z‘z‘ must be in L since
(1) if 21 = a, clearly wiwa'y € {a'b'cFdl|j = k = 1}, (2) if 21 # a, clearly
w'wzly € {a'b cFd'li = 0}.



3.(b) For all I, let u = a’T1pIt1cIH1qI+1 € [ We mark all the ¢ in u. Now
for any valid © = vwzyz, (1) wry cannot contains both b and d (if so, wry would
contain more than I marked positions), and (2) w or y contains at least one ¢
(since only ¢ is marked). Therefore vw™zy™ 2z must not have §(b) = #(c) = #(d),
where f(s) denotes the number of occurrence of s. Therefore, for any m > 0,
vw™xy™z ¢ L. Hence L is not CFL due to Odgen’s lemma.

4.(a) We can assume that L and R share the same alphabet. Let M; =
(Q1,%,q1,01, F1) be a DFA that accepts R, and Mz = (Q2, %, 1, g2, 02, L, F2)
be a PDA that accepts L. We construct a PDA that accepts shuffle(L, R)
as follows: M3 = ((Q1 x Q2),%,T,(q1,92),03, L, F3), where F3 = {(q,p)|q €
Fi,p € Fy}. The transitions are (1) ((¢,p),a,X) — ((d1(¢g,a)p), X) and (2)
((¢,p),a,X) — ((¢,0),Z"), where (p,a,X) — (p',Z’) is a transition in My, for
all ¢ € Q1,p € Q2,a € 3, X € I'. Intuitively, type 1 and type 2 transitions
represent moves in M; and Ms, respectively.

4.(b) Let Ly = {a"b"|n > 1}, Ly = {c¢"d"|n > 1}, L3 =shuffle(L1, La). If
L; is context-free, than Ly = Ly N L(aTctbTdt) = {a™c"b™d"|m,n > 1} must
be also context-free since intersection of any context-free language and regular
language is also context-free. It is easy to show that L4 is not context-free by
applying pumping lemma, so L3 is not context-free.



